@article{oai:repo.qst.go.jp:00048336, author = {Luo, Yuanjun and Fujita, Hirofumi and Nedelescu, Hermina and Shahangir, Biswas Mohammad and Sato, Chika and Ying, Sarah and Takahashi, Mayu and Akita, Keiichi and Higashi, Tatsuya and Aoki, Ichio and Sugihara, Izumi and 佐藤 千佳 and 東 達也 and 青木 伊知男}, issue = {6}, journal = {Brain Structure and Function}, month = {Aug}, note = {Comparative neuroanatomy provides insights into the evolutionary functional adaptation of specific mammalian cerebellar lobules, in which the lobulation pattern and functional localization are conserved. However, accurate identification of homologous lobules among mammalian species is challenging. In this review, we discuss the inter-species homology of crus I and II lobules which occupy a large volume in the posterior cerebellar hemisphere, particularly in humans. Both crus I/II in humans are homologous to crus I/II in non-human primates, according to Paxinos and colleagues; however, this area has been defined as crus I alone in non-human primates, according to Larsell and Brodal. Our neuroanatomical analyses in humans, macaques, marmosets, rats, and mice demonstrate that both crus I/II in humans are homologous to crus I/II or crus I alone in non-human primates, depending on previous definitions, and to crus I alone in rodents. Here, we refer to the region homologous to human crus I/II lobules as “ansiform area (AA)” across animals. Our results show that the AA’s olivocerebellar climbing fiber and Purkinje cell projections as well as aldolase C gene expression patterns are both distinct and conserved in marmosets and rodents. The relative size of the AA, as represented by the AA volume fraction in the whole cerebellum was 0.34 in human, 0.19 in macaque, and approximately 0.1 in marmoset and rodents. These results indicate that the AA reflects an evolutionarily conserved structure in the mammalian cerebellum, which is characterized by distinct connectivity from neighboring lobules and a massive expansion in skillful primates.}, pages = {2449--2472}, title = {Lobular homology in cerebellar hemispheres of humans, non-human primates and rodents: a structural, axonal tracing and molecular expression analysis.}, volume = {222}, year = {2017} }