{"created":"2023-05-15T14:36:52.720260+00:00","id":47517,"links":{},"metadata":{"_buckets":{"deposit":"ff56bc31-ab25-4c68-866c-3adc8306e7e0"},"_deposit":{"created_by":1,"id":"47517","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"47517"},"status":"published"},"_oai":{"id":"oai:repo.qst.go.jp:00047517","sets":["1"]},"author_link":["476152","476150","476151"],"item_8_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2015-09","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"10","bibliographicPageEnd":"102501-6","bibliographicPageStart":"102501-1","bibliographicVolumeNumber":"115","bibliographic_titles":[{"bibliographic_title":"Physical Review Letters"}]}]},"item_8_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Differential cross sections of isoscalar and isovector spin-M1 (0+→1+) transitions are measured using high-energy-resolution proton inelastic scattering at Ep=295  MeV on Mg24, Si28, S32, and Ar36 at 0°–14°. The squared spin-M1 nuclear transition matrix elements are deduced from the measured differential cross sections by applying empirically determined unit cross sections based on the assumption of isospin symmetry. The ratios of the squared nuclear matrix elements accumulated up to Ex=16  MeV compared to a shell-model prediction are 1.01(9) for isoscalar and 0.61(6) for isovector spin-M1 transitions, respectively. Thus, no quenching is observed for isoscalar spin-M1 transitions, while the matrix elements for isovector spin-M1 transitions are quenched by an amount comparable with the analogous Gamow-Teller transitions on those target nuclei.","subitem_description_type":"Abstract"}]},"item_8_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":" American Physical Society"}]},"item_8_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://dx.doi.org/10.1103/PhysRevLett.115.102501","subitem_relation_type_select":"DOI"}}]},"item_8_relation_17":{"attribute_name":"関連サイト","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.102501"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.102501","subitem_relation_type_select":"URI"}}]},"item_8_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0031-9007","subitem_source_identifier_type":"ISSN"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"松原, 礼明"}],"nameIdentifiers":[{"nameIdentifier":"476150","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"al., et"}],"nameIdentifiers":[{"nameIdentifier":"476151","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"松原 礼明","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"476152","nameIdentifierScheme":"WEKO"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei"}]},"item_type_id":"8","owner":"1","path":["1"],"pubdate":{"attribute_name":"公開日","attribute_value":"2016-08-29"},"publish_date":"2016-08-29","publish_status":"0","recid":"47517","relation_version_is_last":true,"title":["Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-05-15T23:38:51.598384+00:00"}