@article{oai:repo.qst.go.jp:00048517, author = {GEORGIEVA, EKATERINA and DONIKA, IVANOVA and ZHELEV, ZHIVKO and BAKALOVA, RUMIANA and MAYA, GULUBOVA and ICHIO, AOKI and バカロバ ルミアナ and 青木 伊知男}, issue = {10}, journal = {Anticancer research}, month = {Oct}, note = {The intracellular redox balance (redox status) is a dynamic system that may change via many factors. Mitochondria are one of the most important among them. These organelles are the main intracellular source of energy. They are essential for maintaining cellular homeostasis due to regulation of many biochemical processes. The mitochondrial dynamics change during cellular activities and in some cases, can cause an overproduction of reactive oxygen species (ROS), which encourages the induction of oxidative DNA damage and up- or down-regulation of phosphatases, proliferative/anti-proliferative factors, apoptotic/anti-apoptotic factors, etc. Moreover, mitochondrial dysfunction and redox imbalance can continuously support and contribute to a wide range of pathologies, termed as “free radical diseases” (e.g., cancer, neurodegeneration, atherosclerosis, inflammation, etc.). This review article is focused on the mitochondrial dysfunction and cellular redox status as a hallmark of cell homeostasis and diagnostic marker of cancer. It is intended to broad readership – from students to specialists in the field.}, pages = {5373--5381}, title = {Mitochondrial Dysfunction and Redox Imbalance as a Diagnostic Marker of "Free Radical Diseases".}, volume = {37}, year = {2017} }