東電福島第一原子力発電所事故に係る食品への

放射性セシウムの移行パラメータ

~量研-放医研における研究のとりまとめ~

国立研究開発法人 量子科学技術研究開発機構

東電福島第一原子力発電所事故に係る食品への放射性セシウムの移行パラメータ ~量研-放医研における研究のとりまとめ~

A Summary of Environmental Transfer Parameter Data of Radiocaesium for Foods: Obtained and Collated by QST-NIRS after the TEPCO's Fukushima Daiichi Nuclear Power Station Accident

発行年月 2023 年 2 月 編集発行 国立研究開発法人 量子科学技術研究開発機構 連絡先 〒263-8555 千葉県千葉市稲毛区穴川 4-9-1 量子生命・医学部門 放射線医学研究所

> TEL : 043-206-3256 Fax : 043-206-3267 Email : tagami.keiko@qst.go.jp URL : http://www.qst.go.jp/

©2023 国立研究開発法人 量子科学技術研究開発機構

Printed in Japan

QST-R-27

卷頭言

東京電力福島第一原子力発電所の事故から12年が経過しようとしている。事故発生当初、 当時の放射線医学総合研究所や日本原子力研究開発機構を始め、多くの公的研究機関や大学の研 究者らが環境中に放出された放射性物質の分布状況や動態の解明に取り組み、その活動の一部 は、人および環境の放射線防護の観点から、環境放射能研究として現在も継続的に行われてい る。放射線医学総合研究所では、それまでの生活圏における放射性核種挙動研究の経験を活か し、放射性物質の環境中への放出から人や環境の被ばく線量評価につなげるための環境移行パラ メータに着目して、そのデータ収集を着実に行ってきた。2016年には放射線医学総合研究所と 日本原子力研究開発機構の一部が統合され、量子科学技術研究開発機構(量研)として再出発し たが、その後も引き続きデータを蓄積しており、これらの成果が2020年に発行された IAEA の Tecdoc No. 1927に掲載されていることは、大きな成果の一つであろう。

今回、量研の量子生命・医学部門放射線医学研究所では、第1期中長期計画の終了に併せ て、これまでの一連の環境移行パラメータに関するデータを整理し、成果をとりまとめたパラメ ータ集を刊行することとした。生活環境中の放射性物質が人や環境に被ばく影響を与えるまでの 移行プロセスは多様であるが、長期間にわたる地道な研究の継続により環境移行パラメータが明 らかになってきたことは、環境放射能研究の大きな進展につながると考えている。被ばく線量評 価モデリングをはじめとする関連研究に役立てられることを期待したい。

2023年1月

国立研究開発法人 量子科学技術研究開発機構 理事 茅野政道

概要

東京電力福島第一原発の事故では、食品の放射能汚染が社会に強いインパクトを与えた.それ に対し量子科学技術研究開発機構-放射線医学研究所では、事故以前から環境動態研究を実施し てきた経験から、様々な場面で被ばく線量低減のための対応・支援を行いつつ、環境移行データ を蓄積し、その成果を論文等で公表してきた.この事故から得られた教訓は多く、我が国の生活 環境を考慮した線量評価を適切に行うため、数学モデルに使う環境移行パラメータのデータセッ トを用意しておく必要性が認識された.この経験を今後に生かす観点から、我々の研究グループ が取得した環境移行パラメータ値やそれに与える影響要因について、一冊の報告書にとりまとめ た.下記には、本報告書に記載している主な放射性セシウム(Cs)関連のパラメータを示す.

- 降下物によって汚染された作物の濃度を推定するために必要な質量あたりの遮断係数 (fa),
- 植物に遮断された放射性物質が風雨や植物体の成長に伴って濃度が減少するウェザリング半 減期(*T*_w),
- 放射性 Cs に顕著な現象である植物の汚染部位から他の非汚染部位への転流する割合 (ft),
- 土壌-土壌溶液間分配係数及び淡水および海水等の水圏における堆積物-水間分配係数(K_d)
- 土壌から作物可食部への移行割合(F_v)
- 飼料から畜産製品への移行割合 (Fm for milk and Ff for meat)
- 狩猟動物や野生キノコおよび野生の山菜についての面移行係数(Tag)
- 水-水産物濃縮係数(Water-biota concentration ratio, CR)

特に自然環境下での動植物への移行については,我が国の自然環境を反映したデータであることに加え,欧米にはない山菜を食べる習慣も考慮されている点で貴重なデータである.

田上恵子^{a, b, c},石井伸昌^{a, c},内田滋夫^{b, c}

国立研究開発法人 量子科学技術研究開発機構 量子生命・医学部門 放射線医学研究所

[®]福島再生支援研究部 環境移行パラメータ研究グループ

^b放射線影響研究部 生活圏核種移行研究グループ

°旧 廃棄物技術開発事業推進チーム

Summary

The accident at the Fukushima Daiichi Nuclear Power Station (FDNPS) of Tokyo Electric Power Company provided us a great impact on Japanese society due to the radioactive contamination in food products. Because the National Institute of Radiological Sciences (NIRS) of the National Institutes of Quantum Science and Technology has experienced lots of studies on environmental transfer of radionuclides before the accident, in response to this FDNPS accident, we studied and collate environmental transfer data for released radionuclides in the environment while responding to and supporting the reduction of radiation doses in various situations. Many lessons have been learned from this accident, and we recognized the needs to prepare an environmental transfer parameter data set to be used in mathematical models for the assessment of radiation doses for human and biota considering the unique environment in Japan. In order to share this experience in the future, the values of the environmental transfer parameters obtained by our research group and the factors affecting them are summarized in this report. The following are the main parameters of radiocaesium included in this report.

- The mass interception factor $(f_{\rm B})$ to estimate the concentration of crops contaminated by fallout,
- The weathering half-life (T_w) to estimate the time period for half of the concentration of radionuclide directly attached on plants decreases with wind, rain, and plant growth,
- The rate of translocation from contaminated plant tissue to other non-contaminated tissue ($f_{\rm tr}$),
- Soil-soil solution partition coefficient and sediment-water partition coefficient in the hydrosphere such as fresh water and seawater (K_d)
- The root uptake from soil to edible parts of crops (F_v)
- The transfer to farm animals ($F_{\rm m}$ for milk and $F_{\rm f}$ for meat)
- The aggregated transfer factor (T_{ag}) for game animals, wild mushrooms and edible wild plants
- Water-biota concentration ratio (CR)

The data on the transfer to animals and plants in natural environments are particularly valuable because they reflect the natural environment in Japan and also take into account the custom of eating wild plants, *sansai*, which is not the case in Europe and the United States.

Keiko Tagami^{a, b, c}, Nobuyoshi Ishii^{a, c}, and Shigeo Uchida^{b, c}

National Institutes for Quantum Science and Technology, Quantum Life and Medical Science Directorate, National Institute of Radiological Sciences

- ^a Environmental Transfer Parameter Research Group, ^b Research Group for Radionuclide Transfer in Biosphere,
- ^c Biospheric Assessment for Waste Disposal Team (~2020)

巻頭言(案)
1 はじめに1
2 植物による遮断係数 (Mass interception coefficient, <i>f</i> _B)
3 ウェザリング半減期 (Weathering half-life, T_w)
4 転流係数 (Translocation factor, f_{tr})
5 土壤-土壤溶液間分配係数(Soil-soil solution distribution coefficient, <i>K</i> _d)15
6 放射性 Cs の実効半減期(Effective half-life, <i>T</i> _{eff})
6.1 海産生物
6.2 淡水生物
6.3 樹木および草本植物
6.4 狩猟生物
7 土壤-農作物移行係数 (Soil-to-crop transfer factor, F _v)
8 家畜への移行 (Transfer to farm animal products, $F_{\rm f}$ and $F_{\rm m}$)
9 面移行係数 (Aggregated transfer factor, T _{ag})
9.1 狩猟動物
9.2 山菜40
9.3 野生キノコ42
10 堆積物-水間分配係数(Sediment-water distribution coefficient, <i>K</i> _d)
10.1 淡水環境
10.2 海水環境
11 水—水生生物濃縮係数(Water-aquatic biota concentration ratio, CR)
11.1 淡水-水生生物濃縮係数(Concentration ratio from freshwater to biota, CR)
11.2 海水-水生生物濃縮係数(Concentration ratio from seawater to biota, CR)
12 調理加工 (Food processing)
13 まとめと今後の課題
記号リスト
引用文献61
Supplemental Material
Table S1 Mass interception coefficient of radioiodine and radiocaesium for vegetables observed after
the Fukushima Daiichi nuclear power station accident67
Table S2 Biological half-life for aquatic biota observed in Japan (under laboratory conditions)69
Table S3 Soil to crop transfer factor of radiocaesium 85
Table S4 Concentration ratio (CR, L/kg fresh mass) of radiocaesium in freshwater fish (whole) 101
Table S5 Concentration ratio (CR, L/kg fresh mass) of radiocaesium in marine fish (whole)121
Table S6 Radioactivity concentration data for food processing obtained by the Biospheric Assessment
for Waste Disposal Team, QST-NIRS, Chiba127

1 はじめに

東京電力福島第一原子力発電所の事故(以下,福島第一原発事故)が2011年3月11日に発生 した際,環境中に放射性物質が放出されたことによる食品の放射能汚染が,社会に強いインパク トを与えた.事故以前から,量子科学技術研究開発機構量子生命・医学研究部門放射線医学研究 所(旧放射線医学総合研究所.以下,量研-放医研)では,人への被ばく線量評価に資するため, 様々な環境移行パラメータ値を報告してきた.これらの成果の詳細は示さないが,グローバルフ オールアウトによる被ばく影響評価,自然放射線による被ばく線量評価,原子力の平和利用に伴 い排出される放射性廃棄物由来の放射性核種の環境安全評価等,さまざまな場面でデータが用い られている.我々はこれまでの経験を活かし,事故後においては,放射性セシウムを中心とした データ収集を行ってきた.

環境移行パラメータ値はコンパートメントモデルで用いられる環境の構成物質間の核種の動きを数値化したものであり、人および環境生物の被ばく評価にも用いられている. IAEA からも環境中での動きが平衡時の環境移行パラメータ集, IAEA TRS-422 (2004), TRS-472 (2010)やTRS-479 (2014)を出版し、これらのデータは我が国の安全評価にも使われている. 主なパラメータを Figure 1 に示す.

Figure 1. Transfer parameters of radionuclides in the environment.

福島第一原発事故直後の 2011 年 3 月 15 日から約 1 ヶ月の間,我々は当時の放医研(現 量研・ 千葉地区)において降下物試料を採取し、ヨウ素-131(¹³¹I)、テルル-132(¹³²Te)、放射性セ シウム(¹³⁴Cs, ¹³⁶Cs, ¹³⁷Csが含まれ, 核種単体もしくは¹³⁴Cs+¹³⁷Csを表す.以下, 放射性Csと 表す)等の原発事故由来の放射性核種が,単位面積あたりにどの程度降下してきたのかについて, ゲルマニウム(Ge)半導体検出装置で測定し、放射能濃度や放射能比の時間的変動についてデー タを得た(Ishii et al., 2013a). このようなデータを元に、千葉地区内において木本植物、草本 植物の葉の測定も開始し,植物の放射性 Cs 濃度の種類間の比較検討を行った結果,種類によっ て濃度の程度に違いが出ることを報告した(Tagami et al., 2012a). また,環境測定のみならず, 緊急時における人の被ばくの観点から、飲食することによる内部被ばくに着目し、飲水中の¹³¹I の除去や煮沸時の挙動研究(Tagami and Uchida, 2011a),そして食材の調理加工による放射性 Cs の除去について検討を行った(Tagami et al., 2012b; 田上, 内田, 2012a, b, c; Tagami and Uchida, 2013a; Tagami and Uchida, 2016a; Uchida and Tagami, 2013). その後, 食品として利用 可能な植物のモニタリングの継続,また文献調査等により,環境移行パラメータを導出し, Figure.1 において黄色で示したパラメータについて、データを公表してきた.パラメータ導出に 際しては、上述した我々の調査・研究で得られた情報の他に、特に厚生労働省の食品中の放射性 物質の検査データ(http://www.radioactivity-db.info/)を良く利用してきた. そのデータの解析結 果から, 放射性 Cs 濃度を調整できない野生の動植物(ジビエ, 淡水魚, 山菜, 野生キノコ) に ついては、食品としてのモニタリングのさらなる継続の必要性を報告している(田上、内田、 2022) .

本報告では環境移行パラメータについて, 我々の研究グループが収集した主に放射性 Cs のデ ータを取りまとめた. すなわち,

- 降下物によって汚染された作物の濃度を推定するために必要な質量あたりの遮断係数 (Mass interception coefficient, *f*_B),
- 植物に遮断された放射性物質が風雨や植物体の成長に伴って濃度が減少する速さを示す ウェザリング半減期(Weathering half-life, *T*_w),
- 放射性 Cs に顕著な現象である植物の汚染部位から他の非汚染部位へ転流する割合
 (Translocation factor, *f*_{tr}),
- 土壤中における動きやすさを表す土壤-土壤溶液間分配係数(Soil-soil solution distribution coefficient, *K_d*),
- 土壌から作物可食部への移行割合(Soil-crop transfer factor, TF または *F*_v)
- 飼料から畜産製品への移行割合(Feed transfer coefficient, *F*_m for milk and *F*_f for meat)

について求めた.また,農耕地土壌のように土壌中濃度が鉛直方向に一定ではない自然環境下での動植物への移行については,特に今後の食品モニタリングでの重要性も加味して,

● 狩猟動物や野生キノコおよび野生の山菜についての面移行係数(Aggregated transfer factor,

を報告した. さらに、これらのパラメータに加えて、淡水および海水等の水圏における挙動については、

- 堆積物-水間分配係数(Sediment-water distribution coefficient, *K*_d)
- 水-水産物濃縮係数(Water-biota concentration ratio, CR)

も報告した.これらのパラメータ値が主に事故後の初期から中期に得られており,平衡時のよう に一定の値を示さないことを考慮し,平衡に達するまでの実効半減期(*T*eff)についても,いく つか議論を加えている.これらのデータの多くは福島第一原発事故が発生してから10年目に IAEA から Tecdoc No. 1927 として出版された報告書(IAEA, 2020)に記載されている.また, この報告書には日本の多くの研究者のパラメータ値も収録されているので,参照していただきた い.

2 植物による遮断係数(Mass interception coefficient, f_B)

大気中に放射性物質が放出された後,徐々に地表に降下してくる.農作物の場合,この降下物による直接沈着が高い濃度の汚染につながる(内田ら2011,田上2012).Figure 2に示すように,ある放射性物質の面積あたりの降下量(Bq/m²)に対し,農作物がその放射性物質をどの程度保持するのかについて,実際に作物を食べる観点から濃度(Bq/kg fresh mass)に換算することは有用である(以下,fresh massをFMで示す).

放射性物質の面積あたりの降下量(Bq/m^2)に対し, 農 作物がその放射性物質をどの程度保持する(Bq/kg FM) のか,を表すパラメータとして,(1)式に示す重量あたり の遮断係数(f_B , $m^2/kg FM$)が用いられる.

Figure 2. Interception by plants.

 $f_{\rm B} = A_0 / A_{\rm total} \qquad (1)$

ここで、 A_0 は降下物を受けたときの作物可食部中の初期の放射性核種濃度(Bq/kg FM)であ り、 A_{total} は単位面積あたりに降下した放射性核種の総量(Bq/m^2)である.放射性物質の降下量 を原子力災害後に速やかにモデル推定することができれば、このパラメータを用いて作物中の濃 度レベルも推定することができるようになる.そこで、重量あたりの遮断係数(f_B)を、公開デ ータと我々の実測データを用いて算出した.

露地栽培の野菜類について、¹³¹Iと放射性 Cs の結果(Tagami and Uchida, 2021)をとりまと めて Table 1 に示す.また、個別データを Table S1 に収録した.これらのデータの導出法につい ては上述の引用文献を参照していただきたい.葉菜類のデータは対数正規分布に近似していたこ とから、代表値は幾何平均値(Geometric mean, GM)を用いる方が良いと考えられる.葉菜類の f_B について ¹³¹I と放射性 Cs の結果を対数値に変換して不等分散である対応のないデータでの t 検 定を Kaleida Graph ver. 5 により行なったところ、¹³¹I の方が有意に低かった(p=0.013).複数件 のデータがあるホウレンソウ(Spinach)も同様であった.したがって、¹³¹I の方が放射性 Cs よ りも植物に保持されなかったといえる.これには元素の化学形の違いが影響していると考えられ た.

一般にヨウ素は大気中では有機形のヨウ化メチル(CH₃I)や分子状ヨウ素(I₂)のガス状と一部はエアロゾルに付着して存在し、それらが雨滴に取り込まれて一部溶解し陰イオン(Гまたは IO₃⁻)になる.セシウムは大気中ではエアロゾルとして存在すると考えられ、それが雨滴に取り込まれて一部溶解し陽イオンになる.福島第一原発事故により放出された直後の放射性ヨウ素は一部はガス状、一部はエアロゾルだったと考えられ、放射性 Cs はエアロゾルだったと推定されている(Xu et al., 2015, Lebel et al., 2016).これらを含む放射性プルームが通過した際の降雨の

有無は、地表の放射性物質の分布や植物への沈着に影響を与えたと考えられる.地域にも依る が、最初にガス状やエアロゾル状の放射性物質が多くの場所に飛来し、のちに降雨があったこと により大気中の放射性物質が雨水に取り込まれたり叩き落とされて、雨水とともに大量に降下し た.植物との関係で言えば、前者では乾性沈着が、後者では湿性沈着が汚染の要因となる.残念 ながら福島第一原発事故後のサンプリングでは、乾性沈着と湿性沈着を分けることができなかっ たので、ここで示す結果は両方の影響を含んだものである.

Table 1 Geometric mean and range of mass interception coefficient (f_B) of radioiodine and radiocaesium for vegetables observed after the Fukushima Daiichi nuclear power plant accident

Radionuclide – Crop type	Ν	GM	Min.	Max.
Radioiodine (¹³¹ I)				
- Leafy vegetables	29	0.052	0.005	0.30
Spinach	15	0.048	0.012	0.20
- Other vegetables (head, stalk, etc.)	11	0.007	0.0005	0.16
Radiocaesium				
- Leafy vegetables	15	0.13	0.020	0.72
Spinach	6	0.14	0.026	0.72
- Other vegetables (head, stalk, etc.)	4	0.053	0.020	0.12

なお、原子力災害時の重要核種には放射性ストロンチウムも重要になると考えられる.福島第 一原発事故では、放射性ストロンチウムの放出量が少なかったことから、 f_B データを取得するこ とができなかったが、グローバルフォールアウト ⁹⁰Sr を解析して f_B データを導出し、公表して いるので参照していただきたい(Tagami et al., 2022a).

3 ウェザリング半減期 (Weathering half-life, Tw)

ウェザリング半減期は,放射性物質が沈着した物(例えば植物や建材)の表面から放射性物質 が風雨によって取り除かれる速さを示しており,通常,指数関数でフィッティングできる.この 点に関しては後述で詳しく触れる.植物の場合,地上部によって遮断され植物体表面に留まった 放射性物質が,風雨によって植物体から離脱し減少する速さを示しており,定期的に植物中濃度

(Bq/kg FM)を測定した結果を指数関数フィッティングすることで得られる.ただし,成長期に おいては,植物体重が増加することによって見かけ上濃度が減ることも,このウェザリング半減 期に含まれている.我々が千葉市所在の量研(旧放医研)敷地内において,適時,食用に適した サイズのフキを葉柄(Petioles)と葉身(Leaf blades)に分けて,Ge半導体検出装置(Seiko EG&G ORTEC)で測定した(Figure 3).その結果のうち,¹³⁷Cs について Figure 4 に示す.

Figure 3. Giant butterbur leaf blade and petiole samples (left), cut plant tissue samples for Ge gamma spectrometry measurements (right), and the Ge detecting system with auto sampler (bottom).

Figure 4. Concentration changes of ¹³⁷Cs in mature leaves parts (leaf blades and petioles, in fresh mass [FM] basis) of giant butterbur affected by the Fukushima nuclear accident in 2011.

注意しなければならないのは、日々の放射性降下物量が多いと植物中濃度が見かけ上ウェザ リングによって減少しないことから、放射性物質の大気放出がほぼ無くなり、放射性降下物から の影響が植物体中の濃度よりも十分低くなってから、本分析を行わなければならない点である. RIトレーサー実験では一度放射性物質に暴露させ、その後自然条件下等においてウェザリング 半減期を観察することができるが、原子力災害等において複数回大きな放出があった場合には、 始点の設定が重要である.千葉市における放射性降下物量は2011年3月21日を最大とし、8日 後には降下量が3桁下がったことが確認されている(Ishii et al., 2013).事故が継続している状 態でのサンプリングは、様々な状態変化を想定して必要最低限行なっておくべきである.

なお、ウェザリング半減期とここでは記しているが、植物の成長期においては植物体重が増 加することによって見かけ上濃度が減ることも含んでいる.移行プロセスを扱う評価モデルで は、厳密にはこのような体重増加による見かけの減少は別に取り扱い、純粋にウェザリング半減 期を使って評価することもある.ただし、植物中の濃度を定期的に測定するにあたっては、毎回 刈り取りが必要であり、ある集団からの平均的な試料を破壊的に採取することになる(刈り取る ことで、その植物の今後の成長の程度を知ることは困難).したがって通常は、サンプリング毎 の成長の度合いについては測定することが難しく、そのため成長に伴う希釈効果についてもウェ ザリング効果に含まれて報告されることになる.

計算式は以下の通りとなる.まず,t日経過後の物質中の放射能濃度(At, Bq/kg FM)は,フィッティングより次式で表される.

 $A_{\rm t} = A_0 \times \exp\left(-\lambda_{\rm eff} \times t\right) \qquad (2)$

ここで A_0 は初期濃度であり、 $f_B \times A_{total}$ と一致する. A_{total} は単位面積あたりの降下総量である (Bq/m²) . f_B が得られない場合には、フィッティング結果から実効減少定数 λ_{eff} (day⁻¹)を得て、 逆算することで初期濃度を算出することができる.これにより、実効半減期(T_{eff} , day)は次式 により得られる.

 $T_{\rm eff} = \ln(2) / \lambda_{\rm eff} \qquad (3)$

実効半減期(*T*_{eff}),物理学的半減期(*T*_{phy})およびウェザリング半減期(*T*_w)の間には次の関係 が成立する.

 $1/T_{\rm eff} = 1/T_{\rm phy} + 1/T_w$ (4)

これより,次式を用いて Twを導出することができる.

 $T_{\rm w} = (T_{\rm phy} \times T_{\rm w}) / (T_{\rm phy} - T_{\rm eff})$ (5)

特に半減期の短い¹³¹I(T_{1/2}=8.02 d)については、*T*_{phy}を考慮する必要があるが、¹³⁴Csや¹³⁷Csは計算結果にほとんど影響しない.

福島第一原発事故後に厚生労働省が食品モニタリングを行なっており、当時の出荷制限を超 えた農作物について出荷制限解除のためには1週間に1度測定を行い、3回連続暫定規制値以下 となった場合に解除としたことから(厚生労働省「農畜水産物等の放射性物質検査について」平 成23年4月4日(https://www.mhlw.go.jp/web/t_doc?dataId=00tb7611&dataType=1&pageNo=1), 暫定規制値超の報告がある市町村の農作物で、1週間に1度のサンプリングが複数回行われてい れば、ほぼ同一市町村内で採取された連続データとみなすことができる。そのようなデータを整 理し、ウェザリング半減期(*T_w*)を求めた(田上、内田、2020a).また、Figure 4 に示したよう に、量研で得たデータも含め、改めて解析を行なった。得られたウェザリング半減期を Table 2 に示す.さらに、チェルノブイリ原発事故後に日本で観察されたデータを用いて同様の手法で、 導出した *T_w*(田上、内田、2020b)も Table 2 に示す.チェルノブイリ事故時のデータはヨモギ のデータを含む.

Radionuclide – Crop type (C or F^*)	Ν	GM	Min.	Max.
Radioiodine				
- Leafy vegetables (F)	26	8.4	3.0	23
- Herbaceous plants (C)	13	19.1	7.0	74.3
- Other vegetables (F)	9	7.3	2.2	27
Radiocaesium				
- Leafy vegetables (F)	11	6.2	3.1	8.9
- Herbaceous plants (C)	7	18.4	13.0	53.8
- Other vegetables (F)	2	6.7	5.8	7.8

Table 2 Weathering half-life (T_w , d) of radioiodine and radiocaesium for vegetables observed after the Fukushima Daiichi nuclear power plant accident, and the Chernobyl accident observed in Japan

*C: Chernobyl and F: Fukushima

Table 2 の結果から、福島第一原発事故後の野菜類の *T_w*データは、放射性 Cs の方が放射性ヨウ素よりもやや半減期が短いように見えるが、大きな差がなかった.一方、チェルノブイリ原発事故後のデータと比べると、福島第一原発事故後の *T_w*は、有意に短かった.植物のタイプ、気象条件の違いに加えて、チェルノブイリ原発から飛来したものについては遠方から微小エアロゾルに付着したものが到達したものであり、福島第一原発事故に比べて葉面に止まりやすかった可能性が考えられた.

4 転流係数(Translocation factor, ftr)

Translocation(転流)は植物体の一部に物質が付着・吸収されたのちに、非付着部位に移行する現象を示している.そのため、時間がかかることから、短半減期の放射性核種についてはあまり考慮されない.

カリウム(K)は植物中において容易に移動し、特に古い部分から新芽などの活性の高い部分に転流することが知られている. Cs が植物の必須元素である K と同族元素であることから、K と同様に植物中を転流すると考えられた. ただし、K と Cs の植物中での分布を詳細に検討する と、必ずしも一致していないことから(Tagami and Uchida, 2015a)、K が移行する部位に Cs も移 行しやすいが、元素固有の違いがあると言える. ちなみに、ヨウ素は植物の必須元素ではないこ とから、積極的に植物に吸収・転流されない.

上述のように、放射性降下物として植物上に付着・保持された放射性物質、特に放射性 Cs は、ウェザリングで除去されずに一部植物体内中に吸収され、その場に止まらずに他の部位に転 流することにより、新たな汚染部位が生じる可能性がある(Tagami et al., 2012a). Translocation factor, f_tは、汚染した部位から非汚染部位への移行を濃度の比で表す. 我々は茶葉について、公 開データを用い、2年葉から飲用茶に利用する新芽の部分への放射性 Csの転流に関するパラメ ータ値を次式により算出した.

$f_{\rm tr} = A_{\rm new} / A_{\rm direct} \qquad (6)$

Anew (Bq/kg dry mass [DM] or Bq/kg FM) は非汚染部位、ここでは新芽中の放射性 Cs 濃度であり、Adirect (Bq/kg DM or Bq/kg FM) は直接汚染した部位もしくは汚染源部位であり、ここでは2年葉の放射性 Cs 濃度である.したがって転流係数 (fr.)は dimensionless である.

結果を Table 3 に示す. 2011 年は直接汚染が影響して 2 年葉中の濃度が高く,見かけ上転流が低くなった.しかし,2012 年および 2013-2014 年のデータから,新芽中の方が 2 年葉よりも高くなる傾向があることがわかった.本研究の成果は IAEA (2020) に掲載している.飲用茶中の濃度を減らす方法として,煎じる前に茶葉をお湯で短時間すすぎ,改めて煎じる方法を取れば,30%ほど除去できることも明らかにした (Tagami et al., 2012b).

Table 3 Translocation factor (f_{tr}) of radiocaesium from old leaves to new shoots of tea tree

Year	Ν	AM	GM	Min.	Max.
2011	14	0.8	0.7	0.4	2.4
2012	32	1.5	1.3	0.5	2.6
2013~2014	7	1.2	1.1	0.6	1.7

茶樹を含む樹木等の内部に一旦取り込まれた放射性 Cs 濃度は、徐々に指数関数的に減ってい くことが知られている.茶樹の場合の実効半減期(*T*eff)として短い半減期成分は 50 日、長い成 分は 416 日で減少したことを報告した(Tagami et al., 2020a)(成分の詳細は 6 章参照).

我々は以前、5種類の常緑樹の2年葉 (old leaves) と当年葉 (new leaves) の濃度とその比を 報告している (Tagami et al., 2012b). これはすなわち f_{tr} となるため、改めて f_{tr} を計算して Table 4 に示した. ベニカナメモチ (Red tip photinia) は異なる場所でサンプリングした試料間での差 が大きかったが、キンモクセイ (Fragrant orange-colored olive)、ツツジ (Azalea)、ツバキ

(Camellia) は大きな差が見られなかった.転流係数 *f*_{tr}が大きかったのは,ベニカナメモチ>ツ バキ>ヤツデ (Japanese aralia),キンモクセイ>ツツジの順であった.Table 3 のチャノキのデー タと比較すると,ベニカナメモチと同程度だったことがわかる.これらは全て常緑広葉樹である が,ツツジの葉は小さくまた表面に毛が生えているのが特徴であり,他の種類に比べても2年葉 中の濃度が1桁近く高かった.降下物と植物葉表面に関する情報整理が必要であろう.参考まで にFigure 5 には常ベニカナメモチの新芽の時期の写真を示す.緑の葉が2年葉であり,赤色の葉 が新芽 (当年葉) である.

Figure 5. Red tip photinia @ NIRS (top) and separated new, middle, and one-year old leaves (bottom).

			Activity con	Activity concentration		ocation f	factor, $f_{\rm tr}$
English name and	Date of	Leaf age	¹³⁷ Cs	¹³⁴ Cs	¹³⁷ Cs	¹³⁴ Cs	Avg.
samping place	sampning	-	Bq/kg FM	Bq/kg FM			-
Red tip photinia @	2011.4.25	New	$406 \pm \! 16$	$359 \pm \!\!11$	0.83	0.80	0.81
NIRS	2011.4.25	Old	$490{\pm}16$	450 ± 11			
Red tip photinia @	2011.4.27	New	$400\pm\!\!17$	$389\pm\!\!12$	0.42	0.47	0.44
Narashino	2011.4.27	Old	956 ± 29	827 ± 19			
Fragrant orange-	2011.4.26	New	$325\pm\!\!19$	267 ±13	0.32	0.28	0.30
colored olive @ NIRS	2011.4.26	Old	1016 ± 31	944 ±21			
Fragrant orange-	2011.5.17	New	89 ±12	83 ±9	0.24	0.31	0.28
colored olive @ Chiba	2011.5.17	Old	$368\pm\!30$	$266 \pm \! 19$			
	2011.4.28	New	339 ±22	328 ±15	0.09	0.10	0.09
Azalea @ NIRS	2011.4.28	Old	$3778 \pm \! 89$	3351 ±60			
	2011.5.5	New	572 ± 30	533 ±22	0.19	0.19	0.19
Azalea @ Narashino	2011.5.5	Old	$3051\pm\!\!88$	$2829\pm\!\!62$			
	2011.4.28	New	83 ±10	81 ±6	0.38	0.42	0.40
Camellia @ NIRS	2011.4.28	Old	$219{\pm}14$	191 ±9			
Camellia @ Chiba	2011.5.17	New	69 ± 7	77 ±5	0.48	0.74	0.61
	2011.5.17	Old	145 ±9	104 ±6			
Japanese aralia@	2011.5.18	New	33 ±6	40 ±4	0.23	0.30	0.26
NIRS	2011.5.18	Old	143 ±7	135 ±5			

Table 4 Translocation factor (f_{tr}) of radiocaesium from old leaves to new leaves of five tree species

 \pm Counting error

また、葉から葉への転流だけではなく、植物の地上部から地下部への転流についても測定を行 なった. 2011年4月20と28日に採取されたチューリップについて、汚染した地上部から地下球 根へのCsの転流係数も、上述の式より、*A*_{direct}を地上部の放射性物質濃度(Bq/kg DM)、*A*_{new}は 非汚染部位の球根中の濃度(Bq/kg DM)に置き換えて*f*_tを導出した. 結果を Table 5 に示す. 4 月20日のデータは試料のジオメトリー補正が不十分であるため参考値としている. ヨウ素はほ とんど転流していないが、放射性Csは上述した新芽への転流と同程度の数値となった. 4月は 花が咲き終わり、球根に養分を貯め始める季節であることから、球根への物質の移動が大きかっ たことが影響していると考えられた (Tagami et al., 2022b).

	¹³¹ I	¹³⁴ Cs	¹³⁷ Cs
April 20, 2011	0.05±0.00	0.20±0.01	0.21±0.02
April 28, 2011	0.03±0.00	0.41±0.02	0.53±0.04

Table 5 Translocation factor (f_{tr}) from above ground parts to bulb of tulips on the sampling date

 \pm Counting error

5 土壤-土壤溶液間分配係数(Soil-soil solution distribution coefficient, K_d)

土壌-土壌溶液間分配係数(K_d, L/kg)のイメージを右側に示した.K_dは①放射性物質が土壌に接触した際,土壌固相にとどまりやすいのか,もしくは液相の移動とともに移動しやすいのか,あるいは,②土壌固相に捕捉されていた核種が,降雨や灌漑水の導入により液相に移行して徐々に移動するのかを表すのに,役に立つパラメータであり, IAEA TRS 472 (2010)に次式で定義されている.

 $K_{\rm d} = A_{\rm solid} / A_{\rm liquid} \qquad (7)$

Asolid は固相中の濃度(Bq/kg 通常 kg DM)であり、Aliquid は液相中の濃度(Bq/L)である.

放射性ヨウ素(¹³¹I)の場合,半減期が短いため詳細な環境移行メカニズムを解き明かすのは 困難である.しかし実用的にはヨウ素の土壌への収着能を知ることは緊急時において重要であ る.もし十分土壌に放射性ヨウ素が収着されるのであれば,飲用水中に¹³¹Iが含まれることはな かったはずである.しかし,福島第一原発事故が発生した際,水道水中の¹³¹I濃度が高まり,大 きな問題となった.放射性ヨウ素の*K*dについてはバッチ実験で求めており,常温における水田 土壌の*K*dの幾何平均値は 67 L/kg であった(Ishikawa et al., 2011a).すなわち,1gの土壌は水 に対し 67 倍放射性ヨウ素を濃縮していることになるが,砂質土壌ではさらに流れ出やすいと思 われる.世界的には放射性ヨウ素の*K*d は 6.9 L/kg と日本の水田土壌と比べると1桁ほど低い. 後述するが,放射性ヨウ素は放射性 Cs よりも土壌に保持されにくいため,広範囲が汚染した場 合,河川水に移行し,さらには浄水場においても除去されにくいことが,放射性ヨウ素による広 範囲の汚染につながる要因になった.

なお,我々は水道水中の放射性ヨウ素の除去方法についての実験も行っている(Tagami and Uchida, 2011a). 一般的にはヨウ素は加熱することで揮散するとされている.しかしながら, 少なくとも浄水場を通過した場合,ヨウ素の化学形が変化し,沸騰させても揮散せず,逆に濃縮 されることを明らかにした.放射性ヨウ素を除去するためには,逆浸透膜を通過させることが有 効であった(Tagami and Uchida, 2011a). 浄水は塩素消毒されるが,その際に加えられている 水道用次亜塩素酸ナトリウム(NaClO)によって,ヨウ素が IO₃⁻⁻(HIO₃の融点は110℃)の化学 形に変化したため(大畑, 2017)と考えられる.

放射性 Cs については,実験室での RI トレーサー実験により全国の幾何平均値として水田土 で 2260 L/kg,畑土で 3900 L/kg が報告されており(Ishikawa et al., 2008),このデータは IAEA (2010)から報告されている国際的な推奨値 1200 L/kg よりも高い.なお IAEA Tecdoc 1927 (2020)には主に Glaysolを使ったデータとして幾何平均値で 620 L/kg(水分飽和状態),また 940 L/kg(湛水状態)が報告されている. 近年, RIトレーサー実験ではなく, 安定 Cs を環境中に存在するよりも多く添加して K_dを測 定する結果が報告されており, その K_d報告値は 10²-10³レベルであった. 安定 Cs を使う理由と して挙げられているのは, 測定対象とした土壌中において, 福島第一原発事故により放出された 放射性 Cs 濃度が高く, トレーサーとして添加する¹³⁷Cs と見分けがつかなくなることである. し かし実際には溶液中の濃度を測定するため, よほど大量に土壌から¹³⁷Cs が溶出しない限り, 本 来は RI トレーサー実験に支障がない. もう一つ安定 Cs の利用を行う理由として, ICP-MS 等の 高感度分析法が容易に使えるようになってきたことが挙げられる. しかし, 放射性 Cs の挙動を 知るために安定 Cs を使うことは, 適正量を超えた場合, 不適切な結果を得ることになる.

その例として,福島第一原発事故後に報告された土壌 K_d を取りまとめて Table 6 に示す.こ の表のオリジナルデータは別途報告している(田上,内田,accepted).安定 Cs による K_d 値は RI トレーサー実験に比べて1桁も低く,Cs が土壌に保持されにくいことを示している.しかし ながら,安定 Cs を使った K_d を報告する文献の分析方法によると,ほとんどの文献では安定 Cs の添加量が多いことに気づく.RI トレーサー実験では¹³⁷Cs 量として 10 kBq/g 程度(原子数は 1.4×10¹³ 個 [2.3×10⁻¹¹ mol].安定 Cs を含まないもの)が使われている(Ishikawa et al., 2008). Mishra et al. (2014) とそのグループによる一連の安定 Cs (¹³³Cs)を使った添加実験で は,土壌 1 g に対し 50 mL の 3.3 mg/L (2.3×10⁻⁵ M) 溶液を使っており,それは原子数で約 7.4× 10¹⁷ 個 (1.24×10⁻⁶ mol) に相当する.つまり土壌 1 g に対し,RI トレーサー実験よりも 10⁴ 倍以上 の数の Cs が添加されていることになる.

通常の K_d実験において、土壌に添加する原子量が土壌の保持能を超えていれば、正確な K_d値 が報告されていないことがわかっている。そこで様々な文献調査を行った結果、概ね安定 Cs の 濃度として 10⁻⁷ M レベルが一つの目安となりそうである(田上、内田、in press)。この値を超 えた量の安定 Cs が添加された場合、土壌中の放射性 Cs の動き易さを正しく評価できないことか ら、その取り扱いには注意が必要である。他の核種でも同様に、安定元素が K_d値に影響するこ とが知られている。例えば Ni について Ishikawa et al. (2011b) が詳しく調べているが、Cs と同 様に、安定 Ni の量が増えれば K_d値が減少する.

Isotopes	Land use	Ν	GM	Min	Max
¹³⁷ Cs or ¹³⁴ Cs	Agriculture* flooded	9	940	3.7×10 ²	6.7×10 ³
¹³⁷ Cs or ¹³⁴ Cs	Forest	34	1.8×10 ³	6.8×10 ¹	1.4×10^{4}
¹³³ Cs (stable)	Forest	23	2.7×10 ²	6.3×10 ¹	2.0×10 ³

Table 6 Summary of adsorption K_d (L/kg) for Cs observed after the Fukushima nuclear accident

*Data from IAEA Tecdoc 1927

未撹乱草地土壌表層(0-5 cm)における放射性 Cs の保持割合について、どのような経年変化が見られるのかについても検討を行った(田上、内田、2020c).福島第一原発事故の影響と言える¹³⁴Csを用い、0-5 cm までの存在量を0-20 cm を全量とした時の割合(Retention factor, R_{0-5 cm})を求めた.結果を Table 7 に示す.2011年には全量の85%が0-5 cm に保持されていたが、2018年までの8年間におよそ20%がさらに下方に移動していたことがわかった.ただ、事故から8年経過しても6-8割が表層5 cm に留まっており、土壌によく保持されていると言える.このことからも、土壌による放射性 Cs 保持能は高いといえる.

Table 7 Summary of retention factor (R_{0-5cm}) of ¹³⁴Cs in surface soil (0-5 cm) to the total (0-20 cm) observed in ten prefectures in Japan

Year	Geometric mean	Range
2011	0.85	0.76-0.98
2012	0.80	0.61-0.92
2013	0.78	0.55-0.95
2014	0.75	0.49-0.94
2015	0.76	0.42-0.94
2016	0.77	0.63-0.82
2017	0.66	0.41-0.87
2018	0.67	0.55-0.85

6 放射性 Cs の実効半減期(Effective half-life, T_{eff})

植物,陸上生物,水産物,河川水,海水等の放射性 Cs の濃度の減少を実効半減期(*T*eff)で表 す際,多くの場合短期と長期の2成分,または短期,移行期,長期の3成分で表される(Smith et al., 2004, Tagami and Uchida, 2016b). Figure 6には3成分が確認された野生のフキの葉の ¹³⁷Cs 濃度の経時変化を示した.

Figure 6. ¹³⁷Cs activity concentration change with time in giant butterbur collected at QST Chiba.

この経時変化は以下の式で表すことができる.

 $A_{t} = A_{1} \times \exp(-\lambda_{\text{eff}_{1}} \times t) + A_{2} \times \exp(-\lambda_{\text{eff}_{2}} \times t) + A_{3} \times \exp(-\lambda_{\text{eff}_{3}} \times t)$ (8)

 A_1 , A_2 , A_3 はそれぞれの媒体がもつ各成分(2または3成分と推定)の初期濃度(Bq/kgまたは Bq/L)であり,通常,第1成分から順番に $A_1>A_2>A_3$ である.また λ_{eff_1} , λ_{eff_2} , λ_{eff_3} は実効減少 定数であり,通常 $\lambda_{eff_1}>\lambda_{eff_2}>\lambda_{eff_3}$ である.*T*effとは式(3)と同様に次式が成り立つ.

 $T_{\rm eff} = \ln(2) / \lambda_{\rm eff}$

なお、生物に関する実効半減期は、生物同士が捕食者-被捕食者のように関係する生態学的な 面を反映することになるが、ウェザリング半減期の式(4)と同様に表すことができ、物理学的半 減期(*T*_{phy})および生態学的半減期(*T*_{eco})との間には次の関係が成立する. $1/T_{\rm eff} = 1/T_{\rm phy} + 1/T_{\rm eco}$ (9)

 T_{eco} は実際の環境中で見られる半減期であり、生態学的地位が影響するため、生物学的半減期 (T_b)よりも長くなることが多い(Iwata et al., 2013).なお、¹³⁷Csの場合、通常第1成分では $T_{eco} \ll T_{phy}$ なので、 $T_{eff} = T_{eco}$ とすることができる.第2、第3成分の場合は、 T_{eff} が数十日〜数年に なるため、物理学的半減期が無視できなくなる場合がある.

土壌や海水などの非生物の場合,生態学的な影響よりも物理的化学的影響を受けて,対象としているコンパートメントから他のコンパートメントに移行したり,他のコンパートメントから流入したりして濃度が変化する.そこで *Teco* の代わりに環境半減期(*Tenv*)を用いるが,同様に評価することができる.

 $1/T_{\rm eff} = 1/T_{\rm phy} + 1/T_{\rm env}$ (10)

Figure 7 には福島第一原子力発電所から東に 15 km 沖合で採取された海水のモニタリングデー タ(東京電力ホールディングス, https://www.tepco.co.jp/decommission/data/analysis/index-j.html) に3成分でのフィッティングを行った結果を示す. 初期の T_{eff-1} は 12 日, T_{eff-2} は 37 日, その後は 原子炉建屋滞留水の影響を受けて未だに流出が続いているせいもあるが, T_{eff-3} が 7.2 年となって いた. 事故以前のこの海域のグローバルフォールアウト ¹³⁷Cs を使った T_{eff} は 12 年程度だったの で(Povinec et al., 2005), その値に徐々に近づきつつある.

Figure 7. ¹³⁷Cs activity concentration change with time in seawater near the Fukushima Daiichi Nuclear Power Station (T-5).

6.1 海産生物

原発事故直後においては、海水の汚染が認められたため福島沖での魚介類の採取が控えられた. そのため、環境中における初期の減少速度を求めるための実測データがほとんどない. そこで 我々はまず既存の実験室で取得された生物学的半減期(*T*_b)データをまとめ、環境中での実測デ ータと比較できるように準備した.データはBeresford et al. (2015)に提供し、ヨーロッパを中心 に世界中で用いられている生物線量評価モデル(ERICA)のデータベースに取り込まれている. 我が国のデータとしても貴重なため、本報告には複数の核種の*T*_bデータを Supplement Material の Table S2 に付した.海水魚の放射性 Cs の*T*_bは短半減期成分に関するデータが 21 件見つかり、幾 何平均値が 2.0 日(範囲: 0.4-8.4 日)であった.放射性ヨウ素については6件で幾何平均値は 1.7 日(0.6-4.9 日)であった.上述したように*T*_{eco}>*T*_bなので、実際の環境中においては短半減期成分 はこの*T*_bよりもやや長いと考えられる.おそらく、どちらの核種も魚の短半減期成分*T*_{eco_1}は 2-3 日程度と推定され、海水中の放射能濃度が減少すれば急激に魚体中の濃度も減少すると考えら れた.海水の汚染については、Yamamoto et al. (2015)が沿岸域の*K*_d推定のために水中濃度解析 を短期成分と長期成分の2成分により分析している.

放射性 Cs の 2 番目の成分 (T_{eco_2}) については,事故後約 650 日目までの厚生労働省の食品モ ニタリングデータ (https://www.mhlw.go.jp/stf/kinkyu/0000045250.html) を使って解析を行った (Iwata et al., 2013) . さらに長期成分 (T_{eco_3}) があると考えた場合の事故後 1600 日までのデー タを使った解析も行っている (Tagami and Uchida, 2016b) . 両論文に掲載されている魚種につ いての結果を Table 8 にまとめた. T_{eco_2} と T_{eco_3} を比較すると, Japanese rockfish では T_{eco_3} の方が やや長くなったが他の魚種では T_{eco_2} と T_{eco_3} が同程度であり, どちらも 220-320 日程度と 1 年未 満であった. 比較のため, T_{b_2} について文献調査によって得られたデータの幾何平均値を示すと, ヒラメ (Bastard halibut) は 6 件, Japanese rockfish の仲間であるクロソイ (Black rockfish) は 4 件 の報告値があり, T_{b_2} はどちらの魚種でも数十日程度であった. T_{eco_2} と比較すると, T_{b_2} の値は 1/10-1/4 となっており短い. 原因はこれらの魚種が肉食であり, 餌生物からの放射性 Cs の寄与が 影響し, T_{eco_2} が長くなっていると考えられたが, 加えて, T_{eco_3} で表される遅い排出機構がある 可能性も示唆される.

English name	T_{eco_2} , d (using up to 650 d data)	T_{eco_3} , d (using 400-1500 d data)	T_{b_2} , d
Japanese rockfish	197	320 (281-378)	59 (48-89)
Greenling	216-286	218 (139-285)	-
Japanese common skate	338-684	315 (252-400)	-
Bastard halibut	362-379	279 (228-365)	38 (19-73)
Japanese blue crab	298		-

Table 8 Ecological and biological half-lives of ¹³⁷Cs in five marine biota

魚以外の生物としてガザミの生態学的半減期を調べたところ、 $T_{eco_2}=298$ 日であった(田上ら, 2019).同じ甲殻類のイセエビでは、生物学的半減期 $T_{b_2}=30$ 日が報告されている(Table S2).ガザミは雑食性だが肉食性が強く餌生物の影響を受けるため、肉食魚と同様の半減期で減少したと考えられる.

魚類中の放射性 Cs の推移について, Figure 8 にはヒラメの筋肉中の¹³⁷Cs の濃度(検出された サンプルのみのデータ)の経時変化を例としてプロットした.データは厚生労働省の食品中の放 射性物質検査データベースである(http://www.radioactivity-db.info/).原発から北側(新地町, 相馬市,南相馬市)と南側(いわき市)で採取されたヒラメはどちらも時間と共に同程度に濃度 が減少している.いわき市では 2022 年 4 月までに 1751 データがあるが,検出された数/測定数の 推移を見ると,2011 年(83/84),2012 年(140/155),2013 年(123/184),2014 年

(65/188), 2015年(36/252), 2016年(13/229), 2017年(3/238), 2018年(1/230), 2019 年(0/107), 2020年(0/38), 2021年(0/35), となっていた. Figure 8 からは, 検出下限以下 のデータの推移がわからない. そのため, どのような半減期で減少しているのかは, 食品モニタ リング検査のデータからでは分かりにくい. そこでより海水の汚染レベルが高いため, 魚の放射 性 Cs 濃度レベルの高い東京電力が福島第一原子力発電所の港湾内のデータに着目した. 2013年 から東京電力が魚のモニタリングを開始しており, データが公表されている

(https://www.tepco.co.jp/decommission/data/analysis/index-j.html). いくつかサンプリング点があ るが,港湾口で捕獲されたヒラメについてのデータを抽出し,Figure 8 にプロットした.採取時 期が遅いため,1次の指数関数フィッティングを行ったところ,*T*eff=587 d (*T*eco=620 d) とな り,Table 8 のヒラメのデータの2 倍の長さであった.港湾内の海水の¹³⁷Cs 濃度はほとんど減っ ておらず,港湾外の結果からも放射性 Cs の濃縮係数が高いまま維持されていることを考えると

(11.2節参照),今後も引き続き放射性 Cs が検出される魚試料が出てくる可能性がある. Teco_3 は海水の半減期に加え,食物連鎖や生物自身の長期 Cs 保持が影響して長くなると考えられる.

Figure 8. ¹³⁷Cs activity concentration change with time in bastard halibut meat collected off Fukushima (Iwaki, Sinchi-Soma-Minamisoma, and Fukushima Daiichi Harbor entrance).

6.2 淡水生物

淡水生物は塩を体内に保持しようとするため、セシウムも同様に排出されにくいと考えられる. ただし、実際に室内トレーサー実験により生物学的半減期を測定した T_{b_2} の結果は、コイで 63-75日、キンギョで 50-53日と(excel ファイル参照)、海水魚よりもやや長い程度であった. 実環境中において、長期成分である T_{eco_3} を調べたところ、アメリカザリガニ(Red swamp crawfish)で 688日、モクズガニ(Japanese mitten crab)で 976日であった(Table 9). 同じ Table に示した水の半減期と比べて多少差があるものの、同程度の数値であった.

一方,Wada et al. (2016)は福島県内の魚類に着目しデータ解析を行った結果を報告している. その結果をまとめたものを,同じくTable 9に示す.その半減期は甲殻類よりもやや短く,347-631日であった.水中の濃度変化が明確ではないため,魚の放射性Cs濃度は甲殻類よりも早く 除去されていくのかどうかは明確ではない.アユ(Ayu)は苔などを食べる草食性かつ年魚であ り,苔に付着もしくは吸収された物質がアユに移行していると思われる.イワナ(White spotted char)は肉食性,ウグイ(Japanese dace)とコイ(Common carp)は雑食性である.

after T_{eco_3} , d (using after 451 d data), water
919
881
-
-
-
-

Table 9 Ecological half-lives of ¹³⁷Cs in freshwater biota using after 451 d data

*Data from Wada et al. (2016)

Figure 9には、環境省が行なっている水生生物放射性物質モニタリング調査結果 (https://www.env.go.jp/jishin/monitoring/results_r-pw.html)から阿武隈川のデータを抜粋し、河川 水、アユ、コイ、ウグイの¹³⁷Cs 濃度の経時変化を示した.このデータから、水中の濃度減少速 度と3種類の魚の濃度減少速度は類似していたことから、甲殻類と同様に魚の¹³⁷Cs 濃度は水中 濃度に影響を受ける可能性が示唆された.特に淡水魚の中でもアユは、その生態的特徴から、放 射性 Cs 濃度が直接的な環境要因(水や餌である植物)から影響を受けると考えられる.間接的 には、水や餌生物の放射性 Cs 濃度に影響を及ぼす森林からの汚染した落ち葉や土壌の流入が、 影響因子として挙げられる.そこで、同じく環境省のデータより、太田川について、水と堆積物 および植物の¹³⁷Cs 濃度の経時変化を Figure 10 示した.水と堆積物ともに¹³⁷Cs 濃度が時間とと もに減少していることがわかる.植物については、有意な減少は見られなかったものの、全体と しては減少傾向にあった. アユで代表させたが、草食性の生物中の放射性 Cs 濃度減少速度、さらにはその上位の生物について詳しく解析するためには、いろいろな河川や湖沼のデータを詳しく解析する必要がある. 我々はメカニズム解明のための研究を印旛沼をターゲットにして進めている(Ishii et al., 2021).

Figure 9. ¹³⁷Cs activity concentration change with time in river water, and three fish species in Abukuma River.

Figure 10. ¹³⁷Cs activity concentration change with time in river water, sediment and plants in Oota River.

6.3 樹木および草本植物

樹木の半減期については、初期のウェザリングを主とする短半減期部分についてのデータが 少ない.一方、事故から数百日以内のデータは数多く存在する.そこで我々は、初期のウェザリ ングを主とする短半減期が適用できる時期から後の、生態半減期の第2成分(*T*_{eco_2})を事故から 数百日以内のデータを使い、この期間であれば一つの指数関数で表せると考えて、*T*_{eco_2}を求め た(Tagami, 2017).データをまとめて Table 10 に示す.チェルノブイリ原発事故後のデータと 福島事故後のデータを比較したところ、同じ桁の速さで濃度が減少したことがわかった.また、 カキでは、木の部位(葉、1年枝、果皮、果肉等)のデータがほぼ同じ半減期を持っており、約 230日であることを示した(Tagami and Uchida、2015b).そのため、このデータを使うことで果 肉中の濃度の減少速度が推定できる.

また,食品モニタリングデータを使って,福島県内のカキの果実の *T*_{eco_2}を調べたところ,平 均で 354 日であった(Tagami and Uchida, 2015b). その後の半減期は長くなっていることが確 認されている. *T*_{eco_2}の減衰は,樹木中に蓄積された放射性 Cs の落葉・落枝による排出に加えて 樹木の体積が増すことによる希釈と経根吸収のバランスの結果であり,相対的に早く排出され る. その後は経根吸収が主たる汚染源となることから,後述するように土壌中の放射性 Cs の濃 度減少が植物中の Cs 濃度の主な減少要因となる.

English name	Chernobyl	Fukushima
	$T_{\rm eco_2}$, years	$T_{\rm eco_2}$, years
Apple	0.86-1.4	0.61-0.96
Peach	0.84	0.51-0.68
Sweet cherry	0.66-0.68	0.52-1.64
Tea	0.26-0.76	0.33-0.68
Pine	0.38	0.40
Japanese cedar	0.45-0.62	0.36

Table 10Ecological half-lives of ¹³⁷Cs in trees observed after the Chernobyl accident and the Fukushimaaccidents. Data from Tagami (2017)

草本植物の実効半減期については、Figure 6 に示された第2および第3の成分を、フキ、イタ ドリ(Knotweed)、ヨモギ(Mugwort)について報告している(Tagami and Uchida, 2017a).そ れらのデータを Table 11 にまとめた.ヨモギの第3成分は極めて長くなっていることがわかる. 5章で述べたように、土壌中の¹³⁷Cs は地面に沈着後、土壌粒子に固定されてほとんど土壌溶液 中に溶出しなくなっている.そのため経根吸収されにくく、地表部に沈着した放射性セシウム が,ほぼ物理学的半減期でしか濃度が減少しないことを示している.ただし,土壌粒子そのものが風雨等で移動した場合,総量として放射性 Cs 濃度が減少することから,その濃度減少に従って植物中の放射性 Cs 濃度も減少することになる.

駒村ら(2006)は1959年から42年間にわたって我が国の米,小麦およびその作土である水田と畑土中の¹³⁷Cs濃度を測定し、土壌については実効半減期(*T*eff)として水田では平均18.1年(範囲:8.6-24年)を、また畑土では平均14.7年(範囲:8.4-26年)示している。米や小麦は直接沈着の影響を受けるとして*T*effを導出していないが、グローバルフォールアウトの寄与が少なくなった1980年代以降も徐々に濃度が低下していることから、土壌の濃度が減少することによって作物も影響を受けていたことが考えられる。

Table 11Ecoogical half-lives of ¹³⁷Cs in herbaceous plants observed at QST-NIRS, Chiba, after theFukushima accidents

English name	$T_{\rm eco_2}$, d	$T_{\rm eco_3}$, d
Giant butterbur	230	970
Knotweed	144	1700
Mugwort	103	3830

6.4 狩猟生物

狩猟動物(Game animals)中の¹³⁷Cs 濃度の経年変化について、厚労省の食品モニタリングデ ータから 2011 年 3 月-2022 年 3 月に報告された値を使って調査した結果を Figure 11 に示す. Table 12 には測定検体数と放射性 Cs が検出された検体数,またそのデータを使って求めた T_{eff} を示した. 測定検体数が最も多いのはイノシシ(Wild boar)で T_{eff} は 3.7 年、次に測定数が多いの はニホンジカ(Sika deer)で T_{eff} は 4.9 年、ツキノワグマ(Asian black bear)は検体数が少なくな るが測定検体の 90%以上で放射性 Cs が検出された. ヤマドリ(Copper pheasant)、キジ(Green pheasant)、カモ類(Wild duck)の鳥類のデータも報告した. 我々が以前 2015 年までのデータを 使って報告した際には、ニホンジカとヤマドリでは明確な減少傾向は見られなかった(Tagami et al., 2016). その原因は不明であるため、さらに長期の観測が必要である. 季節変動に関しては 狩猟時期が限られるため季節性を確認できないものもあるが、イノシシは周期的に高い時期が冬 季に見られたのが特徴的であった.

ただし、この解析で使った食品モニタリングデータは、基準値超過の可能性があった東日本を 中心とした汚染地域において行われているものである.そのため、ある地域では出荷制限解除の ために短い期間集中的にサンプリングしてデータが追加されたり、一方で、基準値超過のために 途中でサンプリングが行われなくなった地域のデータも含まれる.そのため、実際に季節性が見 られるかどうかについては、地域を限定したデータを確認する必要がある. Nemoto et al. (2018) は、同様に食品モニタリングにも掲載されている福島県内のイノシシおよびツキノワグマにデー タを限定して解析し、季節性が見られることを指摘している.

	Ν	Ν	T _{eff} , y	$T_{\rm eff}$, y
	(measured)	(detected)		(Tagami et al., 2016)
Wild boar	10863	6344	3.7	3.6
Sika deer	5859	1934	4.9	-
Asian black bear	1633	1524	14.2	6.9
Copper pheasant	251	228	8.2	-
Green pheasant	280	120	4.0	1.2
Wild duck	339	169	11.1	1.9

Table 12 Effective half-life of radiocaesium in game animals (March 2011- March 2022)

Figure 11. ¹³⁷Cs concentration change with time in game animals. Data on the 1 Bq/kg line show not detected sample.

Figure 11 (continue).
7 土壤-農作物移行係数(Soil-to-crop transfer factor, F_v)

放射性 Cs の農作物への移行係数は IAEA TRS 472(2010)に定義されているように、次式で表 される. ここでは IAEA TRS 472 に準じて F_v を使用するが、TF と記されることもある.

 $F_{\rm v} = A_{\rm crop} / A_{\rm soil} \qquad (11)$

 A_{crop} は農作物可食部中の濃度(Bq/kg DM)であり、 A_{soil} は農耕地土壤中の濃度(Bq/kg DM) (作土深までの平均的な値)である.文献値の農作物 F_v データには生重量(fresh mass, FM)で の移行係数を報告しているものもあるが、IAEA等は農作物が採取されてから実際に食べるまで に時間が経過することで水分含量が変動することを考慮し、DMを基準に移行係数を導出してい る.このため F_v は dimensionless である.本報告書でも、IAEAの方針に従い DM を基準に移行係 数を導出した.なお FM ベースで求めた F_v データについては、後述するように水分含量を用い て DM ベースの値に変換している.

 F_v に関わる研究は、農林水産省関連の研究機関で多く行われており、その一部については IAEA Tecdoc 1927 (2020) に報告されている.量研においては、浄水過程での発生土が園芸用に 利用されていたという原発事故以前の実態と、浄水発生土の放射能汚染が報告された経緯から、 園芸利用した場合の放射性 Cs の移行について検討が行われた(石井ら、2013a, b).その結果を Table 13 に示す.得られた移行係数値は IAEA TRS 472 よりもやや高いものの、既存の方告値の 範囲であることがわかった.

Crop	Condition*	$F_{\rm v}$, fresh mass	$F_{\rm v}$, dry mass	Ref.
Komatsuna	0% SedSl	0.034	0.48	Ishii et al. 2013a
Komatsuna	10% SedSl	0.007	0.10	Ishii et al. 2013a
Komatsuna	30% SedSl	0.007	0.10	Ishii et al. 2013a
Cabbage	Soil + leaf mold A	0.13	0.686	Ishii et al. 2013b
Cabbage	Soil + leaf mold B	0.026	0.189	Ishii et al. 2013b
Cabbage	38% SedSl	0.017	0.094	Ishii et al. 2013b
Geometric mean		0.021	0.20	
Vegetables	Various	-	0.06 (0.0003-0.98)	IAEA TRS 472

Table 13 Soil-to-crop transfer factor (F_v) of radiocaesium in leafy vegetables from soil with/withoutsedimentation sludge observed after the Fukushima Daiich accident

*SedSI: Sedimentation sludge volume % to soil.

食品に関するデータをまとめることが目的であることから、データが少ないものについて は、様々な機関が測定したデータの蓄積と整理を試みた.参考までに米を除く農作物に関する F_v データとして収集した文献値を Supplemental Material Table S3 に示した.前述したように農作 物濃度に関しては、DM ベースと FM ベースが報告されているが、我々が収集した文献値におい てもの FM ベースでの移行係数を報告しているものが多くあった.FM ベースでの移行係数は DM ベースのもの(例えば、IAEA TRS 472)に比べて小さくなる.例えば葉菜類では水分率が 90%程度であることから、おおむね1桁程度の違いが生じる.そこで我々は食品成分データベー ス (https://fooddb.mext.go.jp/)から水分率を参照に乾燥重(dry mass, DM)での移行係数を導出 した.Table 14 は 2011 年からの葉菜類(leafy vegetables),果菜類(fruit vegetables),豆類 (leguminous vegetables),根菜類(root crops)についてまとめた結果である.

Table 14 Summary of soil-to-crop transfer factor (F_v) of radiocaesium in literature values

	Leafy vegetables		Fruit vegetables			
Year	Ν	$F_{\rm v}$, FM base	$F_{\rm v}$, DM base	Ν	$F_{\rm v}$, FM base	$F_{\rm v}$, DM base
2011	18	7.8×10 ⁻⁴	1.1×10 ⁻²	26	9.3×10 ⁻⁴	1.5×10 ⁻²
2012	24	2.4×10 ⁻³	3.0×10 ⁻²	6	2.3×10 ⁻⁴	4.1×10 ⁻³
2013	10	1.0×10 ⁻³	1.4×10 ⁻²	6	1.7×10 ⁻⁴	3.3×10 ⁻³
2014	10	7.9×10 ⁻⁴	1.1×10 ⁻²	4	1.5×10 ⁻⁴	2.7×10 ⁻³
2015	11	7.1×10 ⁻⁴	9.5×10 ⁻³	3	1.9×10 ⁻⁴	3.3×10 ⁻³
2016	10	4.8×10 ⁻⁴	6.4×10 ⁻³	4	1.4×10 ⁻⁴	2.6×10 ⁻³
2017	7	4.6×10 ⁻⁴	6.1×10 ⁻³	3	1.4×10 ⁻⁴	2.4×10 ⁻³
2018	8	5.6×10 ⁻⁴	7.5×10 ⁻³	4	1.4×10 ⁻⁴	2.1×10 ⁻³
2019	8	4.2×10 ⁻⁴	5.6×10 ⁻³	5	1.8×10 ⁻⁴	2.7×10 ⁻³
2020	8	8.7×10 ⁻⁴	1.2×10 ⁻²	4	2.0×10 ⁻⁴	3.6×10 ⁻³
TRS-472			6.0×10 ⁻²			2.1×10 ⁻²
	Legumi	nous vegetables		Root croj	ps	
Year	N	$F_{\rm v}$, FM base	$F_{\rm v}$, DM base	N	$F_{\rm v}$, FM base	$F_{\rm v}$, DM base
2011	13	3.9×10 ⁻²	4.9×10 ⁻²	3	6.1×10 ⁻⁴	8.1×10 ⁻³
2012	16	7.7×10 ⁻³	1.1×10 ⁻²	18	1.6×10 ⁻³	2.4×10 ⁻²
2013	22	5.2×10 ⁻³	6.9×10 ⁻³	3	1.6×10 ⁻⁴	3.0×10 ⁻³
2014	4	2.8×10 ⁻³	3.1×10 ⁻³	3	1.0×10 ⁻⁴	1.8×10 ⁻³
2015	6	2.9×10 ⁻³	5.0×10 ⁻³	2	8.9×10 ⁻⁴	1.4×10 ⁻²
2016	4	8.7×10 ⁻⁴	1.8×10 ⁻³	3	1.8×10 ⁻⁴	2.7×10 ⁻³
2017	6	1.0×10 ⁻³	2.6×10 ⁻³	3	2.0×10 ⁻⁴	2.9×10 ⁻³
2018	5	8.8×10 ⁻⁴	1.0×10 ⁻³	3	3.5×10 ⁻⁴	5.3×10 ⁻³
2019	3	1.6×10 ⁻³	4.1×10 ⁻³	4	3.4×10 ⁻⁴	5.3×10 ⁻³
2020	5	1.7×10 ⁻³	3.2×10 ⁻³	1	1.3×10 ⁻⁴	2.5×10 ⁻³
TRS-472			4.0×10 ⁻²			4.2×10 ⁻²

Table 14 に示したように、豆類は 2011-2013 にかけて減少しているが、葉菜類と根菜類では 2011 年からほとんど変わっていない.果菜類では 2011 年にやや高いが、その後はほとんど変化 がないことがわかる.また IAEA TRS-472 (2010)のデータと比較すると、1 桁程度低くなって いる.表層土壌において、沈着後時間の経過とともにセシウムが動きにくくなることが影響して いると考えられる (Tagami and Uchida, 1996).これについては間接的に植物中の¹³⁷Cs 濃度の経 時変化 (Figure 6 参照)でも知ることができる.また、カリウム施肥による吸収抑制が低減策と して効果があることを示している (Fujimura et al., 2013, IAEA, 2020).

玄米への移行係数についても Figure 12 に示したように、事故直後にやや高くなりその後事故 前に戻っていることを明らかにした(Tagami et al., 2018a). 事故以前に全国で調査されたデー タから導出した移行係数は、10⁻³-10⁻²オーダーであったが(幾何平均値:3.4×10⁻³),事故直後の 2011年にはやや高くなり(幾何平均値:1.2×10⁻²),その後減少し2014年には事故以前のレベル (幾何平均値:2.3×10⁻³)に戻っていた.この分析では、事故以前のデータと比較するために、 事故以前と同程度の施肥を行ったケースを選択した結果を示している.

しかし、福島県内では着実に放射性 Cs 濃度を低く保つために、農林水産省と協力して土壌への適正なカリウム施肥量を決め、現在もカリウム施肥が引き続き行われている状況にある。その影響について、農林水産省が放射能調査研究年報として農作物および土壌の放射性 Cs 濃度と移行係数を報告しているデータ(例えば、平成元年度の報告については、報告書 http://www.library-archive.maff.go.jp/index/200537298_0001の p.26-34)を使って比較すると、Figure 12 のようになる。2012 年から 2020 年までのデータが公表されているが、2012 年で幾何平均値が 1.6×10⁻³ と、既に事故以前の Fv と同程度まで減少しており、2013 年に 1.3×10^{-3} とやや減少したのち、2014-2020 年は 6.4×10^{-4} - 8.4×10^{-4} と事故以前の 1/4 - 1/5で推移している。このように低い Fv が報告されているのは、農林水産省が報告する農耕地については適切な施肥管理がされていると考えることができる。ただ、事故以前の Fv であったとしても、土壌中濃度が約 2900 Bq/kg の場合、食品中の放射性物質の基準値、100 Bq/kg の約 1/10 の濃度になるレベルであり、さらに玄米から白米に精米することで、放射性 Cs 濃度はさらに減少していると考えられる(田上、内田、2012a).これらの要因を考えると、今後も引き続き移行を抑えるための施肥管理を行うかどうかは、マーケットにおける理解促進とも深く関わる.

 F_{v} data collection year for brown rice

Figure 12. Soil-to-brown rice transfer factor (F_v) of radiocaesium. Data in blue show before the Fukushima accident, that in red was collected in 2011 and those in orange were from papers (see Tagami et al., 20118a). Data in green were from MAFF (e.g., http://www.library-archive.maff.go.jp/index/200537298_0001).

8 家畜への移行(Transfer to farm animal products, F_f and F_m)

畜産物の放射能汚染経路は、家畜が大気中の放射性物質を呼吸によって取り込む経路と、汚染した餌や水を摂る、すなわち飲食物摂取による経路が主たるものとして挙げられる(Figure 13). 我が国における家畜の利用は欧米ほど多くはないが以前よりも利用頻度が高くなっていることから、放射性物質の移行の程度を求めておくことは重要である.そこで我々は肉および乳への移行を報告した(田上、内田、2019).

Figure 13. Major contamination pathways of farm animals

福島事故後に得られた,餌から肉または乳への移行パラメータ値($F_{\rm f}$ [d/kg] または $F_{\rm m}$ [d/L])を IAEA TRS 472(2010)に記載されているように,次式で導出した.

 $F_{\rm f} = C_{\rm meat} / C_{\rm total-day} \qquad (12)$

 $F_{\rm m} = C_{\rm milk} / C_{\rm total-day}$ (13)

 C_{meat} は肉中の放射性核種濃度 (Bq/kg FM), C_{milk} は乳中の濃度 (Bq/L), $C_{\text{total-day}}$ は家畜が1日当たりに摂取する放射性核種の量 (Bq/d) である. $C_{\text{total-day}}$ は次式で得られる.

 $C_{\text{total-day}} = C_{\text{feed}} \times M$ (14)

 C_{feed} は飼料中の放射性核種濃度(Bq/kg),Mは1日当たりの飼料量(kg/d)である.

放射性ヨウ素についてのデータを Table 15 に示す.福島事故直後に得られた放射性ヨウ素の餌から乳への移行係数 (F_m [d/L]) は IAEA TRS 472 と同程度であった.

Table 15Transfer coefficients	$(F_{\rm m})$	of radioiodine	for cow	's milk	(unit: d/L)	
-------------------------------	---------------	----------------	---------	---------	-------------	--

Products	Region	N	AM	GM	Range
Cow's Milk	France [#] Japan [#]	9	0.0035	-	0.0025-0.0036
	IAEA TRS472	104		0.0054	0.0004-0.025
	World	105	0.0092	0.0060	0.0004-0.044

[#]Data observed after the Fukushima accident.

放射性 Cs の結果については Table 16 に示した. これについても国際的なデータとほぼ同じ値であった. 肉への移行については, 鶏肉>豚肉>牛肉の順番で移行しやすいことがわかる. 牛肉については部位ごとのデータが得られており,最も濃度が高くなるのはモモ肉であった. 牛乳への移行については,本報告では 0.0030 d/L であり,生沼 (2021)の値 (0.0016-0.0048 d/L: N=5,幾何平均値=0.0033 d/L)とほぼ同じ値となった. また牛乳への移行については, Table 15 に示したように放射性ヨウ素についても求めることができたので,核種間の比較をすることができる. その結果,放射性 Cs と¹³¹I は同程度の値となっており,特にヨウ素が牛乳へ多く移行することはなかった(田上,内田, 2019).

Products	Region	N	AM	GM	Range
Chielter	Japan [#]	5	1.6	1.6	0.90-2.2
Chicken	IAEA TRS472	13	-	2.7	1.2-5.6
Pork	Japan [#]	6	0.34	0.34	0.29-0.40
	IAEA TRS472	22	-	0.20	0.12-0.40
ЪĆ	Japan [#]	23	0.026	0.021	0.005-0.072
Deel	IAEA TRS472	58	0.030	0.022	0.0047-0.096
	Japan [#]	16	0.0030	0.0019	0.0004-0.017
Cow's Milk	Japan (before the Fukushima accident)	32	0.0035	0.0034	0.0022-0.0063
	World	289	0.0067	0.0049	0.0006-0.057

Table 16 Transfer coefficients ($F_{\rm f}$ and $F_{\rm m}$) of radiocaesium to farm animal products (unit: d/kg for meat [$F_{\rm f}$], d/L for milk [$F_{\rm m}$])

[#]Data observed after the Fukushima accident.

9 面移行係数(Aggregated transfer factor, T_{ag})

農耕地以外の土壌では土壌表層を定期的に耕すことがないので、土壌表面から下方に向かって 濃度が指数関数的に減少する不均一分布となる(田上、内田、2020c).そのため、7「土壌-農 作物移行係数」で示したように、植物で言えば根圏域の汚染が均一な状態とは異なることが特徴 的であり、土壌中の平均的な濃度の報告は少ない.また、土壌の汚染については、航空機モニタ リング等(例えば原子力規制庁、lhttps://radioactivity.nsr.go.jp/ja/list/512/list-1.html)でも明らかな ように、単位面積あたりの汚染レベル(Bq/m²)として表現されることが多い.そこで、単位面 積あたりの放射能量が分かる土壌の上で生活する生物の汚染の程度を推定するために、面移行係 数(*T*ag)と呼ばれるパラメータを使用することができる.*T*agは次式で表される.

$T_{\rm ag} = A_{\rm edible} / A_{\rm total} \qquad (15)$

A_{edible}は可食部中の濃度(Bq/kg FM), A_{total}は単位面積あたりに降下した放射性核種の総量 (Bq/m²)である

ここでは地域の人たちにとって貴重な食材である生物として、狩猟動物(game animals)、山 菜(edible wild plants)、野生キノコ(wild mushrooms)を取り上げる.2012年4月1日から使わ れている食品中の放射性物質の基準値は、放射性 Cs を測定することで物理学的半減期1年以上 の他の放射性核種も考慮した、一生涯食べ続けても放射線による影響が認められないレベルとし て設定されている.これまでに食品モニタリングで測定されている試料の中で、初年度のモニタ リングデータには本来使われるべきではないが、この基準値を当てはめた場合の基準値超過数に ついてとりまとめた(田上、内田、2022).その結果、2011年は Figure 14 に示すように 5226 件 の超過があり、測定したサンプルの15.6%が2012年に設定された基準値を超えていたが、2015 年までには1%を下回り、2020年では超過数は133 件、0.35%に減っている.超過食品の内訳上 位が、上に示した3つの分類の食品であった.

Figure 14. Numbers of samples exceeded 100 Bq/kg (or 10 Bq/kg for drink), and exceeding percentages.

9.1 狩猟動物

野生動物は一定の縄張りの中に留まることは多いものの、森林や草原等では放射性 Cs 濃度が不 均一に分布することから、本来は、行動パターン、特に各個体の食性を把握しないと、正確な放 射性物質の移行の程度を科学的に論じることは難しい.しかしながら、現実問題として各生物は 管理されていない.ここでは、捕獲された場所において、生活していたと考え、Figure 14 に示す ように面移行係数を導出している.狩猟動物の肉中濃度は、福島県内の分については県で行って いる食品モニタリングデータを用いた.食品モニタリングデータでは捕獲された区域を鳥獣保護 区マップから特定可能であり、特定した捕獲域の¹³⁷Cs 沈着量は in-situ モニタリングによる実測 値を用いることができる.これらの実測データから Tagを導出した.福島県外でも多数の狩猟動 物が捕獲されており、そのデータについては、捕獲市町村は特定できること、また原発から離れ るほど市町村内の汚染レベルは極端な不均一分布にならないことから、市町村内で取得された土 壌中の濃度を用いて Tagデータを導出した.

Figure 15 Aggregated transfer factor (T_{ag}) for wild animal meat.

結果を Table 17 に示す. データは筆者らが Tagami et al. (2016) で発表したのちのデータを追加して提供した IAEA Tecdoc 1927 (2020) より抜粋した. 実効半減期について 6.4 節で記述したが、事故直後から¹³⁷Cs 濃度の減少が遅いのが特徴的である. 徐々に森林中においても放射性 Csの動態が平衡状態に達しつつあることを考慮し、この表では 2014 年と 2015 年のデータのみ記載した. IAEA TRS 472 (2010) と比較すると、イノシシやシカ、キジについては同程度であったが、ヤマドリは Tagが高く、逆にカモ類については低いデータが多い. 範囲について、イノシシ では 3-4 桁の違いが見られている. 6.4 節ではイノシシ肉中の季節変動について触れたが、生息域に変化がないのに濃度が上下するのは、餌中の¹³⁷Cs 濃度に加え、生物自身の代謝活性の季節変動に影響されている可能性が示唆される.

今後このような野生動物への移行について分析を行う際に、土壌中の放射性 Cs 濃度情報を得 にくくなっている点が課題である. 徐々に in-situ データ取得は行われなくなっていることから、 航空機モニタリングデータや走行サーベイの利用の可能性について、きちんと検討を行う必要が ある.

Species or group	Year	N	Geometric mean	Range
Wild boar (Sus scrofa)	2014	546	2.6×10 ⁻³	$4.7 \times 10^{-5} - 8.3 \times 10^{-2}$
	2015	612	3.1×10 ⁻³	$8.9 \times 10^{-5} - 2.9 \times 10^{-1}$
Wild boar	TRS-472	-	$5 - 10^{-4} - 2 \times 10^{-1}$	
Sika deer (Cervus nippon)	2014	133	5.9×10 ⁻³	$4.6{\times}10^{\text{-4}}-1.2{\times}10^{\text{-1}}$
	2015	111	4.7×10 ⁻³	$5.2 \times 10^{-4} - 3.7 \times 10^{-2}$
Roe deer	TRS-472	-	$5 - 10^{-3} - 5 \times 10^{-2}$	
Asian black bear (Ursus thibetanus)	2014	205	3.0×10 ⁻³	$3.4 \times 10^{-4} - 8.0 \times 10^{-2}$
	2015	66	4.4×10 ⁻³	$6.0{\times}10^{\text{-4}}-1.9{\times}10^{\text{-2}}$
	TRS-472	-	-	
Copper pheasant (Syrmaticus soemmerringii)	2014	6	1.7×10 ⁻³	$6.1 \times 10^{-4} - 1.1 \times 10^{-2}$
	2015	5	1.9×10 ⁻³	$1.3 \times 10^{-3} - 4.6 \times 10^{-3}$
Green pheasant (<i>Phasianus</i> versicolor)	2014	6	3.3×10 ⁻⁴	$1.2 \times 10^{-4} - 8.6 \times 10^{-4}$
	2015	4	1.0×10 ⁻⁴	$5.4 \times 10^{-5} - 4.2 \times 10^{-4}$
Pheasant	TRS-472	-	3×10 ⁻⁴	
Duck (Anas zonorhyncha, and Anas platyrhynchos)	2014	14	2.8×10 ⁻⁴	$7.4 \times 10^{-5} - 1.8 \times 10^{-3}$
	2015	10	2.4×10 ⁻⁴	$3.3 \times 10^{-5} - 7.7 \times 10^{-4}$
Waterfowl	TRS-472	-	$2 \times 10^{-3} - 1.3 \times 10^{-2}$	

Table 17 Aggregated transfer factor (T_{ag} : m²/kg fresh mass) of ¹³⁷Cs in game species in Japan

9.2 山菜

春に新芽を食用として使うことが多い山菜であるが,放射性 Cs の濃度が基準値を超えるケー スがあり,特にウコギ科のコシアブラ(Koshiabura)は,濃度が高くなる山菜としてよく知られ るようになった.同じウコギ科のタラノキ(Fatsia sprout)は、タラの芽という名前の山菜として 知られているが、コシアブラほどは濃度が高くなっていない点は興味深い.新芽に濃度が高くな る理由として、4章の転流でも記載したように、Cs は植物の必須元素であるカリウムの動きにほ ぼ付随することが挙げられる.カリウムは生長点において使われる金属イオンであり、そのため 活発に分裂・生長する新芽へ移動する.その結果としてカリウムの同族元素である放射性 Cs の 濃度が高くなることが想定される.

Figure 16の右上には1本のサクラ(樹齢 50年ほど、樹高約10m)を対象に、木の幹から高さ2mまでに直接出芽したものと、樹冠に出芽したものについて、4月から落葉直前の10月まで葉を適時採取し、Ge半導体検出機で¹³⁷Csと⁴⁰Kを測定した結果をグラフに示した.¹³⁷Csと⁴⁰Kの濃度は樹冠葉では4月に最も高く、葉が成熟するにつれて濃度が下がる傾向にあった。特に¹³⁷Csは顕著に低下した.一方、幹から直接出芽した場合、¹³⁷Csと⁴⁰K濃度はほぼ一定に保たれた後、10月にやや低下した.Figure 16の左図に示すように、カリウムは根や幹に保持されたものに加え、経根吸収されるため、根に近い部分、すなわち幹からの出芽した葉で濃度が高く維持され、樹冠に行くほど濃度がやや低くなったが、大きな差になっていない、セシウムの場合、樹冠葉の濃度が明らかに低く、幹下部から上部へのCsの移動が少なく、また根からの吸収が少ないと考えられた(田上、内田、2014).落葉直前には葉から樹体にKとCsが一部転流し、再び春には樹体に保持されたKとCsが使われることになる.

Figure 16. Caesium and potassium transfer in Someiyoshino Cherry and concentration change in leaves collected from upper and lower part of the tree.

山菜への放射性 Cs の T_{ag} については, Tagami and Uchida (2017a), 田上ら (2020b) および Takada et al. (2022) において報告しており, その結果を Table 18 に示す. コシアブラ以外の植 物は T_{ag} が 10⁻⁵から 10⁴のオーダーであることがわかる.また, Uchida and Tagami (2018)には草 本植物について,マメ科植物の方がイネ科植物よりも経根吸収が高いことを同じフィールドで証 明するために, dry base の T_{ag} データを記載した. IAEA TRS-472 (2010) には高地の草地におけ る T_{ag} について 8×10⁻³の報告がある. IAEA のデータよりも今回のデータの方がやや低いがその理 由については,例えば,土壌の性質にも依存すると考えられるように,多くの要因があり明確な ことは断定できない.山菜への移行については,上述したカリウムの挙動に追随することや土壌 の性質の他にも,植物の性質,例えば酸性土壌を好む,根から有機酸を放出する,カリウムを旺 盛に吸収する等によって,土壌中の Cs を多く吸収する可能性がある.

English name	Ν	$T_{\rm ag}$ (FM)	T_{ag} (DM)*	Ref.
Giant butterbur	17	1.6×10 ⁻⁴		Tagami and Uchida, 2017
Knotweed	5	5.3×10 ⁻⁵		Tagami and Uchida, 2017
Mugwort	7	9.2×10 ⁻⁵		Tagami and Uchida, 2017
Five species	4	$1.4{\times}10^{\text{-4}}-7.0{\times}10^{\text{-4}}$		Tagami and Uchida, 2017
Koshiabura	16	7.3×10 ⁻³		田上ら 2020b
	22	5.2×10 ⁻³		Takada et al., 2022
Fatsia sprout	9	1.1×10 ⁻³	1.1×10 ⁻²	田上ら 2020b
	115	4.3×10 ⁻⁴	4.4×10 ⁻³	Takada et al., 2022
Bamboo shoots	78	5.1×10 ⁻⁴	5.5×10 ⁻³	田上ら 2020b
	2170	3.9×10 ⁻⁴	4.2×10 ⁻³	Takada et al., 2022
Giant butterbur	3	1.4×10 ⁻⁴	3.3×10 ⁻³	田上ら 2020b
	69	6.1×10 ⁻⁵	1.4×10 ⁻³	Takada et al., 2022
Japanese royal fern	24	4.2×10 ⁻⁴	4.6×10 ⁻³	Takada et al., 2022
Uwabamisou	69	3.6×10 ⁻⁴		Takada et al., 2022
Momijigasa	40	2.5×10 ⁻⁴		Takada et al., 2022
Ostrich fern	52	2.0×10 ⁻⁴	2.2×10 ⁻³	Takada et al., 2022
Western bracken fern	329	1.9×10 ⁻⁴	2.6×10 ⁻³	Takada et al., 2022
Udo	40	1.1×10 ⁻⁴	2.0×10 ⁻³	Takada et al., 2022
Red clover	11		1.1×10 ⁻³	Uchida and Tagami, 2018
Narrow-leaved vetch	7		9.5×10 ⁻⁴	Uchida and Tagami, 2018
Poaceae family	10		3.6×10 ⁻⁴	Uchida and Tagami, 2018
Grassland vegetation	13		8×10 ⁻³	IAEA TRS 472

Table 18 Aggregated transfer factor (T_{ag} : m²/kg FM or DM) of ¹³⁷Cs in wild plant species

*Numbers in italic were calculated using Food composition database (https://fooddb.mext.go.jp/)

9.3 野生キノコ

一般にマーケットで消費されるキノコは、栽培キノコがほとんどである. 放射性 Csのキノコ への移行のしやすさは以前から指摘されており、したがって栽培キノコの培地が管理されてい る. その努力が功を奏して、室内室外栽培であっても、基準値を超える栽培キノコはほとんど報 告されていない(Tagami et al., 2017). 現在のところ、原木栽培シイタケについては、原木を 供給してきた福島県の山林で出荷が止まった状況であり、被災地の復興を促進するためにも原木 が出荷できるようにすることが重要であるが、これは樹木の汚染を低減し、かつそれを維持する 方法を開発する必要があり、森林総合研究所で研究が進められている(e.g., Komatsu et al., 2017; Hashimoto et al., 2020; Komatsu et al., 2021).

野生キノコについては、残念ながら濃度低減対策を行うことは困難である.そこで我々は少しでも被ばくを下げるために活用できないかと考え、放射性 Cs を濃縮しにくいキノコのランキングを示した(田上、内田、2017b).特に汚染が長期に継続することを考え、主にはグローバルフォールアウトでもたらされた¹³⁷Csを使って全国で収集されたデータから判定を行った.その結果を Table 19 に示す.すでにこれまでも示されていた通り、腐生菌(Saprobic fungi)よりも共生菌(Mycorrhizal fungi)の方が濃度が高くなっている.Figure 17 に示すように、腐生菌は落ち葉等を分解してエネルギーを得ているが、共生菌は植物根に入り込み光合成産物を受ける代わりに養分を土壌から吸収し植物に渡している.共生菌のこのような土壌からの養分吸収能が放射性 Cs を濃縮するメカニズムの一つと考えられる.

Figure 17. Schematic of mushroom connection to forest trees.

Order	Japanese name	Scientific name	Type*	GM of Cs _{ess} Bq kg ⁻¹ -fresh
1	ハタケシメジ	Lyophyllum decastes	M/S	0.01
2	ヒラタケ	Pleurotus ostreatus	S	0.03
3	トンビマイタケ	Meripilus giganteus	S	0.04
4	オオイチョウタケ	Leucopaxillus giganteus	S	0.05
5	ブナハリタケ	Mycoleptodonoides aitchisonii	S	0.07
5	ナラタケモドキ	Armillaria tabescens	S	0.07
7	ナラタケ	Armillaria mellea	S	0.11
7	マイタケ	Grifola frondosa	S	0.11
9	コガネタケ	Phaeolepiota aurea	S	0.12
10	クリタケ	Naematoloma sublateritium	S	0.15
11	ムキタケ	Sarcomyxa serotina	S	0.15
12	ナメコ	Pholiota nameko	S	0.16
13	マスタケ	Laetiporus cremeiporus	S	0.17
14	ヌメリスギタケモドキ	Pholiota aurivella	S	0.20
15	ウスヒラタケ	Pleurotus pulmonarius	S	0.21
16	マツタケ	Tricholoma matsutake	Μ	0.22
16	シャカシメジ	Lyophyllum fumosum	М	0.22
18	カヤタケ	Clitocybe gibba	S	0.28
19	ムラサキシメジ	Lepista nuda	S	0.47
20	ハツタケ	Lactarius hatsudake	М	0.50
21	クリフウセンタケ	Cortinarius tenuipes	М	0.56
22	ヤマドリタケモドキ	Boletus reticulatus	М	0.60
23	シイタケ	Lentinula edodes	S	0.63
24	ハナイグチ	Suillus grevillei	М	0.67
25	ヌメリイグチ	Suillus luteus	М	0.76
26	アミタケ	Suillus bovinus	Μ	1.1
27	ウラベニホテイシメジ	Entoloma sarcopum	М	1.2
28	チャナメツムタケ	Pholiota lubrica	S	2.5
29	チチタケ	Lactarius volemus	М	2.6
30	ホウキタケ	Ramaria botrytis	М	3.7
31	タマゴタケ	Amanita hemibapha	М	6.5
32	アカヤマドリ	Leccinum extremiorientale	М	6.6
33	ムレオオフウセンタケ	Cortinarius praestans	М	10.1
34	シモフリシメジ	Tricholoma portentosum	М	10.5
35	アカモミタケ	Lactarius laeticolorus	М	11.6
36	サクラシメジ	Hygrophorus russula	М	12.4
37	アンズタケ	Cantharellus cibarius	М	14.4
38	チチアワタケ	Suillus granulatus	М	14.7
39	ヤマイグチ	Leccinum scabrum	М	16.6
40	クロカワ	Boletopsis leucomelas	М	17.8
41	キハツタケ	Lactarius flavidulus	Μ	26.1
42	ショウゲンジ	Rozites caperata	М	29.6
43	コウタケ	Sarcodon aspratus	М	34.6

Table 19 Ranking of less radiocaesium concentration mushroom species based on geometric mean of global fallout origin ¹³⁷Cs concentrations in mushrooms (Data from Tagami and Uchida 2017b)

* M shows mycorrhizal fungi and S shows saprobic fungi.

濃度が低いキノコのランキングがわかることで、高濃度の野生キノコを食べるリスクを減らせる.しかし、福島第一原発事故後においては、汚染レベルが一様ではないので、移行パラメータとしてデータを整備することで、ある地域で採取されるキノコの濃度を予測することができるようになる. *T*agについての取りまとめは、Komatsu et al. (2019)が *T*eff 計算も加えて詳細に求めている.我々は将来を見据えて、放射性 Cs の森林内での動きが安定してきた事故後 5 年目以降の2016-2019 年のデータに限定して *T*agを求め Table 20 に示した(Tagami et al., 2021a).その結果を福島事故以前のキノコの *T*agと比較したところ、事故前後で数倍以内の差であったこと、また、Komatsu et al. (2019)の解析結果と *T*agが同程度の数値となっていたことから、この値は日本の環境下で適切に利用できると考えられる.

Scientific name	Type*	GM Before FDNPS accident	GM [#] 2016-2020 (This study)	Before/After the FDNPS accident
Armillaria mellea	S	8.0×10 ⁻³	2.4×10 ⁻³	3.3
Boletopsis leucomelas	М	1.8×10 ⁻²	8.8×10 ⁻³	2.0
Cortinarius caperatus	М	2.7×10 ⁻²	3.6×10 ⁻²	0.7
Cortinarius praestans	М	1.1×10 ⁻²	9.8×10 ⁻³	1.1
Entoloma sarcopum	М	1.1×10 ⁻²	2.9×10 ⁻³	3.8
Hygrophorus russula	М	1.8×10 ⁻²	1.7×10 ⁻²	1.0
Hypholoma lateritium	S	6.2×10 ⁻³	2.2×10 ⁻³	2.9
Lactarius deliciosus	М	1.7×10 ⁻²	4.9×10 ⁻²	0.3
Lactarius hatsudake	М	3.2×10 ⁻³	5.3×10 ⁻³	0.6
Lactarius volemus	М	3.0×10 ⁻²	4.9×10 ⁻³	6.2
Lentinula edodes	S	1.1×10 ⁻³	5.6×10 ⁻³	0.2
Mycoleptodonoides aitchisonii	S	8.0×10 ⁻³	2.7×10 ⁻³	3.0
Pholiota lubrica	S	1.2×10 ⁻²	7.9×10 ⁻³	1.5
Pholiota microspora	S	5.1×10 ⁻³	2.3×10 ⁻³	2.2
Ramaria botrytis	М	8.0×10 ⁻³	4.6×10 ⁻³	1.7
Sarcodon aspratus	М	4.8×10 ⁻²	1.7×10 ⁻²	2.8
Sarcomyxa edulis	S	5.6×10 ⁻³	1.6×10 ⁻³	3.5
Suillus bovinus	М	4.9×10 ⁻³	4.6×10 ⁻³	1.1
Suillus grevillei	М	1.0×10 ⁻²	3.8×10 ⁻³	2.7
Suillus luteus	М	3.5×10 ⁻³	8.9×10 ⁻³	0.4
Tricholoma matsutake	М	1.0×10 ⁻²	3.8×10 ⁻³	7.2
Tricholoma portentosum	М	6.1×10 ⁻²	8.9×10 ⁻³	7.2

Table 20 Comparison of the T_{ag} (m² kg⁻¹ FM) data before and after the Fukushima accident

*Type of mushrooms: M, mycorrhizal mushroom; S, saprobic mushroom.

10 堆積物-水間分配係数(Sediment-water distribution coefficient, K_d)

河川や湖沼などの淡水系および海洋においては,底に沈澱している堆積物と水が常に接触している.この条件下において,下図の左に示すイメージのように,環境水が放射性 Cs で汚染されると,水から堆積物に放射性 Cs が移行する.その後,水が入れ替わって水中の放射性 Cs 濃度が減少すると(下図右側),堆積物から再び水に溶出することになる.しかし,その溶出速度は遅く,また溶出量も極めて少ないため,見かけ上環境中においては堆積物中の放射性 Cs 濃度が高く,Kd(L/kg)は高い状態が続くことになる.Kdの定義に関しては5章の(7)式を参照していただきたい.

環境水と固相(堆積物または懸濁物質 [SS])が混合された状態で,放射性物質が固相に吸 脱着することで K_d値が得られる.実験室条件下のバッチ実験では液相や固相を入れ替えないた め、十分に平衡に達した条件における K_dを得ることができる.一方,実際の環境下においては 環境水と固相が常に入れ替わっており、かつ環境水の方が入れ替わりが早い.そのような条件下 において元素の動きは完全な平衡にはならないものの、動的平衡の状態にあると考え、環境水と 固相(堆積物または SS)を同時期に採取し、その濃度比を取ることで K_dを導出できる.これは 見かけの K_d (apparent K_d) と呼ばれることもある.

10.1 淡水環境

淡水環境における K_dは, 懸濁物質(SS)もしくは河底や湖底堆積物中の放射性物質濃度と水中の濃度との比で求められる. 我が国では河川水等の流水は透明度が高く, SS が少ないことから水のモニタリングは全量で行われており,現在も水の濁りが少ない平水時を選んで水を採取している. ちなみに洪水時は SS が河川水中の放射性 Cs の重要なフラクションとなる(Takata et al., 2020). 福島原発事故後の詳細な検討によって,全量に対し,SSに含まれる放射性 Cs の割合が影響していることがわかってきたことから,ろ過により可溶性成分と SS 中の放射性 Cs 濃度が報告されているものが多くある. このようなデータを使って SS の K_d値が報告されている. IAEA Tecdoc 1927 (2020) に報告されている SS の K_d値は 10⁴-10⁵ オーダーである.

Figure 18 には、環境省が「福島県及び周辺都県の公共用水域における放射性物質モニタリング」の一環として行う調査(https://www.env.go.jp/jishin/monitoring/results_r-pw.html)において阿武隈川流域について、採取位置および採取日が一致している水と堆積物を用いて K_d を導出しプロットした結果である。事故から10年経過してもなお、 K_d に大きな変化は見られず、年毎の K_d のANOVAテストを行ったところ各年の間に有意差はなかった。全 K_d データの幾何平均値は1.66×10⁴L/kgであったが、河川によって傾向が違うと考えられる。例えばSSや電気伝導度が変わることで K_d 値が変化することが報告されている(IAEA Tecdoc 1927).

Figure 18. Apparent water-sediment distribution coefficients change with time in Abukuma River. ¹³⁷Cs data in water and sediment from MOE (https://www.env.go.jp/jishin/monitoring/results_r-pw.html).

10.2 海水環境

福島第一原発事故以前の環境モニタリングデータ(原子力規制庁 環境放射線データベース, https://kankyo-hoshano.go.jp/data/database/)を使って、グローバルフォールアウト¹³⁷Csの*K*dをま とめた(Uchida and Tagami, 2017). 1971 - 1982 年において*K*dが徐々に上昇する傾向があった が、有意差は見られていない(田上、内田、2013b). Uchida and Tagami(2017)から¹³⁷Csに関す る*K*dを Table 21 に示す. 2011 年以降に福島県沖で観測された *K*dについては Tecdoc 1927 にも記 載されているように時間の経過とともに 2013 年までは徐々に上昇し、その後 2015 年までは減少 し、2019 年時点ではほぼ増減がない.

福島沖海域の T-1, T-2-1, T-3 および T-4 測点において採取された堆積物と海水の採取時期は必ずしも一致していないことに加え,2012年以降は同じ採取年でも,測定値に1桁程度の変動が見られたことから,それぞれモデルフィッティングを行い,Kdを導出した.4測点の結果のみであるが,事故から3年間のデータの推移を同じく Table 21 に示した.2013年のKdは2000-2010年と同程度であった.これを安定 CsのKdと比べると安定 CsによるKdは3倍高いことがわかった.安定 Csは鉱物結晶構造中に捕捉されて溶出しにくいことが,違いが生じた要因だと考えられる.

Origin of Cs	Year	Ν	Geometric mean	Range
Global fallout	1964 - 1969	80	6.8×10^2	$8.0 \times 10^{1} - 5.5 \times 10^{3}$
Global fallout	1970 - 1979	445	3.3×10^{2}	$4.6{\times}10^1{-}4.0{\times}10^3$
Global fallout	1980 - 1989	352	3.5×10^{2}	$4.0{\times}10^1{-}4.6{\times}10^3$
Global fallout	1990 - 1999	313	4.9×10^{2}	$1.3 \times 10^{1} - 3.9 \times 10^{3}$
Global fallout	2000 - 2010	316	5.8×10 ²	$2.7 \times 10^{1} - 4.2 \times 10^{3}$
Fukushima accident	2011	4	3.2×10^{2}	$2.0{\times}10^2-7.1{\times}10^2$
Fukushima accident	2012	4	4.1×10^{2}	$3.3 \times 10^2 - 5.7 \times 10^2$
Fukushima accident	2013	4	5.3×10 ²	$2.9 \times 10^2 - 9.2 \times 10^2$
Stable Cs		383	1.6×10 ³	$2.1 \times 10^{1} - 1.0 \times 10^{5}$

Table 21 K_d values (L/kg) of Cs in marine environment

11 水—水生生物濃縮係数(Water-aquatic biota concentration ratio, CR)

平衡時において水-水生生物濃縮係数を用いれば、水の濃度によって水生生物中濃度がわかる ことから、水-水生生物濃縮係数は魚介類を食べることによる汚染を推定する上で有効である. 水-水生生物濃縮係数(CR, L/kg FM)は次式で表される.

 $CR = A_{biota} / A_{liquid}$ (16)

*A*biotaは水生生物中の放射性 Cs 濃度(Bq/kg FM), *A*liquid(Bq/L)はその生物が生活する水中の放射性 Cs 濃度であり、ろ過したものを用いることが多いが、日本の河川水は SS が少ない事から、ろ過を行わず懸濁物若干含んで評価されることもある.

福島第一原発事故以前は魚介類への放射性 Cs の濃縮係数は、コイやフナに対して 92-1200 が 報告されている(原子力環境整備センター、1992).また、環境放射能調査データから収集した データを解析した結果を取りまとめた(Tagami and Uchida, 2011b). 全魚体に対するデータにつ いては Tagami and Uchida (2013c) に報告した. Table 22 にデータを抜粋して示す. 海水魚よりも 淡水魚の方が CR が 1 桁近く高い.海水魚は浮魚(Pelagic fish) でも底魚(Benthic fish) でも CR は約 30 L/kg FM であった.

Area	Species or type of fish	Tissue	Ν	Geometric mean	Range	Ref [*]
Freshwater	Crucian carp	Muscle	12	2.1×10^{2}	$5.6{\times}10^1-7.0~{\times}10^2$	T1
Freshwater	Common carp	Muscle	5	2.4×10^{2}	$3.1{\times}10^1 - 8.4{\times}10^2$	T1
Freshwater	Japanese bittering	Muscle	3	7.8×10^1	$5.9 \times 10^{1} - 1.2 \times 10^{2}$	T1
Marine	Greenling	Muscle	2	4.0×10^{1}	$3.0 \times 10^1 - 5.3 \times 10^1$	T1
Marine	Japanese seaperch	Muscle	25	6.6×10^{1}	$1.8 \times 10^{1} - 4.8 \times 10^{2}$	T1
Marine	Pelagic fish	Whole	13	3.0×10^{1}	$4.4{\times}10^0-6.9~{\times}10^1$	T2
Marine	Bastard halibut	Muscle	14	4.1×10^{1}	$1.9 \times 10^1 - 9.6 \times 10^1$	T1
Marine	Brown sole	Muscle	9	4.8×10^1	$3.0{\times}10^{1}{-}8.7{\times}10^{1}$	T1
Marine	Benthic fish	Whole	5	3.3×10^{1}	$1.5 \times 10^{1} - 5.6 \times 10^{1}$	T2

Table 22 Concentration ratio of radiocaesium from water to fish before the Fukushima accident

*T1: Tagami and Uchida, 2011b, T2: Tagami and Uchida 2013c

第6章の実効半減期の項目でも述べたように、環境中では生態系において対象としている生物がどのような食性をもっているのかによって汚染後の濃度の変化は影響を受ける. Figure 19に示すように、水から大型および小型藻類が光合成によって生長し、それを食べる生物が餌と水を介して、さらに餌とする高次の生物に移行していく. さらに生物が死んだのちはその生物遺体を食べる生物に移行し、分解されていく. このような食物連載の中において元素が循環しているが、見かけ上は濃度があまり変化していないように見える. CR は水と水生生物中の濃度比という形で移行を表しているが、生態系での物質循環の結果として見ることができる.

Figure 19. Cycle of radiocaesium transfer in ecosystems (green lines).

福島第一原発事故以降の CR データについては、環境省の水生生物放射性物質モニタリング (https://www.env.go.jp/jishin/monitoring/results_r-pw.html)から水生生物の採取時期と水の採取時 期が1週間以内であるものを限定し、水一生物セットを作成して CR を求めた. 同様の手法を使 って、放射性ストロンチウムに関するデータも収集し、約8000 データを報告・公開している (Tagami et al., 2021b).なお、このモニタリングでは食用部位ではなく、胃内容物を除く全身を 測定対象としている.淡水魚については Ishii et al. (2021)が筋肉部位が最も¹³⁷Cs 濃度が高いと 示しており、したがって、可食部への移行という観点からは、今回報告する全体に対する値は、 やや低めであることに注意が必要である.なお Table 20 の海水魚のデータでも、全身の CR デー タの方が、各魚類の筋肉部位の CR データよりも低めの値であった.

以下の節では、食用の水生生物についてのデータを示す。今後、環境防護も課題になってくることを考えると、可食部のみならず生物そのものへの影響を評価するためにも、全身への移行について検討しておく必要がある。例えば Tagami et al. (2018b) ではカエル全身への放射性 Csの移行結果を報告している.

11.1 淡水-水生生物濃縮係数(Concentration ratio from freshwater to biota, CR)

淡水系においては藻やプランクトンなどを食べる生物から、上位の肉食生物に移行するにあたって濃縮係数が高くなることが知られている(Rowan et al. 1998, Rowan 2013). Figure 20 には福島第一原発事故後の CR の経時変化を参考までに示した.アユ(Ayu)よりも食物連鎖の上位のイワナ(White spotted char)の方やや高い値で推移している.アユと雑食性のコイ(Common carp)のデータも含め、2012年からのデータに明確な減少は見られず、イワナについても 2015年以降は減少が明確ではない.したがって、魚については 2015年以降のデータをまとめた.

Table 23 は環境省の水生生物放射性物質モニタリングデータから導出した CR データを使用し て取りまとめたものである.表中の魚類は 2015-2018 年のデータであり,また魚以外の食用生物 については田上ら (2019) が報告済みのデータである.事故以前からのデータ (Table 22) と比 較すると,コイでは時間が経過すると事故以前の CR 値の約6倍となっており,その後,やや高 い値で推移している.Rawan (2013) は同種類の魚でも,年齢が増加したり大型化するにしたが って,濃縮係数が高まることを示している.アユは年魚であるためその影響が小さいと考えられ るが,それでも幾何平均値で 10³オーダーとなっていた.淡水魚の CR がこのような高い値で推 移するメカニズムについては良く分かっておらず解明する必要がある.

報告した魚類およびその他の淡水魚類の個別データについては Supplemental material の Table S4 に掲載した.

Table 23 Concentration ratios (CR, L/kg FM) of ¹³⁷Cs in edible freshwater biota species observed after the Fukushima Nuclear Power Plant accident. Calculated using data from the Ministry of the Environment (https://www.env.go.jp/jishin/monitoring/results_r-pw.html)

Group	Scientific name	Ν	GM	Range
Molluscs				
Pond snail	Bellamya japonica	9	1.9×10 ²	$4.3{\times}10^1{-}1.3{\times}10^3$
Pond snail	Bellamya chinensis laeta	10	3.0×10 ²	$1.2 \times 10^2 - 8.9 \times 10^2$
Crustaceans				
Crab	Eriocheir japonica	23	1.3×10 ³	$1.9 \times 10^2 - 7.1 \times 10^3$
Shrimp	Procambarus clarkii	21	1.2×10 ³	$2.4{\times}10^2-5.0{\times}10^3$
Shrimp	Pacifastacus leniusculus	23	2.1×10 ³	$8.5 \times 10^2 - 6.1 \times 10^3$
Shrimp	Palaemon paucidens	12	9.4×10 ²	$2.6{\times}10^2-1.6{\times}10^3$
Amphibia				
Frog (whole)	Rana catesbeiana	5	5.5×10 ²	$2.9 \times 10^2 - 7.4 \times 10^2$
Frog (muscle)	Rana catesbeiana	2		$1.7 \times 10^3 - 4.3 \times 10^3$
Fish				
White spotted char	Salvelinus leucomaenis leucomaenis	35	2.8×10 ³	$1.8 \times 10^2 - 3.0 \times 10^4$
Japanese dace	Tribolodon hakonensis	100	1.4×10 ³	$7.0{\times}10^1-6.8{\times}10^3$
Ayu	Plecoglossus altivelis	25	1.5×10 ³	$2.2 \times 10^2 - 5.9 \times 10^3$
Common carp	Cyprinus carpio	27	1.4×10 ³	$4.6{\times}10^2-6.7{\times}10^3$
Japanese eel	Anguilla japonica	21	2.5×10 ³	$6.5 \times 10^1 - 1.3 \times 10^4$

11.2 海水-水生生物濃縮係数(Concentration ratio from seawater to biota, CR)

海産生物についても同じく環境省の水生生物放射性物質モニタリングデータから CR を導出した. Figure 21 はアイナメ (Greenling),スズキ (Japanese seaperch) およびヒラメ (Bastard halibut)の CR の経時変化である.データが少ない魚種もあるが,おおむね 2015 年までは CR が減少し,その後大きな変化はない.そこで 2015-2018 年のデータを使って Table 24 に CR データをまとめた.魚以外の食用生物については田上ら (2019) が既にまとめているので,引用文献を参照していただきたい.

報告した魚類およびその他の食用魚類の個別データについては, Supplemental material の Table S5 に掲載した.

Figure 21. Time dependence of concentration ratio of radiocaesium from seawater to three fish species.

Group	Scientific name	Ν	Geometric mean	Range
Macroalgae				
Brown algae	Eisenia bicyclis	12	1.7×10^{2}	$6.1{\times}10^1{-}9.4{\times}10^2$
Green algae	Ulva pertusa	12	5.3×10^{1}	$5.9 \times 10^{0} - 3.4 \times 10^{2}$
Echinodea				
Sea urchin	Strongylocentrotus nudus	18	2.2×10^{2}	$1.1{\times}10^1{-}1.0{\times}10^3$
Molluscs excl. cepha	lopods			
Saltwater clam	Ruditapes philippinarum	17	8.9×10^{1}	$1.8 \times 10^{1} - 2.3 \times 10^{2}$
Abalone	Haliotis discus	8	1.4×10^{2}	$3.8 \times 10^1 - 3.3 \times 10^2$
Oyster	Crassostrea gigas	17	6.2×10^{1}	$1.8 \times 10^1 - 1.6 \times 10^2$
Cephalopods				
Cuttlefish	Sepia sp.	2	4.2×10^{1}	$1.7{ imes}10^1 - 6.7{ imes}10^1$
Octopus	Octopus vulgaris	3	5.6×10^{1}	$4.4{\times}10^1-7.6{\times}10^1$
Crustaceans				
Crab	Charybdis japonica	3	7.4×10^{1}	$4.0{\times}10^1{-}1.6{\times}10^2$
Crab	Portunus trituberculatus	16	7.6×10^{1}	$1.2 \times 10^1 - 3.9 \times 10^2$
Crab	Eriocheir japonica	4	3.1×10^{2}	$1.3{\times}10^2{-}4.8{\times}10^2$
Shrimp	Palaemon paucidens	6	8.7×10^{1}	$3.4{\times}10^1{-}3.0{\times}10^2$
Fish				
Greenling	Hexagrammos otakii	9	1.8×10^{2}	$4.0{\times}10^1-7.6{\times}10^2$
Japanese seaperch	Lateolabrax japonicus	7	2.7×10^{2}	$7.2{\times}10^1-6.7{\times}10^2$
Bastard halibut	Paralichthys olivaceus	24	1.1×10^{2}	$3.8 \times 10^1 - 3.4 \times 10^2$
Ocellate spot skate	Okamejei kenojei	15	7.2×10^{2}	$8.6 \times 10^1 - 3.0 \times 10^3$

Table 24 Concentration ratios (CR, L/kg FM) of ¹³⁷Cs in edible marine biota species observed after the Fukushima Nuclear Power Plant accident. Original data from the Ministry of the Environment (https://www.env.go.jp/jishin/monitoring/results_r-pw.html)

12 調理加工(Food processing)

原発事故直後から我々は様々な食材を対象に調理加工により除去できる放射性核種量を明らか にする実験を行ってきた.その除去率データの多くは、他の研究者たちのデータと共にすでに原 子力環境整備促進・資金管理センターの技術報告書として公表した(原環センター,2013).そ のため本報告では詳細について記載しないが、除去率は食品や料理・加工法により異なるため、 それぞれの国や地域によりデータを収集することが望ましい.以下に、我々が取得した主に植物 (農作物を含む)に関するデータについて簡単に紹介する.なお、2018年までの詳細なデータは Supplemental material の Table S6 に全て記載した.

玄米を精米することによる放射性 Cs 除去については, 穀粒中において放射性 Cs の分布が不 均一なので,比較的汚染が高い部位(玄米の場合糠層)を除去することが除染につながる(田上, 内田 2012).果物については,2011年は果皮が直接汚染している可能性があり,その場合には 除去することで被ばく低減につながる可能性がある.食用適期に採取されたデータを主な対象と して,果物の果皮に対する果肉中の放射性 Cs の濃度比(生重ベースでの比)を Table 25 にまとめ た.アマナツミカン,カキ(Persimmon),ビワ(Loquat)はすべて,2011年の濃度比に比べて 2012-2017年の濃度比の方が果肉中の濃度が高くなっていた.これは果皮が汚染していたことに も影響されるかもしれないが,2011年と2012-2017年のデータは大きな差がないことから,果皮 を経由して吸収された放射性 Cs が果肉へ移行した可能性も考えられる.2012年以降のデータで も引き続き果皮よりも果肉の方が濃度が低くなっていることから,果皮を除くことで多少取り込 む量を減らせる.しかし,果実に対する果皮の占める割合はごくわずかなので,大きな被ばく低 減は期待できない.

English name	Year	Ν	Geometric mean	Range
Citrus natsudaidai (Amanatsumikan)	2011*1	(2)*2	0.41	0.35 - 0.47
Citrus natsudaidai (Amanatsumikan)	2012-2017	4	0.51	0.46 - 0.54
Persimmon	2011	2^{*2}	0.47	0.37 - 0.57
Persimmon	2012-2017	9	0.64	0.31 - 0.91
Loquat	2011	2^{*2}	0.48	0.43 - 0.53
Loquat	2012-2017	10	0.60	0.38 - 0.77

Table 25 Radiocaesium activity concentration ratios of pulp/pericarp of three tree fruit species.

*1 Sample was not edible condition (immature). *2 Arithmetic mean

野草の 2012-2018年のデータを用いて,洗浄/生の濃度比と茹で/洗浄の濃度比を Table 26 に まとめた. 2011年3月28日に計測した際には洗浄/生は0.5-1.0 だったが,2012-2018年の幾何平 均値で0.8以上となり,また茹でることによる効果は201年3月28日のデータでは0.15-1.0とバ ラついたが,2012-2018年のデータでは幾何平均値で0.4-0.7であった.事故直後に採取された 農作物試料では,表面沈着が卓越していたため,洗浄や茹でることにより放射性核種(¹³¹I, ¹³²Te,放射性Cs)がある程度除去できた(田上,内田 2012b).しかし,表面沈着したものが転 流などによって可食部に移動した場合や,経根吸収によって植物体内に取り込まれた場合には, 放射性Csについては,洗浄ではほとんど除去することができない(Tagami and Uchida, 2013a). タケノコやフキなどの厚みのある食品を茹でる場合には,除去があまり期待できず,葉などの組 織が柔らかい部位を茹でる場合には,現在でも放射性Cs濃度を半減させることができることが わかった.野草の一つであるツクシ(Field horsetail)については,一部データを報告している (田上,内田,2012c).また多くのデータはIAEA Tecdoc 1927 (2020)にも報告した.

Table 26 Concentration ratio (fresh mass basis) of radiocaesium in edible wild plants after and beforewashing, and after and before boiling. Sample were collected in 2012-2018

Treatment	English name	N	Geometric mean	Range
Wash / Raw	Knotweed	4	0.91	0.73 - 1.0
Wash / Raw	Giant butterbur, petiole	17	0.83	0.45 - 1.0
Wash / Raw	Giant butterbur, leaf blade	20	0.86	0.58 - 1.0
Wash / Raw	Mugwort	13	0.89	0.60 - 1.0
Boil / Wash	Bamboo shoot	9	0.74	0.65 - 1.0
Boil / Wash	Giant butterbur, petiole	10	0.74	0.41 - 1.0
Boil / Wash	Giant butterbur, leaf blade	9	0.44	0.38 - 0.56
Boil / Wash	Field horsetail	6	0.41	0.16 - 0.68
Boil / Wash	Mugwort	8	0.43	0.16 - 0.71

詳細を記していないが、クリの実について、鬼皮ごと茹でるのが一般的であるが、鬼皮の濃度が一番高いため、茹でてすぐのクリの実は放射性 Cs 濃度が逆に高まるケースも見受けられた. ただし、十分水に浸けておくことで鬼皮から移行したセシウムは水に溶出するため、実の放射性 Cs 濃度を減らすことができた.

13 まとめと今後の課題

本研究課題では内部被ばくを評価するための放射性 Cs に関する環境移行パラメータを収集 し、平均的な値を示した.特に、我が国では山菜を利用することから、山菜への面移行係数を導 出できたことも含め、これら一連の値を使うことで、被ばく線量評価をより正確に行えるように なることが期待される.一方で、これらのパラメータを収集する過程で、いくつかの課題が浮き 彫りになった.

一つは狩猟生物および淡水生物の放射性 Cs の実効半減期が長い点である.環境中における放射性 Cs の動態が平衡状態に達しつつある中,実効半減期はさらに長くなる可能性も考えられる.どのようなメカニズムで実効半減期が長くなるのかについて解明することが,狩猟動物利用促進のために必要である.

次に,淡水生物および海水生物では高い CR が続いていることである.面移行係数を求めた際,野生キノコについては事故以前と同じ値であり,また狩猟動物についても欧米の値と類似していたのにも関わらず,水系においてどのような放射性 Cs 挙動になっているのかを明らかにする必要がある.

これまでは森林,河川,海洋といった領域の中で放射性 Cs 挙動が検討されてきたがこれらを またぐ形で俯瞰して移行を理解する必要がある.そのためには,必ずしも人の被ばくに直接影響 しない環境構成物にも目を向けなければならない.

また、今後は食品モニタリングデータなどを使って環境移行パラメータを導出する際、対応 する土壌中濃度が測定されていなかったり、また水環境では濃度が低くなったために検出されな い(検出下限値以下)ケースが増えることが予想される.そのため、長期挙動を知るためには、 低レベルまできちんと測定できる技術を使い、移行パラメータデータを増やしていくこと、それ らをこの10年で得たデータと比較することで、長期被ばく推定の高度化につなげていくこと も、国民の安全安心を醸成するために必要だと言える.さらなる環境動態研究が必要である.

謝辞

本研究を行うにあたっては,経済産業省資源エネルギー庁放射性廃棄物共通技術調査等事業 「放射性核種生物圏移行評価高度化調査」(平成14年度から平成18年度)およびその後継研究 (平成19年度から平成29年度)が基盤となっており,福島第一原発事故以前から,放医研にお いてすでに生活圏における放射性物質の環境移行パラメータに関する調査研究や,IAEA等への データ発信が行えていたことは,大変重要であった.また,本研究はそれらの外部資金の一部に よって行われ,事故初期から研究を開始することができた.さらに福島県放射線医学研究開発事 業補助金による「放射性物質環境動態調査事業」によっても本研究の一部を行うことができた. これらの調査・研究により得られた環境移行パラメータデータの多くは,IAEAのTecdoc No. 1927 (2020)にまとめることができた.このTecdoc 出版においては,福島第一原発事故直後か らデータを収集しつつ論文として成果を残してこられた多くの日本人研究者や,海外の著名な研 究者らと一緒に協力しながら執筆を行うことができ,とても貴重な経験となった.記して謝意を 表する.

なお,食品に関わる環境移行パラメータデータを収集するために,原子力規制庁,環境省, 厚生労働省,農林水産省とその関係機関が行うモニタリング調査結果,さらには福島県が行う研 究成果が公開されていたことは,極めて重要であった.大学および研究機関からの研究報告も大 変参考になった.データ収集に関わられた多くの方々の努力に心より感謝する.

- A₀:降下物を受けたときの作物可食部中の初期の放射性核種濃度(Bq/kg FM)
- Abiota: 生物中の放射性核種濃度(Bq/kg FM)
- Acrop:農作物可食部中の放射性核種濃度(Bq/kg DM)
- Adirect:直接汚染した部位もしくは汚染源部位の放射性核種濃度(Bq/kg DM or Bq/kg FM)
- Aedible:可食部中の放射性核種濃度(Bq/kg FM)
- Aliquid:液相中の放射性核種濃度(Bq/L)
- Anew:非汚染部位の放射性核種濃度(Bq/kg DM or Bq/kg FM)
- Asoil: 土壌中の放射性核種濃度(Bq/kg DM)
- Asolid: 固相中の放射性核種濃度(Bq/kg DM)であり固相には土壌や底質が含まれる
- Atotal:単位面積あたりに降下した放射性核種の総量(Bq/m²)
- At:t日経過後の物質中の放射性核種濃度濃度(Bq/kg FM)
- AM:算術平均 [Arithmetic mean]
- C_{feed} : 飼料中の放射性核種濃度(Bq/kg)
- Cmeat: 肉中の放射性核種濃度 (Bq/kg FM)
- C_{milk}:乳中の濃度 (Bq/L)
- CR:水-水生生物濃縮係数(L/kg FM)
- Ctotal-day:家畜が1日当たりに摂取する放射性核種量(Bq/d)
- DM:乾燥重量 [Dry mass]
- $f_{\rm B}:$ 重量あたりの放射性核種の遮断係数(m²/kg FM)
- Ff:1日あたりの放射性核摂取量に対する肉中の放射性核濃度比(d/kg FM)
- F_m:1日あたりの放射性核摂取量に対する乳中の放射性核濃度比(d/L)
- FM: 生重量 [Fresh mass]
- f_{tr}:転流係数
- F_v: 土壤-植物間移行係数
- GM: 幾何平均值 [Geometric mean]
- K_d:固相-液相間分配係数(L/kg)
- M:1日当たりの飼料量(kg/d)
- N:試料数 [Number]

R_{0-5cm}: 土壌表層 0-5cm までの放射性核存在量を 0-20 cm を全量と比較した時の割合

- t:経過時間(e.g., day, year)
- Tag:面移行係数(m²/kg FM)
- T_b: 生物学的半減期(day)

- Teco: 生態学的半減期(day or year)
- *T*_{eff}: 実効半減期(day or year)
- T_{env}:環境半減期(day or year)
- T_{phy}:物理学的半減期(day or year)
- Tw:ウェザリング半減期 (day)
- λ_{eff} : 実効減少定数 (e.g., day⁻¹, year⁻¹)

引用文献

- Beresford, N. A., Beaugelin-Seiller, K., Burgos, J., Cujic, M., Fesenko, S., Kryshev, A., Pachal, N., Real, A., Su, B.S., Tagami, K., Vives I Batlle, J., Vives-Lynch, S., Wells, C., and Wood, M. D. (2015). Radionuclide biological half-life values for terrestrial and aquatic wildlife. *Journal of Environmental Radioactivity*, 150, 270-276.
- Fujimura, S., Yoshioka, K., Saito, T., Sato, M., Sato, M., Sakuma, Y., and Muramatsu, Y. (2013). Effects of applying potassium, zeolite and vermiculite on the radiocesium uptake by rice plants grown in paddy field soils collected from Fukushima prefecture. *Plant Production Science*, 16, 166-170.
- 原子力環境整備促進・資金管理センター (1992). 環境パラメータ・シリーズ 3 「淡水から生物への放射性物質の移動」https://www.rwmc.or.jp/library/other/file/Kankyou3.pdf
- 原子力環境整備促進・資金管理センター (2013). 環境パラメータ・シリーズ4増補版(2013年)「食品の調理・加工による放射性核種の除去率」. https://www.rwmc.or.jp/library/other/file/RWMC-TRJ-13001-2_zyokyoritu_kaitei_honpen.pdf
- Hashimoto, S., Imamura, N., Kaneko, S., Komatsu, M., Matsuura, T., Nishina, K., & Ohashi, S. (2020). New predictions of ¹³⁷Cs dynamics in forests after the Fukushima nuclear accident. *Scientific Reports*, 10, 29, 1-11.https://doi.org/10.1038/s41598-019-56800-5
- IAEA (2004). Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment. IAEA Technical Report Series No. 422. IAEA, Vienna. https://wwwpub.iaea.org/MTCD/Publications/PDF/TRS422_web.pdf
- IAEA (2010). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. IAEA Technical Report Series No. 472. IAEA, Vienna. https://wwwpub.iaea.org/MTCD/Publications/PDF/trs472_web.pdf
- IAEA (2014). Handbook of Parameter Values for the Prediction of Radionuclide Transfer to Wildlife. IAEA Technical Report Series No. 479. IAEA, Vienna. https://wwwpub.iaea.org/MTCD/Publications/PDF/Trs479_web.pdf
- IAEA (2020). Environmental Transfer of Radionuclides in Japan following the Accident at the Fukushima Daiichi Nuclear Power Plant. IAEA TECDOC No. 1927. IAEA, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1927web.pdf
- Ishii, N., Tagami, K., Takata, H., Fujita, K., Kawaguchi, I., Watanabe, Y., and Uchida, S. (2013a). Deposition in Chiba Prefecture, Japan, of Fukushima daiichi nuclear power plant fallout. *Health Physics*, 104, 189-194.
- 石井伸昌,田上恵子,川口勇生,内田滋夫 (2013b). 浄水発生土に含まれる¹³⁷Cs のコマツナによる経 根吸収. Radioisotopes, 62, 447-453.
- 石井伸昌,田上恵子,川口勇生,内田滋夫 (2013c). ミニキャベツによる栽培土壌から放射性セシウムの経根吸収. 保健物理, 48, 150-155.
- Ishii, N., Furota, T., Kagami, M., Tagami, K., and Uchida, S. (2021). Inequality in the distribution of ¹³⁷Cs contamination within freshwater fish bodies and its affecting factors. *Scientific Reports*, 11, 1-9.
- Ishikawa, N. K., Uchida, S., and Tagami, K. (2008). Distribution coefficients for ⁸⁵Sr and ¹³⁷Cs in Japanese agricultural soils and their correlations with soil properties. *Journal of Radioanalytical and Nuclear Chemistry*, 277, 433-439.
- Ishikawa, N. K., Uchida, S., and Tagami, K. (2011a). Iodide sorption and partitioning in solid, liquid and gas phases in soil samples collected from Japanese paddy fields. *Radiation Protection and Dosimetry*, 146, 155-158.
- Ishikawa, N.K., Uchida, S., Tagami, K., and Satta, N. (2011b). Soil Solution Ni Concentrations over which Kd is Constant in Japanese Agricultural Soils. *Journal of Nuclear Science and Technology*, 48, 337-343.

- Iwata, K., Tagami, K., and Uchida, S. (2013). Ecological half-lives of radiocesium in 16 species in marine biota after the TEPCO's Fukushima Daiichi Nuclear Power Plant accident. *Environmental Science and Technology*, 47, 7696-7703.
- 駒村美佐子,津村昭人,山口紀子,藤原英司,木方展治,&小平潔. (2006). わが国の米,小麦および土壌における ⁹⁰Sr と¹³⁷Cs 濃度の長期モニタリングと変動解析. 農業環境技術研究報告 24, 1-21.
- Komatsu, M., Hirai, K., Nagakura, J., and Noguchi, K. (2017). Potassium fertilisation reduces radiocesium uptake by Japanese cypress seedlings grown in a stand contaminated by the Fukushima Daiichi nuclear accident. *Scientific Reports*, 7, 1-10.
- Komatsu, M., Nishina, K., and Hashimoto, S. (2019). Extensive analysis of radiocesium concentrations in wild mushrooms in eastern Japan affected by the Fukushima nuclear accident: Use of open accessible monitoring data. *Environmental Pollution*, 255, 113236.
- Komatsu, M., Hashimoto, S., and Matsuura, T. (2021). Effects of species and geo-information on the ¹³⁷Cs concentrations in edible wild mushrooms and plants collected by residents after the Fukushima nuclear accident. *Scientific Reports*, 11, 1-14.
- Lebel, L. S., Dickson, R. S., Glowa, G. A. (2016). Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. *Journal of Environmental Radioactivity*, 151, 82-93.
- Mishra, S., Sahoo, S. K., Arae, H., Watanabe, Y., Mietelski, J. W. (2014). Activity ratio of caesium, strontium and uranium with site specific distribution coefficients in contaminated soil near vicinity of Fukushima Daiichi Nuclear Power Plant. *Journal of Chromatography Separation Techniques*, 5, 250.
- Nemoto, Y., Saito, R., and Oomachi, H. (2018). Seasonal variation of Cesium-137 concentration in Asian black bear (Ursus thibetanus) and wild boar (Sus scrofa) in Fukushima Prefecture, Japan. *PloS One*, 13, e0200797.
- 生沼英之 (2021). 吸着剤の投与による泌乳牛における放射性セシウムの飼料から乳への移行抑制に関する研究. 福島県農業総合センター研究報告12,1-49.
- 大畑直也 (2017). 浄水処理場の処理過程における塩素, 臭素およびヨウ素の化学形態の変化. 大学院研 究年報 理工学研究科編, 47. https://chuou.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=85 21&item_no=1&page_id=13&block_id=21
- Povinec, P. P., Aarkrog, A., Buesseler, K. O., Delfanti, R., Hirose, K., Hong, G. H., Ito, T., Livingston, H. D., Nies, H.m Noshkin, V.E., Shima. S., and Togawa, O. (2005). ⁹⁰Sr, ¹³⁷Cs and ^{239,240}Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results. *Journal of Environmental Radioactivity*, 81, 63-87.
- Rowan, D. J., Chant, L. A., and Rasmussen, J. B. (1998). The fate of radiocesium in freshwater communities— Why is biomagnification variable both within and between species? Journal of Environmental Radioactivity, 40, 15-36.
- Rowan, D. J. (2013). Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities. *Journal of Environmental Radioactivity*, 121, 2-11.
- Smith, J. T., Wright, S. M., Cross, M. A., Monte, L., Kudelsky, A. V., Saxén, R., Vakulovsky, S.M., Timms, D. N. (2004). Global analysis of the riverine transport of ⁹⁰Sr and ¹³⁷Cs. *Environmental Science and Technology*, 38, 850-857.
- Tagami, K., and Uchida, S. (1996). Aging effect on technetium behaviour in soil under aerobic and anaerobic conditions. *Toxicological and Environmental Chemistry*, 56, 235-247.
- 田上恵子 (2012). 直接沈着および経根吸収による放射性核種の植物への移行. Radioisotopes, 61, 267-279.
- Tagami, K. (2017). Effective half-lives of radiocesium in terrestrial plants observed after nuclear power plant accidents. In: Impact of Cesium on Plants and the Environment (Gupta and Walther Eds.) pp. 125-138. Springer, Cham, Switzerland.

- Tagami, K., and Uchida, S. (2011a). Can we remove iodine-131 from tap water in Japan by boiling?– Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident. *Chemosphere*, 84, 1282-1284.
- Tagami, K., and Uchida, S. (2011b). Some considerations on water-to-fish transfer data collected in Japan for radionuclides and stable elements-11252. In: WM2011 Conference Proceedings.
- 田上恵子,内田滋夫 (2012a). 精米と米研ぎによる放射性セシウムの残存割合及び糠層中の濃度分布. Radioisotopes, 61, 223-229.
- 田上恵子,内田滋夫 (2012b). 農作物の調理・加工による放射性セシウムの除去割合, Proceedings of the 13th Workshop on Environmental Radioactivity, KEK Proceedings 2012-6. Tsukuba, p.154-159.
- 田上恵子,内田滋夫 (2012c). 福島第一原発事故後のツクシへの¹³⁴Cs,¹³⁷Cs の移行と分布及び調理・ 加工による除去. *Radioisotopes*, 61, 511-516.
- Tagami, K., and Uchida, S. (2013a). Comparison of food processing retention factors of ¹³⁷Cs and ⁴⁰K in vegetables. *Journal of Radioanalytical and Nuclear Chemistry*, 295, 1627-1634.
- 田上恵子,内田滋夫 (2013b). 我が国の沿岸域における放射性核種の堆積物―海水分配係数―土壌から 海水への放射性核種溶出率の推定-. 分析化学, 62, 527-533.
- Tagami, K., and Uchida, S. (2013c). Marine and freshwater concentration ratios (CR_{wo-water}): review of Japanese data. *Journal of Environmental Radioactivity*, 126, 420-426.
- 田上恵子,内田滋夫 (2014). 福島第一原子力発電所事故の影響を受けたソメイヨシノ(Cerasus ×yedoensis (Matsum.) A.V.Vassil. 'Somei-yoshino')の当年枝伸長位置の根からの距離と葉中の放射性セシウム濃度. 放射化学, 29, 1-8.
- Tagami, K., and Uchida, S. (2015a). Effective half-lives of ¹³⁷Cs in giant butterbur and field horsetail, and the distribution differences of potassium and ¹³⁷Cs in aboveground tissue parts. *Journal of Environmental Radioactivity*, 141, 138-145.
- Tagami, K., and Uchida, S. (2015b). Effective half-lives of ¹³⁷Cs from persimmon tree tissue parts in Japan after Fukushima Dai-ichi nuclear power plant accident. *Journal of Environmental Radioactivity*, 141, 8-13.
- Tagami, K., and Uchida, S. (2016a). Radiocesium and potassium decreases in wild edible plants by food processing. In: Radiological Issues for Fukushima's Revitalized Future (Takahashi Ed.), pp.199-207.
- Tagami, K., and Uchida, S. (2016b). Consideration on the long ecological half-life component of ¹³⁷Cs in demersal fish based on field observation results obtained after the Fukushima accident. *Environmental Science and Technology*, 50, 1804-1811.
- Tagami, K., and Uchida, S. (2017a). Changes of effective half-lives of ¹³⁷Cs in three herbaceous plants and bioavailable ¹³⁷Cs fraction in soil after the Fukushima nuclear accident. *Applied Geochemistry*, 85, 162-168.
- 田上恵子,内田滋夫 (2017b). 自然環境下において放射性セシウム濃度が低いキノコの種類の推定. Radioisotopes, 66, 277-287.
- 田上恵子,内田滋夫 (2019). 文献調査による家畜への放射性セシウムの移行データのとりまとめ. Proceedings of the 20th Workshop on Environmental Radioactivity, KEK Proceedings 2019-2. Tsukuba, p.195-200.
- 田上恵子,内田滋夫 (2020a). 東京電力福島第一原子力発電所事故由来の I-131 および放射性セシウム の葉菜類のウェザリング半減期の主要因に関する考察 (1) 実測値によるウェザリング半減期. *Radioisotopes*, 69, 341-352.
- 田上恵子,内田滋夫 (2020b). 東京電力福島第一原子力発電所事故由来の I-131 および放射性セシウム の葉菜類のウェザリング半減期の主要因に関する考察 (2) チェルノブイリ原発事故後における草 本植物ウェザリング半減期との比較. Radioisotopes, 69, 353-364.

- 田上恵子,内田滋夫 (2020c). 放射性セシウムの未撹乱草地土壌表層における保持割合の経年変化. Proceedings of the 21th Workshop on Environmental Radioactivity, KEK Proceedings 2020-2. Tsukuba, p.63-68.
- Tagami, K., and Uchida, S. (2021). Mass Interception Fractions and Weathering Half-lives of Iodine-131 and Radiocesium in Leafy Vegetables Observed after the Fukushima Daiichi Nuclear Power Plant Accident. *Journal of Radiation Protection and Research*, 46, 178-183.
- 田上恵子,内田滋夫 (2022). 食品モニタリングデータを用いた放射性セシウム基準値超過食材の経時 変化に関する考察. Radioisotopes, 71, 9-22.
- 田上恵子,内田滋夫 (in press) 福島第一原発事故後に収集された放射性セシウムの土壌-土壌溶液間分 配係数に関する考察. 放射化学.
- Tagami, K., Uchida, S., Ishii, N., and Kagiya, S. (2012a). Translocation of radiocesium from stems and leaves of plants and the effect on radiocesium concentrations in newly emerged plant tissues. *Journal of Environmental Radioactivity*, 111, 65-69.
- Tagami, K., Uchida, S., and Ishii, N. (2012b). Extractability of radiocesium from processed green tea leaves with hot water: the first emergent tea leaves harvested after the TEPCO's Fukushima Daiichi Nuclear Power Plant accident. *Journal of Radioanalytical and Nuclear Chemistry*, 292, 243-247.
- Tagami, K., Howard, B. J., and Uchida, S. (2016). The time-dependent transfer factor of radiocesium from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident. *Environmental Science and Technology*, 50, 9424-9431.
- Tagami, K., Uchida, S., and Ishii, N. (2017). Effects of indoor and outdoor cultivation conditions on ¹³⁷Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident. *Journal of the Science of Food and Agriculture*, 97, 600-605.
- Tagami, K., Tsukada, H., Uchida, S., and Howard, B. J. (2018a). Changes in the soil to brown rice concentration ratio of radiocaesium before and after the Fukushima Daiichi Nuclear Power Plant accident in 2011. *Environmental Science and Technology*, 52, 8339-8345.
- Tagami, K., Uchida, S., Wood, M. D., and Beresford, N. A. (2018b). Radiocaesium transfer and radiation exposure of frogs in Fukushima Prefecture. *Scientific Reports*, 8, 1-11.
- 田上恵子,石井伸昌,内田滋夫 (2019). 文献データを利用した魚以外の食用水生生物への¹³⁷Cs 濃縮係数の導出. 福島第一原発事故前後の比較–. 放射化学, 40, 3-13.
- Tagami, K., Uchida, S., Shinano, T., and Pröhl, G. (2020a). Comparisons of effective half-lives of radiocesium in Japanese tea plants after two nuclear accidents, Chernobyl and Fukushima. *Journal of Environmental Radioactivity*, 213, 106109.
- 田上恵子,高田モモ,保高徹生,内田滋夫 (2020b). 放射性セシウムの未撹乱草地土壌表層における保持割合の経年変化. Proceedings of the 21th Workshop on Environmental Radioactivity, KEK Proceedings 2020-2. Tsukuba, p.63-68.
- Tagami, K., Yasutaka, T., Takada, M., and Uchida, S. (2021a). Aggregated transfer factor of ¹³⁷Cs in wild edible mushrooms collected in 2016–2020 for long-term internal dose assessment use. *Journal of Environmental Radioactivity*, 237, 106664.
- Tagami, K., Fukaya, Y., Hirayama, M., and Uchida, S. (2021b). Collation of strontium concentration ratios from water to aquatic biota species in freshwater and marine environments and factors affecting the ratios. Environmental Science and Technology, 55, 1637-1649.
- Tagami, K., Uchida, S., Ishii, N., and Zheng, J. (2022a). Enhancement of mass interception coefficient data of radiostrontium by leafy crops using global fallout ⁹⁰Sr and naturally occurring ⁷Be. *Journal of Agricultural* and Food Chemistry, 70, 15244-15254.
- Tagami, K., Uchida, S., Uchihori, Y., and Kitamura, H. (2022b). Uptake of ¹³¹I, ¹³⁴Cs and ¹³⁷Cs in tulip (*Tulipa gesneriana* L.) after the Fukushima Daiichi nuclear accident and their translocation from its above ground parts to the bulb. *Journal of Nuclear and Radiochemical Sciences*, 22, 1-6.

- Takata, H., Aono, T., Aoyama, M., Inoue, M., Kaeriyama, H., Suzuki, S., Tsuruta, T., Wada, T., and Wakiyama, Y. (2020). Suspended particle–water interactions increase dissolved ¹³⁷Cs activities in the nearshore seawater during typhoon Hagibis. *Environmental Science and Technology*, 54, 10678-10687.
- Takada, M., Yasutaka, T., Hayashi, S., Takagi, M., and Tagami, K. (2022). Aggregated transfer factor of ¹³⁷Cs in edible wild plants and its time dependence after the Fukushima Dai-ichi nuclear accident. *Scientific Reports*, 12, 1-11.
- 内田滋夫,田上恵子,石井伸昌 (2011). 環境における放射性核種の分布と動態 1. 土壌における放射性 核種の挙動特性. 日本原子力学会誌 *ATOMOΣ*, 53, 623-627.
- Uchida, S., and Tagami, K. (2013). Removal of radiocesium from food by processing: data collected after the Fukushima daiichi nuclear power plant accident-13167. In Proceedings of Waste Management Symposia.
- Uchida, S., and Tagami, K. (2017). Comparison of coastal area sediment-seawater distribution coefficients (Kd) of stable and radioactive Sr and Cs. *Applied Geochemistry*, 85, 148-153.
- Uchida, S., and Tagami, K. (2018). Comparison of radiocesium concentration changes in leguminous and nonleguminous herbaceous plants observed after the Fukushima Dai-ichi Nuclear Power Plant accident. *Journal of Environmental Radioactivity*, 186, 3-8.
- Wada, T., Tomiya, A., Enomoto, M., Sato, T., Morishita, D., Izumi, S., Niizeki, K., Suzuki, Sh., Morita, T., and Kawata, G. (2016). Radiological impact of the nuclear power plant accident on freshwater fish in Fukushima: an overview of monitoring results. *Journal of Environmental Radioactivity*, 151, 144-155.
- Xu, S., Zhang, L., Freeman, S. P., Hou, X., Shibata, Y., Sanderson, D., Cresswell, A., Doi, T., and Tanaka, A. (2015). Speciation of radiocesium and radioiodine in aerosols from Tsukuba after the Fukushima nuclear accident. *Environmental Science and Technology*, 49, 1017-1024.
- Yamamoto, K., Tagami, K., Uchida, S., and Ishii, N. (2015). Model estimation of ¹³⁷Cs concentration change with time in seawater and sediment around the Fukushima Daiichi Nuclear Power Plant site considering fast and slow reactions in the seawater-sediment systems. *Journal of Radioanalytical and Nuclear Chemistry*, 304, 867-881.
Supplemental Material

Table S1Mass interception coefficient of radioiodine and radiocaesium for vegetables observed after theFukushima Daiichi nuclear power station accident

Isotope	Prefecture	Municipality	Crop name	Crop type	Bq/kg FM @ 2011/3/20	Bq/m ² @ 2011/3/20	$f_{ m B}$
I-131	Fukushima	Izumizaki	Spinach	Leaf	3.21E+4	4.05E+5	0.079
I-131	Fukushima	Otama	Spinach	Leaf	2.98E+4	4.91E+5	0.061
I-131	Fukushima	Ono	Komatsuna	Leaf	9.41E+2	1.81E+5	0.005
I-131	Fukushima	Ono	Spinach	Leaf	1.26E+4	1.81E+5	0.070
I-131	Fukushima	Kawamata	Shinobufuyuna	Leaf	2.22E+4	1.55E+6	0.014
I-131	Fukushima	Samekawa	Komatsuna	Leaf	7.06E+3	4.75E+5	0.015
I-131	Fukushima	Tanakura	Spinach	Leaf	4.05E+4	4.46E+5	0.091
I-131	Fukushima	Tamura	Spinach	Leaf	2.42E+4	6.17E+5	0.039
I-131	Fukushima	Nakajima	Spinach	Leaf	6.70E+3	4.88E+5	0.014
I-131	Fukushima	Hanawa	Spinach	Leaf	4.36E+3	2.43E+5	0.018
I-131	Fukushima	Hirata	Spinach	Leaf	1.79E+4	3.18E+5	0.056
I-131	Fukushima	Furudono	Mizuna	Leaf	2.01E+4	2.81E+5	0.072
I-131	Fukushima	Motomiya	Kukitachina	Leaf	2.09E+4	1.01E+6	0.021
I-131	Fukushima	Yabuki	Spinach	Leaf	4.12E+3	3.42E+5	0.012
I-131	Fukushima	Yamatsuri	Spinach	Leaf	1.18E+4	3.84E+5	0.031
I-131	Ibaraki	Hitachiota	Spinach	Leaf	2.75E+4	4.40E+5	0.062
I-131	Saitama	Saitama	Komatsuna	Leaf	9.48E+2	7.30E+4	0.013
I-131	Saitama	Kawagoe	Komatsuna	Leaf	1.49E+3	7.30E+4	0.020
I-131	Saitama	Tokorozawa	Spinach	Leaf	1.95E+3	7.30E+4	0.027
I-131	Saitama	Honjo	Spinach	Leaf	1.66E+3	2.11E+4	0.079
I-131	Tochigi	Kaminokawa	Spinach	Leaf	1.27E+4	6.45E+4	0.197
I-131	Tochigi	Sano	Kakina	Leaf	6.22E+3	6.45E+4	0.096
I-131	Gunma	Isezaki	Spinach	Leaf	2.40E+3	2.11E+4	0.114
I-131	Gunma	Takasaki	Kakina	Leaf	1.77E+3	2.11E+4	0.084
I-131	Chiba	Chiba	Giant butterbur	Leaf	3.20E+4	1.07E+5	0.299
I-131	Chiba	Chiba	Japanese dock	Leaf	9.62E+3	3.22E+4	0.299
I-131	Chiba	Chiba	Mugwort	Leaf	8.58E+3	3.22E+4	0.266
I-131	Chiba	Chiba	Dandelion	Leaf	8.64E+3	3.22E+4	0.268
I-131	Chiba	Chiba	Long-stamen chive	Leaf	5.05E+3	3.22E+4	0.157

I-131	Fukushima	Iwaki	Broccoli	Flowering head	1.04E+4	8.78E+5	0.012
I-131	Fukushima	Kunimi	Broccoli	Flowering head	8.15E+2	1.63E+6	0.0005
I-131	Fukushima	Kori	Broccoli	Flowering head	1.69E+3	3.04E+6	0.0006
I-131	Fukushima	Shirakawa	Aburana	Flowering head	2.62E+3	5.74E+5	0.005
I-131	Fukushima	Tamakawa	Aburana	Flowering head	9.72E+3	4.46E+5	0.022
I-131	Fukushima	Nihonmatsu	Purple-stem mustard	Flowering head	8.30E+3	8.71E+5	0.010
I-131	Fukushima	Hirata	Nabana	Flowering head	1.33E+3	3.18E+5	0.004
I-131	Fukushima	Asakawa	Cabbage	Head	5.91E+3	3.64E+5	0.016
I-131	Fukushima	Minamisoma	Cabbage	Head	6.09E+3	1.01E+6	0.006
I-131	Chiba	Chiba	Giant butterbur	Leaf stalk	2.17E+3	1.07E+5	0.020
I-131	Chiba	Chiba	Field horsetail	Shoot	5.16E+3	3.22E+4	0.160
Cs-137	Fukushima	Otama	Spinach	Leaf	3.69E+4	8.40E+4	0.439
Cs-137	Fukushima	Kawamata	Shinobufuyuna	Leaf	1.45E+4	1.66E+5	0.087
Cs-137	Fukushima	Tanakura	Spinach	Leaf	2.08E+4	2.89E+4	0.719
Cs-137	Fukushima	Hanawa	Spinach	Leaf	1.72E+3	1.28E+4	0.135
Cs-137	Fukushima	Hirata	Spinach	Leaf	1.24E+3	1.45E+4	0.086
Cs-137	Fukushima	Furudono	Mizuna	Leaf	3.96E+3	2.34E+4	0.169
Cs-137	Fukushima	Motomiya	Kukitachina	Leaf	5.37E+4	8.53E+4	0.629
Total Cs	Ibaraki	Takahagi	Spinach	Leaf	2.37E+3	3.28E+4	0.072
Total Cs	Ibaraki	Hitachiota	Spinach	Leaf	3.25E+2	1.23E+4	0.026
Total Cs	Tochigi	Sano	Kakina	Leaf	3.09E+2	1.53E+4	0.020
Cs-137	Chiba	Chiba	Giant butterbur	Leaf	3.03E+3	1.48E+4	0.205
Cs-137	Chiba	Chiba	Japanese dock	Leaf	2.49E+3	1.48E+4	0.168
Cs-137	Chiba	Chiba	Mugwort	Leaf	2.32E+3	1.48E+4	0.157
Cs-137	Chiba	Chiba	Dandelion	Leaf	1.87E+3	1.48E+4	0.127
Cs-137	Chiba	Chiba	Long-stamen chive	Leaf	6.28E+2	1.48E+4	0.042
Cs-137	Fukushima	Iwaki	Broccoli	Flowering head	9.15E+2	2.29E+4	0.040
Cs-137	Fukushima	Asakawa	Cabbage	Head	3.90E+3	3.14E+4	0.124
Cs-137	Chiba	Chiba	Giant butterbur	Leaf stalk	2.95E+2	1.48E+4	0.020
Cs-137	Chiba	Chiba	Field horsetail	Shoot	1.18E+3	1.48E+4	0.080

tope	Species	Scientific name	Tissue part	Ecosystem	Pathway	λ_1	T_{b1_short}, d	λ_2	T_{b2_long}, d	Ref.
5	Japanese green sea urchin	Hemicentrotus pulcherrimus	Whole body	Marine	Water			0.22	3.2	K1
5	Goldfish	Carassius auratus auratus	Plasma	Freshwater	Water				10.5	II
5	Goldfish	Carassius auratus auratus	Soft tissue	Freshwater	Water				5.3	11
5	Goldfish	Carassius auratus auratus	Bone	Freshwater	Water				94	11
5	Goldfish	Carassius auratus auratus	Scales	Freshwater	Water		10.5		210	11
5m	Ragworm	Nereis japonica	Whole body	Marine	Water	0.165	4.2	0.0021	335	U2
41	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water				13.7	M4
41	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water				10.7	M4
44	Rainbow trout	Oncorhynchus mykiss	Egg	Freshwater	Water				7	K3
4	Rainbow trout	Oncorhynchus mykiss	Wholebody, advanced fry	Freshwater	Water		1.6			K4
L	Kotamagai	Gomphina melanaegis	Whole body	Marine	Water	0.6172	1	0.0071	154	U3
L	Japanese tiger prawn	Marsupenaeus japonicus	Whole body	Marine	Water				24	S4
7	Abalone	Haliotis discus	Whole body	Marine	Water			0.0032	220	N4
2	Abalone	Haliotis discus	Whole body	Marine	Food			0.0034	200	N4
2	Abalone	Haliotis discus	Whole body	Marine	Food			0.0044	160	N4
	Abalone	Haliotis discus	Whole body	Marine	Food			0.0029	240	N4
4	Forktongue goby	Chaenogobius gulosus	Whole body	Marine	Water		1.0		43	IJ
2	Mussel	Mytilisepta virgatus	Soft tissue	Marine	Water		5.6		224	K5
4	Mussel	Mytilisepta virgatus	Shell	Marine	Water		9.7		174	K5
	Mussel	Mytilisepta virgatus	Whole body	Marine	Water		5.2			K5
4	Mussel	Mytilisepta virgatus	Byssus	Marine	Water		15.3		109	K5
	Mussel	Mytilisepta virgatus	Body fluid	Marine	Water		1.5		57	K5
2	Mussel	Mytilisepta virgatus	Mantle	Marine	Water		3.6		204	K5
2	Mussel	Mytilisepta virgatus	Gonads	Marine	Water		5.2		178	K5
	Mussel	Mytilisepta virgatus	Gills	Marine	Water		2.5			K5
	Mussel	Mytilisepta virgatus	Visceral mass	Marine	Water		10.6		533	K5
L	Mussel	Mytilisepta virgatus	Adductor muscle	Marine	Water		1.9		66	K5

Table S2 Biological half-life for aquatic biota observed in Japan (under laboratory conditions)

22.6 M4	49.6 M4	80 N3	330 N3	110 N3	90 N3	110 N3	90 N3	30 N3	40 N3	130 N3	330 N3	30 N3	100 N3	9.9 S1	56 K2	64 K2	74 K2	75 K2	79 K2	50 K2	44 K2	55 K2	14 NI	63 N1	29 N1	39 N1	38 N1	26 NI
		.7												0.07	0.012	0.011	0.009	0.00	0.009	0.014	0.016	0.013	0.05	0.011	0.024	0.018		
Water	Water	Water 0	Water	Water	Water	Water	Water	Food	Food	Food	Food	Food	Food	Water	Food	Water	Water	Water	Water	Water	Water							
Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine
Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Soft tissue	Whole body	Whole body	Whole body	Whole body	Muscle	Liver	Intestine							
Paralichthys olivaceus	Paralichthys olivaceus	Pseudocardium sachalinense	Mizuhopecten yessoensis	Turbo cornutus	Haliotis discus	Babylonia japonica	Octopus ocellatus	Pseudocardium sachalinense	Mizuhopecten yessoensis	Turbo cornutus	Haliotis discus	Babylonia japonica	Octopus ocellatus	Mytilus edulis	Acanthogobius lavimanus	Brevootia tyrannus	Sevastes nivosus	Evynnis japonica	Evynnis japonica	Evynnis japonica	Evynnis japonica							
Bastard halibut	Bastard halibut	Sakhalin surf clam	Japanese scallop	Horned turban	Disk abalone	Japanese ivory shell	Ocellated octopus	Sakhalin surf clam	Japanese scallop	Horned turban	Disk abalone	Japanese ivory shell	Ocellated octopus	Mussel	Japanese common goby	Postlarval menhaden	Snowy rockfish	Crimson sea bream	Crimson sea bream	Crimson sea bream	Crimson sea bream							
Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-57	Co-58	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60							

Co-60	Crimson sea bream	Evynnis japonica	Scales	Marine	Water			41	N
Co-60	Crimson sea bream	Evynnis japonica	Gills	Marine	Water			13	N
Co-60	Crimson sea bream	Evynnis japonica	Vertebra	Marine	Water			25	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Whole body	Marine	Water		0.022	32	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Muscle	Marine	Water		0.013	53	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Blood	Marine	Water			12	N
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Liver	Marine	Water			48	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Intestine	Marine	Water			38	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Scales	Marine	Water			42	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Skin	Marine	Water			15	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Gills	Marine	Water			18	N
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Vertebra	Marine	Water			24	NI
Co-60	Five-ray yellowtail	Seriola quinqueradiata	Fin	Marine	Water			14	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water		0.014	50	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Muscle	Marine	Water		0.011	63	N
Co-60	Bastard halibut	Paralichthys olivaceus	Blood	Marine	Water			44	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Intestine	Marine	Water			49	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Scales	Marine	Water			44	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Skin	Marine	Water			27	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Gills	Marine	Water			28	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Vertebra	Marine	Water			27	NI
Co-60	Bastard halibut	Paralichthys olivaceus	Fin	Marine	Water			30	NI
Co-60	Kotamagai	Gomphina melanaegis	Whole body	Marine	Water		0.0221	31	U3
Co-60	Sea cucumber	Stichops japonicus	Whole body	Marine	Water			73	S
Co-60	Japanese tiger prawn	Marsupenaeus japonicus	Whole body	Marine	Water			27	S
Co-60	Common octopus	Octopus vulgaris	Whole body	Marine	Water	1.2		193	N2
Co-60	Common octopus	Octopus vulgaris	Muscle	Marine	Water	3.4		83	N2
Co-60	Common octopus	Octopus vulgaris	Blood	Marine	Water	1.7		28	N2
Co-60	Abalone	Haliotis discus	Whole body	Marine	Water		0.0059	120	N4
Co-60	Abalone	Haliotis discus	Whole body	Marine	Food		0.0086	81	N4

95 N4	74 N4	166 UI	176 K5	179.4 K5	K5	198 K5	62 K5	347 K5	K5	K5	495 K5	136 K5	7.9 N5	11.4 N5	8.4 N5	12.8 N5	K3	K4	68.7 T1	54.5 T1	77 U4	30 N6	15 N6	68.0 N6	34.3 N6	22 N6	16 N6	21 CJ
0.0073	0.0094												0.088	0.061	0.083	0.054			0.01	0.013	0.009	0.0231	0.0468	0.0102	0.0202	0.0316	0.0433	0 0772
		0.4	7.6	4.2	16.9	10.8	5.2	5.0	5.8	0.9	3.6	2.0	1.9	1.2	1.1	1.6	0.3	0.8	1.1	2.31			6.7	1.5	2.4	1.7	1.8	
													0.362	0.58	0.637	0.426			0.63	0.3			$\begin{array}{c} 0.1042\\ 0\end{array}$	0.4764	0.2908	0.406	0.3838	
Food	Food	Water	Food	Food	Food	Food	Water	Water	Water	Water	Water	Water	Food	Water	Water	Water	Water	Water										
Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Freshwater	Freshwater	Marine	Marine	Marine	Marine	Marine	Brakish	Brakish	Brakish	Brakish	Moning
Whole body	Whole body	Whole body	Soft tissue	Shell	Whole body	Byssus	Body fluid	Mantle	Gonads	Gills	Visceral mass	Adductor muscle	Whole body	Whole body	Whole body	Whole body	Egg	Wholebody, advanced fry	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Soft tissue	Missilo
Haliotis discus	Haliotis discus	Chaenogobius gulosus	Mytilisepta virgatus	Strongylocentrotus nudus	Strongylocentrotus nudus	Strongylocentrotus nudus	Strongylocentrotus nudus	Oncorhynchus mykiss	Oncorhynchus mykiss	Mytilus edulis	Sptifer virgatus	Tridacna crocea	Panulirus japonicus	Mizuhopecten yessoensis	Gymnogobius breunigii	Platichthys stellatus	Corbicula japonica	Corbicula japonica	Compline moleneorie									
Abalone	Abalone	Forktongue goby	Mussel	Northern sea urchin	Northern sea urchin	Northern sea urchin	Northern sea urchin	Rainbow trout	Rainbow trout	Common mussel	Purplish bifurcate mussel	Giant clam	Japanese spiny lobster	Japanese scallop	Chestnut goby	Starry flounder	Asian clam	Asian clam	V otomoroi									
Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	Co-60	$\mathbf{C}_{\mathbf{S}}$	C_{S}	C_{S}	C_{S}	$\mathbf{C}_{\mathbf{S}}$	$\mathbf{C}_{\mathbf{S}}$	Ce-137

137Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater0038180 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001937.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001937.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001937.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001339.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001339.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001339.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001337.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001330.0 137 Taymese common goly <i>deanlogebiols laytums</i> Whole bodyMarineWater001330.0 137 Nether sea uctin <i>Synthese composite</i> Whole bodyMarineWater001330.0 137 <i>Common campOpythese composite</i> Whole bodyMarineWater001340.3 137 <i>Common campOpythese composite</i> Whole bodyMarineWater001340.3 137 <td< th=""><th>s-137</th><th>Common octopus</th><th>Octopus vulgaris</th><th>Arms</th><th>Marine</th><th>Water</th><th></th><th></th><th>0.0077</th><th>90</th><th>S2</th></td<>	s-137	Common octopus	Octopus vulgaris	Arms	Marine	Water			0.0077	90	S2
-17Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.038180 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.01937.0 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.01337.0 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.01332.0 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.02330.11 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.02330.11 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.011408 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.02330.11 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.0114081 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.0114081 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.011468 -17 Japanese common goly <i>Learllogolus larinanus</i> Whole bodyMarineWater0.011468 -17 Common eurp <i>Cyrrinus carpio</i> Whole	:-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.036	19.0	K6
13.13Information and the bodyMatriceWater0.01937.013.13Japonese common goby $dcanthagothas lavinarusWhole bodyMatriceWater0.01937.013.13Japonese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.01937.013.13Japonese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.01330.013.13Japonese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.01330.013.13Japonese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.02330.013.13Japonese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.03130.013.13Laponese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.03130.031.013.13Laponese common gobydcanthagothas lavinarusWhole bodyMatriceWater0.03130.031.013.13Common eurpCyprims carpioWhole bodyMatriceWater0.03320.031.013.13Common eurpCyprims carpioWhole bodyMatriceWater0.03320.031.013.13Common eurpCyprims carpioWhole bodyMatriceWater0.03320.031.013.13Buster holdishCommon eurpCyprims carpioWhole bodyMatriceWater0.03$	s-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.038	18.0	K6
=137Japanese common goly <i>Acanibogehia farinama</i> Whole bodyManineWarr001937.0 $=137$ Japanese common goly <i>Acanibogehia farinama</i> Whole bodyManineWarr0.01330.0 $=137$ Japanese common goly <i>Acanibogehia farinama</i> Whole bodyManineWarr0.01330.0 $=137$ Japanese common goly <i>Acanibogehia farinama</i> Whole bodyManineWarr0.01449.5 $=137$ Japanese common goly <i>Acanibogehia farinama</i> Whole bodyManineWarr0.01149.5 $=137$ Northen sau uchin <i>Stronglocentrata mulas</i> Whole bodyFrishwateFood0.0116.3 $=137$ Common earp <i>Oprina carpio</i> Whole bodyFrishwateFood0.120.0116.3 $=137$ Common earp <i>Oprina carpio</i> Whole bodyFrishwateFood0.120.0116.3 $=137$ Black noffish <i>Schoates schlegeti</i> Whole bodyManineWarr0.02310.0116.3 $=137$ Black noffish <i>Schoates schlegeti</i> Whole bodyManineWarr0.02441.5 $=137$ Black noffish <i>Schoates schlegeti</i> Whole bodyManinewarr0.0130.0116.3 $=137$ Black noffish <i>Schoates schlegeti</i> Whole bodyManinewarr0.73300.0116.3 $=137$ Black noffish <i>Schoates schlegeti</i> Whole bodyManinewarr0.7330<	s-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.019	37.0	K6
5-17Iquarese common goly <i>Canillogolus larinanus</i> <i>Wales</i> WaleWate0018390 $5-137$ Jquarese common goly <i>Canillogolus larinanus</i> <i>Unde body</i> WalesWate00233011 $5-137$ Jquarese common goly <i>Canillogolus larinanus</i> <i>Unde body</i> Whole bodyMarine MarineWate0014403 $5-137$ Jquarese common goly <i>Canillogolus larinanus</i> <i>Unde body</i> Whole bodyMarine MarineWate001740320 $5-137$ Jquarese common goly <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Marine</i> <i>Vare</i> 0.0213.00.0332.0 $5-137$ Northern sea urchin <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus carpio</i> <i>Canillogolus larinanus</i> <i>Canillogolus carpio</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <i>Canillogolus larinanus</i> <	s-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.019	37.0	K6
\$-137Iquarese common gobyAcanthogobias lavinanusWhole bodyMaineWater0.02330.1 $$-137$ Iquarese common gobyAcanthogobias lavinanusWhole bodyMaineWater0.017405 $$-137$ Iquarese common gobyAcanthogobias lavinanusWhole bodyMaineWater0.017405 $$-137$ Iquarese common gobyAcanthogobias lavinanusWhole bodyFreshwaterWater0.017405 $$-137$ Common carpCyprinus carpioWhole bodyFreshwaterFood0.2313.00.0332.0 $$-137$ Common carpCyprinus carpioWhole bodyFreshwaterFood0.2313.00.0332.0 $$-137$ Common carpCyprinus carpioWhole bodyFreshwaterFood0.2313.00.01163.0 $$-137$ Common carpCyprinus carpioWhole bodyMaineWater0.0330.01163.0 $$-137$ Common carpCyprinus carpioWhole bodyMaineWater0.7310.011463.0 $$-137$ Black rockfishSebastas schlegeliWhole bodyMaineWater0.7320.011463.0 $$-137$ Black rockfishSebastas schlegeliWhole bodyMaineWater0.7300.014448.1 $$-137$ Black rockfishSebastas schlegeliWhole bodyMaineWater0.7300.014448.1 $$-137$ Black rockfishSebastas schlegeli<	S-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.018	39.0	K6
\$513Japanese common goby <i>Canthogobus lavinanus</i> Whole bodyMarineWater $$243$ $$24014$ $$245$ $$320$ $$323$ $$5137$ Japanese common goby <i>Canthogobus lavinanus</i> Whole bodyMarineWater $$0017$ $$038$ $$495$ $$321$ $$5137$ Northem seu uchin <i>Stronglocentrana</i> Whole bodyFreshwaterFood $$0231$ $$30$ $$0033$ $$00111$ $$630$ $$5137$ Common emp <i>Cyprims carpio</i> Whole bodyFreshwaterFood $$213$ $$00111$ $$630$ $$123$ $$5137$ Common emp <i>Cyprims carpio</i> Whole bodyFreshwaterFood $$123$ $$00111$ $$630$ $$123$ $$5137$ Black rockfish <i>Sebastes schliggli</i> Whole bodyMarineWater $$0744$ $$1714$ $$00073$ $$890$ $$5137$ Black rockfish <i>Sebastes schliggli</i> Whole bodyMarineWater $$0424$ $$1714$ $$0003$ $$200$ $$5137$ Black rockfish <i>Sebastes schliggli</i> Whole bodyMarineWater $$0424$ $$1714$ $$0003$ $$200$ $$5137$ Black rockfish <i>Sebastes schliggli</i> Whole bodyMarineWater $$0424$ $$1714$ $$0003$ $$200$ $$5137$ Black rockfish <i>Sebastes schliggli</i> Whole bodyMarineWater $$0424$ $$1714$ $$0093$ $$20$ $$5137$ Black rockfish <i>Readchinhis orbereria</i> Whole bodyMarineWater <td>s-137</td> <td>Japanese common goby</td> <td>Acanthogobius lavimanus</td> <td>Whole body</td> <td>Marine</td> <td>Water</td> <td></td> <td></td> <td>0.023</td> <td>30.1</td> <td>K6</td>	s-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.023	30.1	K6
\$5:131Japanese common golyAcambogobins fariturantsWhole bodyMarineWater001149519 $$5:137$ Japanese common golyAcambogobins fariturantsWhole bodyMarineWater001740819 $$5:137$ Northern sea urchinStrong/obcentronts mulasWhole bodyFreshwaterWater0.01740810 $$5:137$ Common earpCyprints carpioWhole bodyFreshwaterFreshwater6001120.0132013 $$5:137$ Common earpCyprints carpioWhole bodyFreshwaterFood0.2313.00.0132013 $$5:137$ Black rod/fishSebastes schlegeliWhole bodyMarineWater0.0930.0144481690 $$5:137$ Black rod/fishSebastes schlegeliWhole bodyMarineWater0.01730.03573.0 $$5:137$ Black rod/fishSebastes schlegeliWhole bodyMarineWater0.01740.0144481690 $$5:137$ Black rod/fishSebastes schlegeliWhole bodyMarineWater0.01790.01162.41110.005573.0 $$5:137$ Black rod/fishSebastes schlegeliWhole bodyMarineWater0.01791.70.011448.125 $$5:137$ Black rod/fishSebastes schlegeliWhole bodyMarineWater0.07301.90.00521.21.91.70.01141.41.	S-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water				32.0	K6
3-137Japanese common gobyAcanthogobias lavinanusWhole bodyMarineVanc00174083-137Northern sea urchin <i>Strongylocentrous nudus</i> Whole bodyFreshwaterVanc0.9210.70.01163.03-137Common carp <i>Cyprinus carpio</i> Whole bodyFreshwaterVane0.92210.70.011163.073-137Common carp <i>Cyprinus carpio</i> Whole bodyFreshwaterFood0.2313.00.0352073-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineWater0.90248.169.013-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineWater0.92310.011163.03-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineWater0.92448.414.813-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineWater0.92310.00333.03-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineWater0.4441.7140.00373.03-137Sea squirt <i>Halocynthia rotezi</i> whole bodyMarinewater0.41391.70.011162.43-137Sea squirt <i>Halocynthia rotezi</i> whole bodyMarinewater0.43301.60.03372.0143-137Sea squirt <i>Halocynthia rotezi</i> whole bodyMarinewater0.43	Cs-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.014	49.5	K6
3-131Northern sea urchinStrongylocentronus mudusWhole bodyFreshwaterFood0.2313.00.0352.073-137Common carpCyprinus carpioWhole bodyFreshwaterFood0.2313.00.0352.073-137Common carpCyprinus carpioWhole bodyFreshwaterFood1.26.006.9073-137Back rockfishSebastes schlegeliWhole bodyMarineWare0.9230.00388.975.073-137Bask rockfishSebastes schlegeliWhole bodyMarineWare0.74300.3330.007888.973.03-137Bask rockfishSebastes schlegeliWhole bodyMarineWare0.74300.3330.007888.973.03-137Bastard haltbutParatichthys ofnaceasWhole bodyMarineWare0.7310.011163.01448.13-137Bastard haltbutParatichthys ofnaceasWhole bodyMarineWare0.7330.0011162.413-137Sea squirtHalocynthia correralwhole bodyMarineware0.17260.011162.413-137Sea squirtHalocynthia correralwhole bodyMarineware0.17260.011162.413-137Sea squirtHalocynthia correralwhole bodyMarineware0.17360.011363.014153-137Sea squirt	Cs-137	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.017	40.8	K6
S=137Common carpCyprime carpioWhole bodyFreshwaterWater 0.921 0.7 0.0111 6.30 S=137Common carpCyprime carpioWhole bodyFreshwaterFood 1.2 69.0 7 S=137Common carpCyprime carpioWhole bodyFreshwater $Food$ 3.4 75.0 7 S=137Black rocktishSebastes schlegeliWhole bodyMarineWater 0.923 0.013 0.078 88.9 S=137Black rocktishSebastes schlegeliWhole bodyMarineWater 0.7444 48.1 75.0 11 S=137Black rocktishSebastes schlegeliWhole bodyMarineWater 0.733 0.013 0.078 88.9 88.9 S=137Bastud halibutParatichthys ofnaceusWhole bodyMarineWater 0.730 1.714 0.0953 1.7 0.0111 6.24 1.7 S=137Sea squirtHalcynthia roverzisoft tissueMarinewater 0.1726 4.0 0.0474 1.5 1.5 S=137Northern sea urchinStronglocentronts miduswhole bodyMarinewater 0.1726 0.0111 6.24 1.7 S=137Northern sea urchinStronglocentronts miduswhole bodyMarinewater 0.1726 0.0111 6.24 1.5 S=137Northern sea urchinStronglocentronts midusWhole bodyMarinewater 0.1736 0.0111	Cs-137	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.231	3.0	0.035	20	N5
Sa-137Common carpCyprims carpioWhole bodyFreshwaterFood1.269.0Sa-137Black rockfishSebastes schlegeliWhole bodyFreshwaterFood3.475.0Sa-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.024 8.412 0.0144 48.1Sa-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.7430 0.933 0.078 88.9Sa-137Bastard halbutParadichthys olivacensWhole bodyMarineWater 0.7440 1.714 0.0957 73.0 Sa-137Bastard halbutParadichthys olivacensWhole bodyMarineWater 0.7430 0.933 0.0788 88.9 73.0 Sa-137Bastard halbutParadichthys olivacensWhole bodyMarineWater 0.7430 0.933 0.0111 62.4 73.0 Sa-137Sea squirtHalocynthia rorecziwhole bodyMarinewater 0.1726 4.0 0.0474 15 14 12 Sa-137Stastard halbut <i>Froncizi</i> whole bodyMarinewater 0.7330 1.97 0.0570 14 12 Sa-137StastardHalocynthia rorecziwhole bodyMarinewater 0.7330 1.07 0.0510 14 12 Sa-137Nothern sea urchinStronglocentronts nuduswhole bodyMarinewater 0.7320 0.930 0.930 20 <	Cs-137	Common carp	Cyprinus carpio	Whole body	Freshwater	Water	0.9921	0.7	0.0111	63.0	N6
Ss-137Commo carpCyprims carpioWhole bodyFreshwaterFood 3.4 75.0 7 Ss-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.0824 8.412 0.0144 48.1 Ss-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.7430 0.933 0.0078 88.9 Ss-137Bastard halibutParalichthys of vaccusWhole bodyMarineWater 0.7430 0.933 0.0078 88.9 Ss-137Bastard halibutParalichthys of vaccusWhole bodyMarineWater 0.4044 1.714 0.0095 73.0 Ss-137Bastard halibutParalichthys of vaccusWhole bodyMarineWater 0.4179 1.7 0.0011 6.24 1.7 Ss-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1726 4.0 0.073 20 14 1.7 Ss-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.7820 0.911 6.24 2.91 Ss-137Northem sea urchinStrongylocentrons muduswhole bodyMarinewater 0.7820 0.91 6.94 1.7 Ss-137Northem sea urchinStrongylocentrons muduswhole bodyMarinewater 0.7820 0.9 0.91 6.94 Ss-137Northem sea urchinStrongylocentrons muduswhole bodyMarinewater 0.7820 <t< td=""><td>Cs-137</td><td>Common carp</td><td>Cyprinus carpio</td><td>Whole body</td><td>Freshwater</td><td>Food</td><td></td><td>1.2</td><td></td><td>69.0</td><td>N6</td></t<>	Cs-137	Common carp	Cyprinus carpio	Whole body	Freshwater	Food		1.2		69.0	N6
Cs-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.0824 8.412 0.0144 48.1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.7430 0.933 0.0078 889 53.0 Cs-137Bastard halbutParatichtys of vaceusWhole bodyMarineWater 0.7430 0.933 0.0078 889 53.0 Ss-137Bastard halbutParatichthys of vaceusWhole bodyMarineWater 0.7430 0.933 0.0078 889 53.0 Ss-137Sea squirtHalozynthia roteziWhole bodyMarineWater 0.1726 0.0111 62.4 1.7 Ss-137Sea squirtHalozynthia roteziwhole bodyMarinewater 0.4179 1.7 0.0510 1.4 1.7 Ss-137Sea squirtHalozynthia roteziwhole bodyMarinewater 0.1726 4.0 0.0474 15 Ss-137Sea squirtHalozynthia roteziwhole bodyMarinewater 0.1726 4.0 0.0350 20 1.4 Ss-137Northern sea urchinStrongylocentrons mduswhole bodyMarinewater 0.1726 0.0111 62.4 2.530 Ss-137Northern sea urchinStrongylocentrons mduswhole bodyMarinewater 0.732 0.935 20 1.4 Ss-137Black rockfishSebastes schlegeliWhole bodyMarine	Cs-137	Common carp	Cyprinus carpio	Whole body	Freshwater	Food		3.4		75.0	N6
Cs-137Black rockfishSebastes schlegeliWhole bodyMarineWater 0.7430 0.933 0.0078 88.9 88.9 Cs-137Bastard halibutParalichthys ofvaceusWhole bodyMarineWater 0.4044 1.714 0.0095 73.0 9 Cs-137Bastard halibutParalichthys ofvaceusWhole bodyMarineWater 0.4179 1.714 0.0095 73.0 9 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4179 1.7 0.0510 14 1 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1726 4.0 0.0744 15 1 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1726 4.0 0.0744 15 1 Cs-137Northern sea urchinStrongylocentrons mduswhole bodyMarinewater 0.4330 1.6 0.0350 20 14 1 Cs-137Northern sea urchinStrongylocentrons mduswhole bodyMarinewater 0.7430 1.6 0.0350 20 14 1 Cs-137Black rockfishStebastes schlegeliWhole bodyMarineFood 1.3482 0.514 29.2 12 12 Cs-137Black rockfishStebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0126 55.0 Cs-137Black rockfis	Cs-137	Black rockfish	Sebastes schlegeli	Whole body	Marine	Water	0.0824	8.412	0.0144	48.1	S5
Cs-137Bastard halibutParalichtlys olivaceusWhole bodyMarineWater 0.404 1.714 0.005 73.0 73.0 Cs-137Bastard halibutParalichtlys olivaceusWhole bodyMarineWater 0.4179 1.714 0.0051 14 1.71 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4179 1.7 0.0510 14 1.7 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4179 1.7 0.0510 14 1.7 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1726 4.0 0.0474 15 14 1 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1726 4.0 0.0474 15 14 1 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1330 1.6 0.0350 20 14 1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarinewater 0.7322 0.9 0.0350 12 14 1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0126 55.0 Cs-137Bastard halibutParalichtlys olivaceusWhole bodyMarineFood 0.3204 1.91 1.4 1.6 Cs-137Bastard halibut<	Cs-137	Black rockfish	Sebastes schlegeli	Whole body	Marine	Water	0.7430	0.933	0.0078	88.9	S5
Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineWater 0.2591 2.675 0.0111 62.4 62.4 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4179 1.7 0.0510 14 17 Cs-137Sea squirtHalocynthia roretzisoft tissueMarinewater 0.1726 4.0 0.0474 15 11 Cs-137Sea squirtHalocynthia roretzisoft tissueMarinewater 0.1726 4.0 0.0474 15 11 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.1726 4.0 0.0474 15 11 Cs-137Northem sea urchinStrongylocentrotus nuduswhole bodyMarinewater 0.7822 0.9 0.0592 12 14 12 Cs-137Black rockfishStrongylocentrotus nuduswhole bodyMarinewater 0.5828 1.0 0.0592 12 12 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0126 55.0 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.3886 0.377 0.0362 12 12 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.386 0.77 0.0362 12 12 Cs-137Bastard halibut	Cs-137	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water	0.4044	1.714	0.0095	73.0	S5
C3-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4179 1.7 0.0510 14 14 C3-137Sea squirtHalocynthia roretziSoft tissueMarinewater 0.1726 4.0 0.0474 15 1 C3-137Sea squirtHalocynthia roretziSoft tissueMarinewater 0.1726 4.0 0.0474 15 1 C3-137Northern sea urchin <i>Strongylocentrotus mudus</i> whole bodyMarinewater 0.1782 0.9 0.0500 14 1 C3-137Northern sea urchin <i>Strongylocentrotus mudus</i> whole bodyMarinewater 0.7822 0.9 0.0500 14 1 C3-137Black rockfish <i>Strongylocentrotus mudus</i> whole bodyMarinewater 0.7822 0.9 0.0500 14 1 C3-137Black rockfish <i>Strongylocentrotus mudus</i> whole bodyMarineFood 1.3482 0.514 0.0138 50.2 C3-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.0126 55.0 C3-137Bastard halibut <i>Paralichtys olivaceus</i> Whole bodyMarineFood 0.324 2.983 0.0126 55.0 C3-137Bastard halibut <i>Paralichtys olivaceus</i> Whole bodyMarineFood 0.2324 2.983 0.0245 2.83 C3-137Sea squirtHalocynthia roretziMarineFood<	Cs-137	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water	0.2591	2.675	0.0111	62.4	S5
Cs-137Sea squirtHalocynthia roretziSoft tissueMarinewater 0.1726 4.0 0.0474 15 1 Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4330 1.6 0.0350 20 1 Cs-137Northern sea urchin <i>Strongylocentrotus nudus</i> whole bodyMarinewater 0.7822 0.9 0.0500 14 1 Cs-137Northern sea urchin <i>Strongylocentrotus nudus</i> whole bodyMarinewater 0.6828 1.0 0.0592 12 1 Cs-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.0138 50.2 12 1 Cs-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.0138 50.2 12 1 Cs-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.0136 55.0 12 12 1 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 1.3482 0.0126 55.0 55.0 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 0.3500 1.949 0.0126 55.0 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 0.2342 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia	Cs-137	Sea squirt	Halocynthia roretzi	whole body	Marine	water	0.4179	1.7	0.0510	14	N6
Cs-137Sea squirtHalocynthia roretziwhole bodyMarinewater 0.4330 1.6 0.0350 20 1 Cs-137Northern sea urchin <i>Strongylocentrotus nudus</i> whole bodyMarinewater 0.7822 0.9 0.0500 14 1 Cs-137Northern sea urchin <i>Strongylocentrotus nudus</i> whole bodyMarinewater 0.7822 0.9 0.0502 12 1 Cs-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.514 0.0138 50.2 Cs-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.514 0.0138 50.2 Cs-137Black rockfish <i>Sebastes schlegeli</i> Whole bodyMarineFood 1.3482 0.514 0.0138 50.2 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 1.3482 0.514 0.0126 55.0 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 1.3482 0.0126 55.0 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 1.3482 0.0126 55.0 Cs-137Bastard halibut <i>Paralichthys olivaceus</i> Whole bodyMarineFood 2.384 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2707 2.6 <	Cs-137	Sea squirt	Halocynthia roretzi	Soft tissue	Marine	water	0.1726	4.0	0.0474	15	N6
Cs-137Northern sea urchinStrongylocentrotus nuduswhole bodyMarinewater 0.7822 0.9 0.0500 14 1 Cs-137Northern sea urchinStrongylocentrotus nuduswhole bodyMarinewater 0.6828 1.0 0.0592 12 1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0138 50.2 14 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.0126 55.0 14 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.3482 0.0126 55.0 19.1 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.3386 0.377 0.0362 19.1 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.3386 0.377 0.0362 19.1 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.3386 0.377 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziWarineFood 0.2707 2.6 0.0465 15 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2707 2.6 0.0465 15 Cs-137Northern sea urchinStronglocentrotus nudusMarineFood 0.2707 2.6 0.0465	Cs-137	Sea squirt	Halocynthia roretzi	whole body	Marine	water	0.4330	1.6	0.0350	20	N6
Cs-137Northern sea urchinStrongylocentrotus nuduswhole bodyMarinewater 0.6828 1.0 0.0392 12 1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0138 50.2 1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0138 50.2 1 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 0.3500 1.980 0.0126 55.0 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 0.3244 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziWhole bodyMarineFood 0.2324 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2707 2.6 0.0465 15 Cs-137Northern sea urchinStrongylocentrotus nudusMarineFood 0.2256 3.1 0.0230 30	Cs-137	Northern sea urchin	Strongylocentrotus nudus	whole body	Marine	water	0.7822	0.9	0.0500	14	N6
Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 1.3482 0.514 0.0138 50.2 50.2 Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 0.3500 1.980 0.0126 55.0 1.91 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 0.3376 0.0362 19.1 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 0.2324 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2707 2.6 0.0465 15 15 Cs-137Northern sea urchinStrongylocentrotus nudusMarineFood 0.2256 3.1 0.0230 30 15 15	Cs-137	Northern sea urchin	Strongylocentrotus nudus	whole body	Marine	water	0.6828	1.0	0.0592	12	N6
Cs-137Black rockfishSebastes schlegeliWhole bodyMarineFood 0.3500 1.980 0.0126 55.0 55.0 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 1.8386 0.377 0.0362 19.1 9.1666 Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood 0.2324 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2324 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2324 2.983 0.0245 28.3 Cs-137Sea squirtHalocynthia roretziMarineFood 0.2707 2.6 0.0465 15 15 Cs-137Northern sea urchinStrongylocentrotus nudusMarineFood 0.2256 3.1 0.0230 30 30	Cs-137	Black rockfish	Sebastes schlegeli	Whole body	Marine	Food	1.3482	0.514	0.0138	50.2	S5
Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood1.83860.3770.036219.119.1Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood0.23242.9830.024528.31Cs-137Sea squirtHalocynthia roretziWhole bodyMarineFood0.23242.9830.0465151Cs-137Northern sea urchinStrongylocentrotus nudusMarineFood0.27072.60.0465151	Cs-137	Black rockfish	Sebastes schlegeli	Whole body	Marine	Food	0.3500	1.980	0.0126	55.0	S5
Cs-137Bastard halibutParalichthys olivaceusWhole bodyMarineFood0.23242.9830.024528.31Cs-137Sea squirtHalocynthia roretziMarineFood0.27072.60.0465151Cs-137Northern sea urchinStrongylocentrotus nudusMarineFood0.22563.10.0230301	Cs-137	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Food	1.8386	0.377	0.0362	19.1	S5
Cs-137 Sea squirt Halocynthia roretzi Marine Food 0.2707 2.6 0.0465 15 1 Cs-137 Northern sea urchin Strongylocentrotus nudus Marine Food 0.2256 3.1 0.0230 30 1	Cs-137	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Food	0.2324	2.983	0.0245	28.3	S5
Cs-137 Northern sea urchin <i>Strongylocentrotus nudus</i> Marine Food 0.2256 3.1 0.0230 30 1	Cs-137	Sea squirt	Halocynthia roretzi		Marine	Food	0.2707	2.6	0.0465	15	N6
	Cs-137	Northern sea urchin	Strongylocentrotus nudus		Marine	Food	0.2256	3.1	0.0230	30	N6

Cs-137	Sakhalin surf clam	Pseudocardium sachalinense		Marine	Food	0.2497	2.8	0.0336	21	N6
Cs-137	Goldfish	Carassius auratus auratus	Whole body	Freshwater	Water				51	M2
Cs-137	Goldfish	Carassius auratus auratus	Whole body	Freshwater	Food	0.4780	1.5	0.0130	53	M3
Cs-137	Goldfish	Carassius auratus auratus	Whole body	Freshwater	Food	0.2830	2.4	0.0140	50	M3
Cs-137	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water				34.0	M4
Cs-137	Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water				33.9	M4
Cs-137	Sakhalin surf clam	Pseudocardium sachalinense	Whole body	Marine	Water		0.7		23	N3
Cs-137	Japanese scallop	Mizuhopecten yessoensis	Whole body	Marine	Water				20	N3
Cs-137	Horned turban	Turbo cornutus	Whole body	Marine	Water				20	N3
Cs-137	Disk abalone	Haliotis discus	Whole body	Marine	Water				30	N3
Cs-137	Japanese ivory shell	Babylonia japonica	Whole body	Marine	Water				50	N3
Cs-137	Ocellated octopus	Octopus ocellatus	Whole body	Marine	Water				10	N3
Cs-137	Sakhalin surf clam	Pseudocardium sachalinense	Whole body	Marine	Food				20	N3
Cs-137	Japanese scallop	Mizuhopecten yessoensis	Whole body	Marine	Food				20	N3
Cs-137	Horned turban	Turbo cornutus	Whole body	Marine	Food				10	N3
Cs-137	Disk abalone	Haliotis discus	Whole body	Marine	Food				10	N3
Cs-137	Japanese ivory shell	Babylonia japonica	Whole body	Marine	Food				30	N3
Cs-137	Ocellated octopus	Octopus ocellatus	Whole body	Marine	Food				10	N3
Cs-137	Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water			0.0114	60.8	N6
Cs-137	Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water			0.0126	55.0	N6
Cs-137	Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water			0.011	63.0	N6
Cs-137	Asian clam	Corbicula japonica	Whole body	Brakish	Water				25	N6
Cs-137	Asian clam	Corbicula japonica	Whole body	Brakish	Water				22	N6
Cs-137	Asian clam	Corbicula japonica	Whole body	Brakish	Water				38	N6
Cs-137	Asian clam	Corbicula japonica	Soft tissue	Brakish	Water				31	N6
Cs-137	Asian clam	Corbicula japonica	Soft tissue	Brakish	Water				26	N6
Cs-137	Asian clam	Corbicula japonica	Soft tissue	Brakish	Water				35	N6
Cs-137	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.359	1.9	0.137	5.1	N5
Cs-137	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.447	1.6	0.177	3.9	N5

37	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.447	1.6	0.147	4.7	N5
	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.383	1.8	0.153	4.5	N5
	Rainbow trout	Oncorhynchus mykiss	Egg	Freshwater	Water		0.7		3.0	K3
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.63	1.100	0.0117	59	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.31	2.236	0.0112	62	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food			0.0122	57	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.25	2.773	0.011	63	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.24	2.888	0.0123	56	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food			0.0103	67	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.27	2.567	0.0196	35	I 4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.29	2.390	0.0172	40	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.24	2.888	0.0171	41	1 4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.17	4.077	0.016	43	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.26	2.666	0.0114	61	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.34	2.039	0.0111	62	I 4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.39	1.777	0.0115	60	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.3	2.310	0.0104	67	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Marine	Food	0.56	1.238	0.0105	99	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.21	3.3	0.0061	114	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food			0.0064	108	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.54	1.3	0.0068	102	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.54	1.3	0.0068	102	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.27	2.6	0.0062	112	14
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.37	1.9	0.0078	89	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.22	3.2	0.0119	58	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.2	3.5	0.0114	61	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.44	1.6	0.0069	100	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food	0.2	3.5	0.0088	79	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food			0.0083	84	I4
	Japanese sea bass	Lateolabrax japonicus	Whole body	Brakish	Food			0.0072	96	I4

Υl	190	tion	al administra	traperitone	In	Freshwater	Whole body	Silurus asotus	Japanese common catfish	Hg-203
Υl	230	ttion	al administra	traperitone	In	Freshwater	Whole body	Cyprinus carpio	Common carp	Hg-203
Y1	220	ttion	al administra	traperitone	In	Freshwater	Whole body	Oncorhynchus mykiss	Rainbow trout	Hg-203
Υl	140	ttion	al administra	traperitone	In	Freshwater	Whole body	Silurus asotus	Japanese common catfish	Hg-203
Y1	06	ttion	al administra	traperitone	In	Freshwater	Whole body	Cyprinus carpio	Common carp	Hg-203
Y1	110	ttion	al administra	traperitone	In	Freshwater	Whole body	Oncorhynchus mykiss	Rainbow trout	Hg-203
T1	45.2	0.031	0.72	0.98	Water	Marine	Whole body	Sptifer virgatus	Purplish bifurcate mussel	Fe-59
T1	18.0	0.054	0.65	1.13	Water	Marine	Whole body	Mytilus edulis	Common mussel	Fe-59
T3	116	0.021	0.23	2.95	Water	Marine	Whole body	Girella punctata	Largescale Blackfish	Fe-59
T3	107	0.022	0.44	1.62	Food	Marine	Whole body	Girella punctata	Largescale Blackfish	Fe-59
T3	251	0.018	0.23	3.07	Food	Marine	Whole body	Girella punctata	Largescale Blackfish	Fe-59
T3	117	0.021	0.80	0.87	Food	Marine	Whole body	Girella punctata	Largescale Blackfish	Fe-59
T3	301	0.018	0.35	2.00	Food	Marine	Whole body	Girella punctata	Largescale Blackfish	Fe-59
T2	548	0.016	2.7	0.27	Food	Marine	Whole body	Haliotis discus	Abalone	Fe-59
T2	33.1	0.04			Water	Marine	Whole body	Haliotis discus	Abalone	Fe-59
T2	28.6	0.036	1.5	0.47	Food	Marine	Whole body	Kareius bicoloratus	Right-eye flounder	Fe-59
I4	116	0.006	3.0	0.23	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	178	0.0039	1.0	0.67	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	165	0.0042	1.8	0.39	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	151	0.0046	13.9	0.05	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	98	0.0071	3.5	0.2	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	70	0.0099	1.8	0.38	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	84	0.0083	3.2	0.22	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	165	0.0042	2.2	0.32	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	169	0.0041	3.6	0.19	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	144	0.0048	1.3	0.54	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	131	0.0053	6.3	0.11	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	224	0.0031	2.2	0.31	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
I4	151	0.0046	3.6	0.19	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137
14	94	0.0074	2.3	0.3	Food	Brakish	Whole body	Lateolabrax japonicus	Japanese sea bass	Cs-137

Y2	N6	N6	N6	N6	N6	N6	N6	N6	N6	N6	N6	N6	N6	M4	M4	N6	N6	N6	N6	N6	N6	N6	N6	N6	H1	ΗI
160	15	10	43	25	56	25	22	6	15	23	11	54	44	3.3	8.9	16	17	19	75	72	52	37	41	62	11	24
tion	0.0451	0.0682	0.016	0.0277	0.0123	0.028	0.031	0.0748	0.0478	0.0298	0.0605	0.0128	0.0159			0.0433	0.0408	0.0365								
administrat	1.2	0.9	3.6	4.9		9.0	0.5	0.6	1.8	5.8	2.0	2.6	1.6													
aperitoneal	0.572	0.7659	0.1914	0.1429		1.153	1.286	1.0832	0.3815	0.1192	0.3543	0.2651	0.4328													
Intr	Water	Water	Water	Water	Water	Water	Water	Food	Food	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Freshwater	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	$\operatorname{Brakish}$	Brakish	Brakish	Brakish	Marine	Marine	Brakish	Brakish	Brakish	Brakish	Brakish	Brakish	Brakish	Brakish	Brakish	Marine	Marine
Whole body	Whole body	Muscle	Whole body	Muscle	Whole body	Whole body	Whole body	Muscle	Whole body	Whole body	Whole body	Whole body	Soft tissue	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Soft tissue	Soft tissue	Soft tissue	Whole body	Whole body
Cyprinus carpio	Lateolabrax japonicus	Lateolabrax japonicus	Sebastes zonatusschlegeli Hilgendorf	Sebastes zonatusschlegeli Hilgendorf	Panulirus japonicus	Turbo cornutus	Turbo cornutus	Lateolabrax japonicus	Sebastes zonatusschlegeli Hilgendorf	Gymnogobius breunigii	Platichthys stellatus	Corbicula japonica	Corbicula japonica	Paralichthys olivaceus	Paralichthys olivaceus	Gymnogobius breunigii	Gymnogobius breunigii	Gymnogobius breunigii	Corbicula japonica	Sargassum fusiforme	Sargassum fusiforme					
Common carp	Japanese sea bass	Japanese sea bass	Black rockfish	Black rockfish	Japanese spiny lobster	Horned turban	Horned turban	Japanese sea bass	Black rockfish	Chestnut goby	Starry flounder	Asian clam	Asian clam	Bastard halibut	Bastard halibut	Chestnut goby	Chestnut goby	Chestnut goby	Asian clam	Hijiki	Hijiki					
Hg-203	Ι	I	Ι	Ι	Ι	I	Ι	I	Ι	Ι	Ι	I	I	I-125	I-125	I-125	I-125	I-125	I-125	I-125	I-125	I-125	I-125	I-125	I-125, I- 131	I-125, I- 131

HI	H1	H1	HI	HI	HI	ΗI	HI	ΗI	HI	K3	K4	13	13	M4	M4	N3	N3	N3	N3	N5	N5	N5	N5	
23	23	12	12	12	11	18	16	12	10			66.3	64.4	30.8	29.4	89	50	10	10	6.9	7.0	5.5	7.6	
																				0.101	0.099	0.126	0.091	
										0.4	ю					1.7				2.0	1.9	1.1	2.3	
																				0.35	0.362	0.656	0.299	
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Food	Food	Food	Food	Food	Food							
Marine	Marine	Marine	Marine	Freshwater	Freshwater	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine	Marine							
Whole body	Whole body	Whole body	Whole body	Egg	Wholebody, advanced fry	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body	Whole body							
Sargassum fusiforme	Chasmichthys gluosus	Chasmichthys gluosus	Chasmichthys gluosus	Chasmichthys gluosus	Oncorhynchus mykiss	Oncorhynchus mykiss	Volutharpa ampullacea perryi	Volutharpa ampullacea pernyi	Paralichthys olivaceus	Paralichthys olivaceus	Pseudocardium sachalinense	Mizuhopecten yessoensis	Pseudocardium sachalinense	Mizuhopecten yessoensis	Strongylocentrotus nudus	Strongylocentrotus nudus	Strongylocentrotus nudus	Strongylocentrotus nudus						
Hijiki	Hijiki	Hijiki	Hijiki	Hijiki	Hijiki	Forktongue goby	Forktongue goby	Forktongue goby	Forktongue goby	Rainbow trout	Rainbow trout	Perry whelk	Perry whelk	Bastard halibut	Bastard halibut	Sakhalin surf clam	Japanese scallop	Sakhalin surf clam	Japanese scallop	Northern sea urchin	Northern sea urchin	Northern sea urchin	Northern sea urchin	
I-125, I- 131	I-125, I- 131	I-125, I- 131	I-125, I- 131	I-131	I-131	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54	Mn-54							

Common mussel <i>Mytilus edulis</i> Whole body Marine Purnlish hifurcate mussel <i>Snifer vireatus</i> Whole body Marine	Mytilus edulis Whole body Marine Spitter virgetus Whole body Marine	Whole body Marine Whole body Marine	Marine		Water Water	0.8	0.53	0.028 0.041	34.1 18.0	T1 T1
Abalone Haliotis discus Whole body	Haliotis discus Whole body	Whole body		Marine	Water			0.055	13	2
Abalone Haliotis discus Whole body	Haliotis discus Whole body	Whole body		Marine	Water			0.087	8	12
Abalone Haliotis discus Whole body	Haliotis discus Whole body	Whole body		Brakish	Water			0.069	10	12
Abalone Haliotis discus Whole body	Haliotis discus Whole body	Whole body		Brakish	Water			0.055	13	12
Japanese common goby Acanthogobius lavimanus Whole body	Acanthogobius lavimanus Whole body	Whole body		Marine	Water			0.0018	385	S
Bastard halibut Paralichthys olivaceus Whole body	Paralichthys olivaceus Whole body	Whole body		Marine	Water				13.2	2
Bastard halibut Paralichthys olivaceus Whole body	Paralichthys olivaceus Whole body	Whole body		Marine	Water				10.8	4
Sakhalin surf clam Pseudocardium Whole body sachalinense	Pseudocardium sachalinense	Whole body		Marine	Water		0.5		27	
Japanese scallop Mizuhopecten yessoensis Whole body	Mizuhopecten yessoensis Whole body	Whole body		Marine	Water				190	
Horned turban Turbo cornutus Whole body	Turbo cornutus Whole body	Whole body		Marine	Water				70	
Disk abalone Haliotis discus Whole body	Haliotis discus Whole body	Whole body		Marine	Water				280	
Japanese ivory shell Babylonia japonica Whole body	Babylonia japonica Whole body	Whole body		Marine	Water				180	
Ocellated octopus Octopus ocellatus Whole body	Octopus ocellatus Whole body	Whole body		Marine	Water				40	
Sakhalin surf clam Pseudocardium Whole body sachalinense	Pseudocardium sachalinense	Whole body		Marine	Food				100	
Japanese scallop Mizuhopecten yessoensis Whole body	Mizuhopecten yessoensis Whole body	Whole body		Marine	Food				160	
Horned turban Turbo cornutus Whole body	Turbo cornutus Whole body	Whole body		Marine	Food				40	
Disk abalone Haliotis discus Whole body	Haliotis discus Whole body	Whole body		Marine	Food				70	
Japanese ivory shell Babylonia japonica Whole body	Babylonia japonica Whole body	Whole body		Marine	Food				50	
Ocellated octopus Octopus ocellatus Whole body	Octopus ocellatus Whole body	Whole body		Marine	Food				10	
Black rockfish Sebastes schlegeli Muscle	Sebastes schlegeli Muscle	Muscle		Marine	Water	1.3668	0.5	0.0176	39	
Bastard halibut Paralichthys olivaceus Whole body	Paralichthys olivaceus Whole body	Whole body		Marine	Water	1.3789	0.5	0.024	29	
Black rockfish Sebastes schlegeli Muscle	Sebastes schlegeli Muscle	Muscle		Marine	Water	2.1613	0.3	0.0116	09	
Bastard halibut <i>Paralichthys olivaceus</i> Whole body	Paralichthys olivaceus Whole body	Whole body		Marine	Water	1.0895	0.6	0.0141	49	
Black rockfish Sebastes schlegeli Muscle	Sebastes schlegeli Muscle	Muscle		Marine	Food	0.5345	1.3	0.023	30	S
Bastard halibut Paralichthys olivaceus Whole body	Paralichthys olivaceus Whole body	Whole body		Marine	Food	4.0211	0.2	0.0211	33	S
Black rockfish Sebastes schlegeli Muscle	Sebastes schlegeli Muscle	Muscle		Marine	Food	2.6003	0.3	0.0681	10	S
Bastard halibut <i>Paralichthys olivaceus</i> Whole body	Paralichthys olivaceus Whole body	Whole body		Marine	Food	0.8771	0.8	0.0738	6	SS

Common orient claim	Meretrix lusoria	whole body	Marine	water		40./		100./	cl
ommon orient clam	Meretrix lusoria	Whole body	Marine	Water		39.3		121.2	I5
ommon orient clam	Meretrix lusoria	Soft tissue	Marine	Water		7.7		26.8	IS
common orient clam	Meretrix lusoria	Soft tissue	Marine	Water		5.1		25.1	15
Rainbow trout	Oncorhynchus mykiss	Wholebody, advanced fry	Freshwater	Water		3.5			K4
Rainbow trout	Oncorhynchus mykiss	Wholebody, advanced fry	Freshwater	Water		0.4			K4
Rainbow trout	Oncorhynchus mykiss	Wholebody, advanced fry	Freshwater	Water		2.7			K4
Short-necked clam	Tapes japonica	Whole body	Marine	Water	0.2022	3.4	0.012	57.8	$\mathbf{K7}$
Sea squirt	Halocynthia roretzi	whole body	Marine	water	1.03	0.673	0.03	23.105	I6
Black rockfish	Sebastes zonatusschlegeli Hilgendorf	Whole body	Marine	Water	2.7256	0.3	0.0010	693	9N
Horned turban	Turbo cornutus	Whole body	Marine	Water	2.0530	0.3	0.0060	116	N6
Horned turban	Turbo cornutus	Whole body	Marine	Water	2.1670	0.3	0.0110	63	N6
Japanese ivory shell	Babylonia japonica	Whole body	Marine	Water	1.6974	0.4	0.0125	55	N6
Japanese ivory shell	Babylonia japonica	Soft tissue	Marine	Water	2.7214	0.3	0.0100	69	N6
Ocellated octopus	Octopus ocellatus	Whole body	Marine	Water	3.6923	0.2	0.0268	26	9N
Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water	0.7941	0.9	0.0063	110	9N
Starry flounder	Platichthys stellatus	Whole body	Brakish	Water	1.465	0.5	0.0039	178	9N
Asian clam	Corbicula japonica	Whole body	Brakish	Water	0.8817	0.8	0.0098	71	9N
Asian clam	Corbicula japonica	Soft tissue	Brakish	Water	2.2786	0.3	0.0675	10	9N
Goldfish	Carassius auratus auratus	Whole body	Freshwater	Water	0.1720	4.0	0.0034	204	M1
Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water				44.7	M4
Bastard halibut	Paralichthys olivaceus	Whole body	Marine	Water				39.3	M4
Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water			0.0044	158	N6
Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water			0.0041	169	9N
Chestnut goby	Gymnogobius breunigii	Whole body	Brakish	Water			0.0051	136	9N
Asian clam	Corbicula japonica	Whole body	Brakish	Water				100	9N
Asian clam	Corbicula japonica	Whole body	Brakish	Water				90	9N
Asian clam	Corbicula japonica	Whole body	Brakish	Water				110	9N
Asian clam	Corbicula iaponica	Soft tissue	Brakish	Water				17	9N

r-85	Asian clam	Corbicula japonica	Soft tissue	Brakish	Water				15	N6
85	Asian clam	Corbicula japonica	Soft tissue	$\mathbf{Brakish}$	Water				11	N6
15m	Horned turban	Turbo cornutus	Whole body	Marine	Water				110	N3
)5m	Disk abalone	Haliotis discus	Whole body	Marine	Water				200	N3
15m	Japanese ivory shell	Babylonia japonica	Whole body	Marine	Water				130	N3
)5m	Ocellated octopus	Octopus ocellatus	Whole body	Marine	Water				09	N3
)5m	Horned turban	Turbo cornutus	Whole body	Marine	Food				30	N3
)5m	Disk abalone	Haliotis discus	Whole body	Marine	Food				40	N3
)5m	Japanese ivory shell	Babylonia japonica	Whole body	Marine	Food				40	N3
)5m	Ocellated octopus	Octopus ocellatus	Whole body	Marine	Food				10	N3
-65	Sakhalin surf clam	Pseudocardium sachalinense	Whole body	Marine	Water		0.8		30	N3
-65	Japanese scallop	Mizuhopecten yessoensis	Whole body	Marine	Water				50	N3
-65	Horned turban	Turbo cornutus	Whole body	Marine	Water				100	N3
-65	Disk abalone	Haliotis discus	Whole body	Marine	Water				120	N3
-65	Japanese ivory shell	Babylonia japonica	Whole body	Marine	Water				150	N3
-65	Ocellated octopus	Octopus ocellatus	Whole body	Marine	Water				09	N3
-65	Sakhalin surf clam	Pseudocardium sachalinense	Whole body	Marine	Food				30	N3
-65	Japanese scallop	Mizuhopecten yessoensis	Whole body	Marine	Food				50	N3
-65	Horned turban	Turbo cornutus	Whole body	Marine	Food				100	N3
-65	Disk abalone	Haliotis discus	Whole body	Marine	Food				250	N3
-65	Japanese ivory shell	Babylonia japonica	Whole body	Marine	Food				280	N3
-65	Ocellated octopus	Octopus ocellatus	Whole body	Marine	Food				50	N3
-65	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.348	2.0	0.027	25.7	N5
-65	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.336	2.1	0.027	25.7	N5
-65	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.539	1.3	0.026	26.7	N5
-65	Northern sea urchin	Strongylocentrotus nudus	Whole body	Marine	Food	0.219	3.2	0.029	23.9	N5
-65	Common mussel	Mytilus edulis	Whole body	Marine	Water			0.034	222.3	T1
-65	Purplish bifurcate mussel	Sptifer virgatus	Whole body	Marine	Water	2.44	0.28	0.033	2.8	T1
95	Japanese common goby	Acanthogobius lavimanus	Whole body	Marine	Water			0.0081	85	S3

Refe	ences list
Cod	· Details
H1	Hirano, S., Matsuba, M., and Koyanagi, S. (1983). Influences of stable lodine upon the concentration of radioactive lodine by marine organisms. <i>Radioisotopes</i> , 32, 353-358.
II	Ichii, T., and Mugiya, Y. (1983). Comparative aspects of calcium dynamics in calcified tissues in the goldfish Carassius auratus. Bulletin of the Japanese Society of Scientific Fisheries, 49, 1039-1044.
12	Ikuta, K., and Nakahara, M. (1986). Radiomanganese distribution to femal and male of <i>Haliotis discus</i> at the post-spawning stage. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 52, 1089-1094.
13	Ikuta, K., and Nakahara, M. (1986). Uptake, retention and excretion ⁵⁴ Mn by a perry whelk <i>Volutharpa ampullacea perryi. Bulletin of the Japanese Society of Scientific Fisheries</i> , 52, 1853-1859.
I4	Ishikawa, Y., Suzuki, Y., Kasamatsu, F., Nagaya, Y., Shinoda, Y., Nakamura, R., and Nakahara, M. (2003). Effects of salinity on bioaccumulation of orally administered ¹³⁷ Cs in juvenile Japanese sea bass, <i>Lateolabrax japonicus</i> —an experimental study through a single oral dose with RI tracer. Report of Marne Ecology Research Institute, 5, 27-34.
15	Ishikawa, M., Koyanagi, T., and Saiki, M. (1976). Studies on the chemical behaviour of ¹⁰⁶ Ru in sea water and its uptake by marine organisms-I. Accumulation and excretion of ¹⁰⁶ Ru by Clam. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 42, 287-297.
16	岩田仲弘 (1988). マボヤによる放射性核種の取り込みと排出. 電力中央研究所報告, U87038.
K1	金子泉, 池田弥生, 尾崎久雄. (1981). バフンウニにおける海水からのカルシウムの吸収と排出. <i>日本水産学会誌</i> , 47, 1425-1430.
K2	Kimura, K., and Ichikawa, R. (1972). Accumulation and retention of ingested cobalt-60 by the common goby. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 38, 1097-1103.
K3	Kimura, Y., and Honda, Y. (1977). Uptake and elimination of some radionuclides by eggs and fry of rainbow trout (I). Journal of Radiation Research, 18, 170-181.
K4	Kimura, Y., and Honda, Y. (1977). Uptake and elimination of some radionuclides by eggs and fry of rainbow trout (II). Journal of Radiation Research, 18, 182-193.
K5	木村雄一郎, 小川喜弘, 本田嘉秀, 桂山幸典. (1981). 海産二枚貝による有機コバルト錯体と無機イオン形コバルトの濃縮ならびに排出に関する研究. <i>近畿</i> <i>大学原子力研究所年親</i> , 18, 37-49.

K6	Kimura, K. (1984). Accumulation and retention of cesium-137 by the common goby. Bulletin of the Japanese Society of Scientific Fisheries, 50, 481-487.
К7	Kimura, K. (1986). Accumulation and retention of antimony-125 in the short-necked clam. Bulletin of the Japanese Society of Scientific Fisheries, 52, 531-537.
MI	三宅定明, 出雲義朗. (2003). 陸水系における ⁹⁰ Sr の放射生態に関する研究―キンギョ, Carassius auratus auratus, による飼育水中からの ⁸⁵ Sr のとりこみに ついて―. Radioisotopes, 52, 20-26.
M2	ご 三宅定明, 茂木美砂子, 大沢尚, 中澤清明, 緒方裕光, 出雲義朗, 中村文雄. (1994). 陸水系における ¹³⁷ Cs の放射生態に関する研究―キンギョ, Carassius auratus auratus, による飼育水中からの ¹³⁷ Cs の取込みについて―. Radioisotopes, 43, 673-678.
M3	 三宅定明, 茂木美砂子, 大沢尚, 中澤清明, 緒方裕光, 出雲義朗, 中村文雄. (1996). 陸水系における ¹³⁷Cs の放射生態に関する研究―キンギョ, Carassius auratus auratus, における餌料からの¹³⁷Cs の取込みについて―. Radioisotopes, 45, 360-368.
M4	・ 宮崎多恵子, 中原元和, 中村良一, 山本栄一, 平野茂樹, 渡部輝久. (2000). クローンヒラメを用いた RI 濃縮実験の試み. Radioisotopes, 49, 20-25.
NI	Nakahara, M., Hirano, S., Ishii, T., and Koyanagi, T. (1979). Accumulation and excretion of cobalt-60 taken up from seawater by marine fishes. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 45, 1423-1428.
N2	Nakahara, M., Koyanagi, T., Ueda, Y., and Shimizu, C. (1982). Accumulation of cobalt by cephalopods-I. Uptake and excretion of cobalt-60 taken up from seawater by Octopus vulgaris. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 48, 1739-1744.
N3	中原元和(1993). 海洋生物中の放射性元素濃縮と食物連鎖. 放医研環境セミナーシリーズ No. 20, 13-22.
N4	Nakamura, R., Nakahara, M., Suzuki, Y., and Ueda, T. (1982). Effects of chemical forms and intake pathways on the accumulation of radioactive cobalt by the abalone <i>Haliotis discus. Bulletin of the Japanese Society of Scientific Fisheries</i> , 48, 1639-1644.
N5	Nakamura, R., Nakahara, M., Suzuki, Y., and Ueda, T. (1986). Relative importance of food and water in the accumulation of radionuclides by sea urchin Strongylocentrotus nudus. Bulletin of the Japanese Society of Scientific Fisheries, 52, 703-710.
N6	中村良一,中原元和,石井紀明,松葉満江,渡部輝久,木村健一,鈴木 譲.(1999). ¹³⁷ Cs, ⁹⁰ Sr および ¹³ I の水圏における移行. 特別研究「環境におけ る放射性物質の動体と被ばく線量算定に関する調査研究」(平成 5 年度~平成 9 年度)最終報告書. NIRS-R-36. 26-52.
S1	Shimizu, M., Kajihara, T., Suyama, I., and Hiyama, Y. (1971). Uptake of ^{s8} Co by Mussel, <i>Mytilus edulis. Journal of Radiation Research</i> , 12, 17-28.
S2	Suzuki, Y., Nakahara, M., Nakamura, R. (1978). Accumulation of Cesium-137 by useful mollusca. Bulletin of the Japanese Society of Scientific Fisheries, 44, 325-329.

- 83 -

2 山中すみへ, 西村正雄、 永井充. (1983). マウス, ラットおよびコイにおける水銀化合物の代謝について とくに全身および臓器別の生物学的半減期と体内 分布からの検索. <i>日本衛生学雑誌</i> , 37, 871-879.	Y
Ⅰ 山中すみへ, 上田喜一,吉田多摩夫. (1974). 魚類における水銀の動向について (Hg Series No. 16). <i>日本衛生学雑誌</i> , 28, 582-587.	Υ
4 Ucda T., Suzuki, Y., Nakamura, R., and Nakahara, M. (1982). Accumulation of Co by bivalve Tridacna crocea. Bulletin of the Japanese Society of Scientific Fisheries, 48, 1293-1297.	Ú,
3 Ueda T., Suzuki, Y., Nakamura, R., and Nakahara, M. (1982). Accumulation of Co by several species of marine bivalves. Bulletin of the Japanese Society of Scientific Fisheries, 48, 993-997.	Ŭ
2 Ueda, T., Nakamura, R., and Suzuki, Y. (1976). Comparison of ^{115m} Cd accumulation from sediments and sea water by polychaete worms. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 42, 299-306.	Ū,
Ucda T., and Nakahara, M. (1983). Accumulation of Co by marine fish. Bulletin of the Japanese Society of Scientific Fisheries, 49, 651-654.	D
Tateda, Y., Hirano, S., and Koyanagi, T. (1985). Accumulation of iron-59 by black-fish Girella punctata from food organisms. Bulletin of the Japanese Society of Scientific Fisheries, 51, 2067-2072.	Ĥ
Tateda, Y., Nakahara, M., and Koayanagi, T. (1984). Accumulation of iron-59 in marine animals from different uptake route. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 50, 89-93.	Ľ
Tateda, Y., and Koayanagi, T. (1986). Accumulation of radionuclides by common mussel Mytilus edulis and purplish bifurcate mussel Septifer virgatus. Bulletin of the Japanese Society of Scientific Fisheries, 52, 2019-2026.	\mathbf{T}
Suzuki, Y., Nakamura, K., Nakamura, R., Nakahara, M., Ishii, T., Matsuba, M., and Nagaya, Y. (1992). Radioecological studies in the marine environment. <i>In</i> Proceedings of the International Conference on Radiation Effects and Protection. JAERI, 484-491.	SS
· Suzuki, Y., Nakahara, M., Nakamura, R., Ueda, T. (1982). Uptake and excretion of cobalt by sea cucumber Stichopus japonicus and prawn Penaeus japonicus. <i>Bulletin of the Japanese Society of Scientific Fisheries</i> , 48, 1495-1500.	$\mathbf{S}_{\mathbf{A}}$
Suzuki, Y., Nakahara, M., Nakamura, R. (1978). Accumulation and excretion of ⁹⁵ Zr and ⁹⁵ Nb by common goby (<i>Acanthogobius flavimanus</i>). Bulletin of the Japanese Society of Scientific Fisheries, 45, 1293-1298.	$\mathbf{S}_{\mathbf{S}}$

Type of crop	Species	Year	CR (FM/DM)	CR (DM/DM)	n	Ref
Leafy veg.	All, GM	2011	7.8E-4	1.1E-2	18	
Leafy veg.	All, GM	2012	2.4E-3	3.0E-2	24	
Leafy veg.	All, GM	2013	1.0E-3	1.4E-2	10	
Leafy veg.	All, GM	2014	7.9E-4	1.1E-2	10	
Leafy veg.	All, GM	2015	7.1E-4	9.5E-3	11	
Leafy veg.	All, GM	2016	4.8E-4	6.4E-3	10	
Leafy veg.	All, GM	2017	4.6E-4	6.1E-3	7	
Leafy veg.	All, GM	2018	5.6E-4	7.5E-3	8	
Leafy veg.	All, GM	2019	4.2E-4	5.6E-3	8	
Leafy veg.	All, GM	2020	8.7E-4	1.2E-2	8	
Leafy veg.	Cabbage	2011	1.8E-4	2.5E-3	3	K2
Leafy veg.	Cabbage	2011	1.9E-4	2.6E-3	3	F1
Leafy veg.	Cabbage	2011	5.7E-4	7.8E-3	3	S 7
Leafy veg.	Cabbage	2012	8.2E-4	1.1E-2	1	M2
Leafy veg.	Cabbage	2013	3.5E-4	4.8E-3	1	M3
Leafy veg.	Cabbage	2014	2.0E-4	2.8E-3	1	M4
Leafy veg.	Cabbage	2015	4.7E-4	6.4E-3	1	M5
Leafy veg.	Cabbage	2017	7.3E-4	1.0E-2	1	M7
Leafy veg.	Cabbage	2018	6.4E-4	8.7E-3	1	M8
Leafy veg.	Cabbage	2019	5.5E-4	7.5E-3	1	M9
Leafy veg.	Cabbage	2020	7.4E-4	1.0E-2	1	M10
Leafy veg.	Chinese cabbage	2011	7.2E-5	1.5E-3	3	K2
Leafy veg.	Chinese chives	2011	2.2E-4	3.0E-3	3	K2
Leafy veg.	Chinese chives	2014	1.1E-3	1.4E-2	1	M4
Leafy veg.	Chinese chives	2015	1.6E-4	2.1E-3	1	M5
Leafy veg.	Chinese chives	2016	3.8E-4	5.1E-3	1	M6
Leafy veg.	Chinese chives	2017	1.5E-4	2.0E-3	1	M7
Leafy veg.	Chinese chives	2018	9.6E-4	1.3E-2	1	M8
Leafy veg.	Chinese chives	2019	1.2E-4	1.6E-3	1	M9
Leafy veg.	Chinese chives	2020	3.3E-4	4.5E-3	1	M10
Leafy veg.	Komatsuna	2011	1.2E-3	2.1E-2	3	K2
Leafy veg.	Komatsuna	2011	2.5E-3	4.3E-2	3	S6
Leafy veg.	Komatsuna	2011	7.1E-4	1.2E-2	3	S6
Leafy veg.	Komatsuna	2011	1.3E-3	2.2E-2	3	S6
Leafy veg.	Komatsuna	2011	1.8E-3	3.1E-2	3	S6
Leafy veg.	Komatsuna	2011	2.2E-3	3.8E-2	3	S 7
Leafy veg.	Komatsuna	2012	7.3E-4	1.2E-2	-	S 1
Leafy veg.	Komatsuna	2013	1.0E-4	1.8E-3	-	S 1

Table S3 Soil to crop transfer factor of radiocaesium

Leafy veg.	Komatsuna	2012	3.5E-3	5.9E-2	1	A2
Leafy veg.	Komatsuna	2012	2.5E-3	4.2E-2	1	A2
Leafy veg.	Komatsuna	2012	4.1E-3	6.9E-2	1	A2
Leafy veg.	Komatsuna	2012	3.5E-3	6.0E-2	1	A2
Leafy veg.	Komatsuna	2012	2.7E-3	4.6E-2	1	A2
Leafy veg.	Komatsuna	2012	5.0E-3	8.5E-2	1	A2
Leafy veg.	Komatsuna	2020	3.1E-3	5.2E-2	1	M10
Leafy veg.	Lettuce	2011	2.1E-4	5.2E-3	3	K2
Leafy veg.	Lettuce	2011	2.0E-4	4.9E-3	3	F1
Leafy veg.	Mustard	2012	3.1E-3	2.7E-2	1	A2
Leafy veg.	Mustard	2012	3.0E-3	2.6E-2	1	A2
Leafy veg.	Mustard	2012	3.6E-3	3.1E-2	1	A2
Leafy veg.	Mustard	2012	4.0E-3	3.4E-2	1	A2
Leafy veg.	Mustard	2012	5.9E-3	5.1E-2	1	A2
Leafy veg.	Mustard	2012	5.0E-3	4.3E-2	1	A2
Leafy veg.	Shinobufuyuna	2011	1.3E-3		-	S3
Leafy veg.	Shinobufuyuna	2011	7.1E-3		-	S3
Leafy veg.	Shinobufuyuna	2012	3.5E-3		1	K1
Leafy veg.	Shinobufuyuna	2012	2.4E-3		1	K1
Leafy veg.	Spinach	2011	2.4E-3	3.1E-2	3	K2
Leafy veg.	Spinach	2011	1.9E-3	2.5E-2	3	S 7
Leafy veg.	Spinach	2012	3.3E-3	4.4E-2	1	M2
Leafy veg.	Spinach	2012	2.3E-3	3.0E-2	1	M2
Leafy veg.	Spinach	2012	2.5E-3	3.3E-2	1	M2
Leafy veg.	Spinach	2012	3.5E-3	4.5E-2	1	M2
Leafy veg.	Spinach	2013	5.5E-4	7.2E-3	1	M3
Leafy veg.	Spinach	2013	3.0E-3	3.9E-2	1	M3
Leafy veg.	Spinach	2013	8.9E-4	1.2E-2	1	M3
Leafy veg.	Spinach	2013	2.0E-3	2.7E-2	1	M3
Leafy veg.	Spinach	2013	7.6E-4	1.0E-2	1	M3
Leafy veg.	Spinach	2014	5.4E-4	7.1E-3	1	M4
Leafy veg.	Spinach	2014	3.0E-4	4.0E-3	1	M4
Leafy veg.	Spinach	2014	2.3E-3	3.0E-2	1	M4
Leafy veg.	Spinach	2014	7.5E-4	9.8E-3	1	M4
Leafy veg.	Spinach	2015	2.9E-4	3.9E-3	1	M5
Leafy veg.	Spinach	2015	1.1E-3	1.4E-2	1	M5
Leafy veg.	Spinach	2015	2.9E-3	3.8E-2	1	M5
Leafy veg.	Spinach	2015	1.1E-3	1.5E-2	1	M5
Leafy veg.	Spinach	2015	2.4E-3	3.2E-2	1	M5
Leafy veg.	Spinach	2016	3.0E-4	4.0E-3	1	M6

Leafy veg.	Spinach	2016	1.5E-3	2.0E-2	1	M6
Leafy veg.	Spinach	2016	3.7E-4	4.8E-3	1	M6
Leafy veg.	Spinach	2016	4.7E-4	6.2E-3	1	M6
Leafy veg.	Spinach	2016	4.5E-4	5.9E-3	1	M6
Leafy veg.	Spinach	2017	7.7E-4	1.0E-2	1	M7
Leafy veg.	Spinach	2017	8.0E-4	1.0E-2	1	M7
Leafy veg.	Spinach	2017	7.0E-4	9.3E-3	1	M7
Leafy veg.	Spinach	2018	1.1E-3	1.5E-2	1	M8
Leafy veg.	Spinach	2018	4.6E-4	6.0E-3	1	M8
Leafy veg.	Spinach	2018	4.5E-4	5.9E-3	1	M8
Leafy veg.	Spinach	2018	6.2E-4	8.1E-3	1	M8
Leafy veg.	Spinach	2019	4.9E-4	6.5E-3	1	M9
Leafy veg.	Spinach	2019	2.6E-4	3.5E-3	1	M9
Leafy veg.	Spinach	2019	6.5E-4	8.5E-3	1	M9
Leafy veg.	Spinach	2019	8.7E-4	1.1E-2	1	M9
Leafy veg.	Spinach	2020	9.0E-4	1.2E-2	1	M10
Leafy veg.	Spinach	2020	1.3E-3	1.7E-2	1	M10
Leafy veg.	Spinach	2020	9.1E-4	1.2E-2	1	M10
Leafy veg.	Water dropwort	2012	1.9E-2	2.9E-1	1	M2
Leafy veg.	Water dropwort	2012	9.9E-4	1.5E-2	1	M2
Leafy veg.	Water dropwort	2013	1.6E-2	2.5E-1	1	M3
Leafy veg.	Water dropwort	2013	2.3E-3	3.5E-2	1	M3
Leafy veg.	Water dropwort	2014	1.5E-2	2.3E-1	1	M4
Leafy veg.	Water dropwort	2014	2.9E-3	4.4E-2	1	M4
Leafy veg.	Water dropwort	2015	5.8E-3	8.8E-2	1	M5
Leafy veg.	Water dropwort	2015	1.4E-3	2.1E-2	1	M5
Leafy veg.	Water dropwort	2016	3.5E-3	5.3E-2	1	M6
Leafy veg.	Water dropwort	2016	9.3E-4	1.4E-2	1	M6
Leafy veg.	Water dropwort	2017	9.3E-4	1.4E-2	1	M7
Leafy veg.	Water dropwort	2018	7.1E-4	1.1E-2	1	M8
Leafy veg.	Water dropwort	2019	1.1E-3	1.6E-2	1	M9
Leafy veg.	Water dropwort	2020	1.3E-3	2.0E-2	1	M10
Leafy veg.	Welsh onion	2011	1.7E-3	2.1E-2	3	K2
Leafy veg.	Welsh onion	2012	2.0E-4	2.4E-3	1	M2
Leafy veg.	Welsh onion	2012	1.8E-4	2.2E-3	1	M2
Leafy veg.	Welsh onion	2013	5.0E-4	6.1E-3	1	M3
Leafy veg.	Welsh onion	2014	1.7E-4	2.1E-3	1	M4
Leafy veg.	Welsh onion	2014	2.3E-4	2.8E-3	1	M4
Leafy veg.	Welsh onion	2015	8.5E-5	1.0E-3	1	M5
Leafy veg.	Welsh onion	2015	1.8E-4	2.2E-3	1	M5
Leafy veg.	Welsh onion	2016	8.8E-5	1.1E-3	1	M6

Leafy veg.	Welsh onion	2016	1.5E-4	1.8E-3	1	M6
Leafy veg.	Welsh onion	2017	9.3E-5	1.1E-3	1	M7
Leafy veg.	Welsh onion	2018	1.7E-4	2.1E-3	1	M8
Leafy veg.	Welsh onion	2019	1.7E-4	2.1E-3	1	M9
Leafy veg.	Welsh onion	2020	3.1E-4	3.8E-3	1	M10
Non-leafy veg.	All, GM	2011	7.2E-4		9	
Non-leafy veg.	All, GM	2012	4.7E-4		3	
Non-leafy veg.	All, GM	2013	1.6E-4		3	
Non-leafy veg.	Asparagus	2011	2.2E-4	2.9E-3	-	F1
Non-leafy veg.	Asparagus	2011	4.1E-3	5.5E-2	-	F1
Non-leafy veg.	Asparagus	2011	1.7E-4	2.3E-3	-	F1
Non-leafy veg.	Asparagus	2011	6.5E-4	8.7E-3	-	F1
Non-leafy veg.	Asparagus	2011	8.0E-4	1.1E-2	-	S 7
Non-leafy veg.	Asparagus	2011	2.8E-4	3.8E-3	-	01
Non-leafy veg.	Asparagus	2012	1.3E-4	1.7E-3	-	01
Non-leafy veg.	Asparagus	2013	2.2E-4	3.0E-3	-	01
Non-leafy veg.	Broccoli	2011	1.5E-3	1.4E-2	3	K2
Non-leafy veg.	Broccoli	2011	6.7E-4	6.1E-3	3	F1
Non-leafy veg.	Broccoli	2011	2.3E-3	2.1E-2	3	S 7
Non-leafy veg.	Broccoli	2012	3.2E-4	2.9E-3	-	S 1
Non-leafy veg.	Broccoli	2013	1.6E-4	1.5E-3	-	S 1
Non-leafy veg.	Broccoli	2012	2.5E-3	2.3E-2	1	M2
Non-leafy veg.	Broccoli	2013	1.1E-4	9.7E-4	1	M3
Non-leafy veg.	Taranome	2013	1.1E-4	1.1E-3	3	S2
Non-leafy veg.	Taranome	2013	1.1E-4	1.1E-3	3	S2
Fruit veg.	All, GM	2011	9.3E-4	1.5E-2	26	
Fruit veg.	All, GM	2012	2.3E-4	4.1E-3	6	
Fruit veg.	All, GM	2013	1.7E-4	3.3E-3	6	
Fruit veg.	All, GM	2014	1.5E-4	2.7E-3	4	
Fruit veg.	All, GM	2015	1.9E-4	3.3E-3	3	
Fruit veg.	All, GM	2016	1.4E-4	2.6E-3	4	
Fruit veg.	All, GM	2017	1.4E-4	2.4E-3	3	
Fruit veg.	All, GM	2018	1.4E-4	2.1E-3	4	
Fruit veg.	All, GM	2019	1.8E-4	2.7E-3	5	
Fruit veg.	All, GM	2020	2.0E-4	3.6E-3	4	
Fruit veg.	Cucumber	2011	1.4E-4	3.0E-3	3	K2
Fruit veg.	Cucumber	2011	6.5E-4	1.4E-2	3	F1
Fruit veg.	Cucumber	2011	2.7E-3	6.0E-2	3	F1
Fruit veg.	Cucumber	2011	8.8E-3	1.9E-1	3	F1

Fruit veg.	Cucumber	2011	6.3E-4	1.4E-2	3	S 7
Fruit veg.	Cucumber	2012	9.4E-5	2.0E-3	-	S 1
Fruit veg.	Cucumber	2013	5.2E-5	1.1E-3	-	S 1
Fruit veg.	Cucumber	2012	2.1E-4	4.6E-3	1	M2
Fruit veg.	Cucumber	2012	5.0E-4	1.1E-2	1	M2
Fruit veg.	Cucumber	2013	2.2E-4	4.7E-3	1	M3
Fruit veg.	Cucumber	2013	4.2E-4	9.2E-3	1	M3
Fruit veg.	Cucumber	2013	9.7E-5	2.1E-3	1	M3
Fruit veg.	Cucumber	2014	3.6E-4	7.9E-3	1	M4
Fruit veg.	Cucumber	2014	1.8E-4	3.9E-3	1	M4
Fruit veg.	Cucumber	2015	2.2E-4	4.8E-3	1	M5
Fruit veg.	Cucumber	2016	1.5E-4	3.2E-3	1	M6
Fruit veg.	Cucumber	2016	1.3E-4	2.9E-3	1	M6
Fruit veg.	Cucumber	2017	1.8E-4	4.0E-3	1	M7
Fruit veg.	Cucumber	2018	2.2E-4	4.8E-3	1	M8
Fruit veg.	Cucumber	2018	7.0E-5	1.5E-3	1	M8
Fruit veg.	Cucumber	2019	3.1E-4	6.8E-3	1	M9
Fruit veg.	Cucumber	2019	4.4E-4	9.6E-3	1	M9
Fruit veg.	Cucumber	2020	5.5E-4	1.2E-2	1	M10
Fruit veg.	Cucumber	2020	3.9E-4	8.5E-3	1	M10
Fruit veg.	Eggplant	2011	1.6E-4	2.4E-3	3	K2
Fruit veg.	Eggplant	2011	8.6E-4	1.3E-2	3	F1
Fruit veg.	Eggplant	2011	4.2E-3	6.2E-2	3	F1
Fruit veg.	Eggplant	2011	3.3E-3	4.9E-2	3	F1
Fruit veg.	Eggplant	2011	8.7E-4	1.3E-2	3	S 7
Fruit veg.	Eggplant	2012	3.7E-4	5.5E-3	1	M2
Fruit veg.	Eggplant	2013	1.8E-4	2.7E-3	1	M3
Fruit veg.	Eggplant	2014	5.5E-5	8.1E-4	1	M4
Fruit veg.	Eggplant	2015	2.2E-4	3.2E-3	1	M5
Fruit veg.	Eggplant	2016	1.7E-4	2.5E-3	1	M6
Fruit veg.	Eggplant	2017	9.4E-5	1.4E-3	1	M7
Fruit veg.	Eggplant	2019	1.1E-4	1.6E-3	1	M9
Fruit veg.	Eggplant	2020	6.8E-5	9.9E-4	1	M10
Fruit veg.	Green pepper	2011	3.3E-4	4.9E-3	3	K2
Fruit veg.	Green pepper	2011	3.5E-4	5.3E-3	3	F1
Fruit veg.	Green pepper	2011	2.3E-3	3.5E-2	3	F1
Fruit veg.	Green pepper	2011	4.7E-3	7.1E-2	3	F1
Fruit veg.	Green pepper	2011	6.6E-4	1.0E-2	3	S 7
Fruit veg.	Green pepper	2012	2.1E-4	3.1E-3	1	M2
Fruit veg.	Green pepper	2013	3.0E-4	4.6E-3	1	M3
Fruit veg.	Green pepper	2014	1.4E-4	2.1E-3	1	M4

Fruit veg.	Green pepper	2015	1.5E-4	2.3E-3	1	M5
Fruit veg.	Green pepper	2016	1.3E-4	2.0E-3	1	M6
Fruit veg.	Green pepper	2017	1.7E-4	2.6E-3	1	M7
Fruit veg.	Green pepper	2018	8.0E-5	1.2E-3	1	M8
Fruit veg.	Green pepper	2019	7.3E-5	1.1E-3	1	M9
Fruit veg.	Green pepper	2020	1.1E-4	1.7E-3	1	M10
Fruit veg.	Pumpkin	2018	3.1E-4	2.3E-3	1	M8
Fruit veg.	Pumpkin	2019	1.8E-4	1.3E-3	1	M9
Fruit veg.	Strawberry	2012	1.9E-4	2.9E-3	3	K2
Fruit veg.	Tomato	2011	2.7E-4	4.5E-3	3	K2
Fruit veg.	Tomato	2011	6.3E-4	1.1E-2	1	E1
Fruit veg.	Tomato	2011	5.3E-4	8.8E-3	1	E1
Fruit veg.	Tomato	2011	1.0E-3	1.7E-2	1	E1
Fruit veg.	Tomato	2011	2.0E-3	3.3E-2	1	E1
Fruit veg.	Tomato	2011	3.1E-4	5.2E-3	1	E1
Fruit veg.	Tomato	2011	8.4E-4	1.4E-2	3	F1
Fruit veg.	Tomato	2011	2.9E-3	4.8E-2	3	F1
Fruit veg.	Tomato	2011	4.9E-3	8.1E-2	3	F1
Fruit veg.	Cherry tomato	2011	1.4E-4	1.6E-3	3	K2
Fruit veg.	Zucchini	2011	8.2E-4	3.4E-3	3	S 7
Leguminous veg.	All, GM	2011	3.9E-2	4.9E-2	13	
Leguminous veg.	All, GM	2012	7.7E-3	1.1E-2	16	
Leguminous veg.	All, GM	2013	5.2E-3	6.9E-3	22	
Leguminous veg.	All, GM	2014	2.8E-3	3.1E-3	4	
Leguminous veg.	All, GM	2015	2.9E-3	5.0E-3	6	
Leguminous veg.	All, GM	2016	8.7E-4	1.8E-3	4	
Leguminous veg.	All, GM	2017	1.0E-3	2.6E-3	6	
Leguminous veg.	All, GM	2018	8.8E-4	1.0E-3	5	
Leguminous veg.	All, GM	2019	1.6E-3	4.1E-3	3	
Leguminous veg.	All, GM	2020	1.7E-3	3.2E-3	5	
Leguminous veg.	Common bean	2011	1.0E-3	1.2E-3	3	K2
Leguminous veg.	Common bean	2018	6.3E-5	7.5E-5	1	M8
Leguminous veg.	Common bean, young	2012	3.6E-4	4.6E-3	1	M2
Leguminous veg.	Common bean, young	2013	4.8E-4	6.1E-3	1	M3
Leguminous veg.	Common bean, young	2016	2.1E-4	2.6E-3	1	M6
Leguminous veg.	Common bean, young	2017	1.3E-4	1.6E-3	1	M7
Leguminous veg.	Common bean, young	2019	5.6E-5	7.2E-4	1	M9
Leguminous veg.	Common bean, young	2020	1.1E-3	1.4E-2	1	M10
Leguminous veg.	Field peas, young	2015	3.7E-4	4.7E-3	1	M5
Leguminous veg.	Field peas, young	2017	3.9E-4	4.9E-3	1	M7

Leguminous veg.	Soybean (Edamame)	2011	3.5E-3	1.3E-2	3	K2
Leguminous veg.	Soybean (Edamame)	2012	4.6E-3	1.6E-2	-	S 1
Leguminous veg.	Soybean (Edamame)	2013	2.9E-3	1.0E-2	-	S 1
Leguminous veg.	Soybean	2011	1.7E-1	1.9E-1	1	A1
Leguminous veg.	Soybean	2011	1.9E-1	2.1E-1	1	A1
Leguminous veg.	Soybean	2011	1.1E-1	1.2E-1	1	A1
Leguminous veg.	Soybean	2011	9.9E-2	1.1E-1	1	A1
Leguminous veg.	Soybean	2011	1.2E-1	1.4E-1	1	A1
Leguminous veg.	Soybean	2011	5.1E-2	5.8E-2	1	A1
Leguminous veg.	Soybean	2011	4.3E-3	4.9E-3	1	A1
Leguminous veg.	Soybean	2011	8.9E-3	1.0E-2	1	A1
Leguminous veg.	Soybean	2011	7.7E-2	8.8E-2	1	A1
Leguminous veg.	Soybean	2011	2.4E-1	2.8E-1	1	A1
Leguminous veg.	Soybean	2011	9.2E-2	1.1E-1	1	A1
Leguminous veg.	Soybean	2012	2.0E-2	2.2E-2	1	Y3
Leguminous veg.	Soybean	2012	1.0E-2	1.2E-2	1	Y3
Leguminous veg.	Soybean	2012	1.7E-2	2.0E-2	1	Y3
Leguminous veg.	Soybean	2012	1.5E-2	1.7E-2	1	Y3
Leguminous veg.	Soybean	2012	3.5E-3	4.0E-3	1	Y3
Leguminous veg.	Soybean	2012	1.1E-2	1.3E-2	1	Y3
Leguminous veg.	Soybean	2013	2.2E-2	2.5E-2	1	T1
Leguminous veg.	Soybean	2013	7.9E-3	9.1E-3	1	T1
Leguminous veg.	Soybean	2013	6.2E-3	7.0E-3	1	T1
Leguminous veg.	Soybean	2013	2.9E-3	3.3E-3	1	T1
Leguminous veg.	Soybean	2013	1.5E-3	1.7E-3	1	T1
Leguminous veg.	Soybean	2013	4.3E-3	5.0E-3	1	T2
Leguminous veg.	Soybean	2013	5.3E-3	6.0E-3	1	T2
Leguminous veg.	Soybean	2013	9.7E-3	1.1E-2	1	T2
Leguminous veg.	Soybean	2013	1.2E-2	1.3E-2	1	T2
Leguminous veg.	Soybean	2013	1.4E-2	1.6E-2	1	T2
Leguminous veg.	Soybean	2013	1.4E-2	1.6E-2	1	T2
Leguminous veg.	Soybean	2013	2.4E-2	2.7E-2	1	T2
Leguminous veg.	Soybean	2012	2.3E-3	2.7E-3	1	M2
Leguminous veg.	Soybean	2012	2.0E-3	2.2E-3	1	M2
Leguminous veg.	Soybean	2012	2.3E-2	2.7E-2	1	M2
Leguminous veg.	Soybean	2012	8.3E-3	9.5E-3	1	M2
Leguminous veg.	Soybean	2012	1.1E-2	1.2E-2	1	M2
Leguminous veg.	Soybean	2012	2.5E-2	2.8E-2	1	M2
Leguminous veg.	Soybean	2012	1.2E-2	1.4E-2	1	M2
Leguminous veg.	Soybean	2012	1.7E-2	2.0E-2	1	M2
Leguminous veg.	Soybean	2013	2.4E-3	2.7E-3	1	M3

Leguminous veg.	Soybean	2013	1.3E-3	1.5E-3	1	M3
Leguminous veg.	Soybean	2013	8.3E-3	9.5E-3	1	M3
Leguminous veg.	Soybean	2013	5.0E-3	5.7E-3	1	M3
Leguminous veg.	Soybean	2013	6.8E-3	7.8E-3	1	M3
Leguminous veg.	Soybean	2013	1.7E-2	1.9E-2	1	M3
Leguminous veg.	Soybean	2013	1.8E-3	2.1E-3	1	M3
Leguminous veg.	Soybean	2013	2.4E-3	2.7E-3	1	M3
Leguminous veg.	Soybean	2014	1.9E-3	2.2E-3	1	M4
Leguminous veg.	Soybean	2014	5.3E-4	6.1E-4	1	M4
Leguminous veg.	Soybean	2014	9.1E-3	1.0E-2	1	M4
Leguminous veg.	Soybean	2014	6.2E-3	7.1E-3	1	M4
Leguminous veg.	Soybean	2015	3.5E-3	4.0E-3	1	M5
Leguminous veg.	Soybean	2015	2.7E-3	3.1E-3	1	M5
Leguminous veg.	Soybean	2015	2.9E-3	3.3E-3	1	M5
Leguminous veg.	Soybean	2015	6.0E-3	6.8E-3	1	M5
Leguminous veg.	Soybean	2015	1.0E-2	1.2E-2	1	M5
Leguminous veg.	Soybean	2016	3.1E-4	3.6E-4	1	M6
Leguminous veg.	Soybean	2016	8.8E-4	1.0E-3	1	M6
Leguminous veg.	Soybean	2016	1.0E-2	1.1E-2	1	M6
Leguminous veg.	Soybean	2017	9.2E-4	1.1E-3	1	M7
Leguminous veg.	Soybean	2017	2.5E-3	2.9E-3	1	M7
Leguminous veg.	Soybean	2017	1.8E-3	2.0E-3	1	M7
Leguminous veg.	Soybean	2017	5.0E-3	5.7E-3	1	M7
Leguminous veg.	Soybean	2018	7.8E-4	8.9E-4	1	M8
Leguminous veg.	Soybean	2018	3.3E-3	3.8E-3	1	M8
Leguminous veg.	Soybean	2018	5.7E-4	6.5E-4	1	M8
Leguminous veg.	Soybean	2018	5.7E-3	6.5E-3	1	M8
Leguminous veg.	Soybean	2019	5.7E-3	6.5E-3	1	M9
Leguminous veg.	Soybean	2019	1.3E-2	1.5E-2	1	M9
Leguminous veg.	Soybean	2020	1.2E-3	1.4E-3	1	M10
Leguminous veg.	Soybean	2020	2.2E-3	2.6E-3	1	M10
Leguminous veg.	Soybean	2020	1.1E-3	1.2E-3	1	M10
Leguminous veg.	Soybean	2020	4.8E-3	5.5E-3	1	M10
Root crops	All. GM	2011	6.1E-4	8.1E-3	3	
Root crops	All. GM	2012	1.6E-3	2.4E-2	18	
Root crons	All, GM	2012	1.6E-4	3.0E-3	3	
Root crons	All, GM	2014	1.0E-4	1.8E-3	3	
Root crops	All GM	2015	8.9E-4	1.6E-5	2	
Root crops	All GM	2015	1 8F-4	2 7F-3	2	
Root crops	All, GM	2017	2.0E-4	2.9E-3	3	
	,				-	

Root crops	All, GM	2018	3.5E-4	5.3E-3	3	
Root crops	All, GM	2019	3.4E-4	5.3E-3	4	
Root crops	All	2020	1.3E-4	2.5E-3	1	
Root crops	Burdock	2012	5.4E-4	3.0E-3	3	S8
Root crops	Carrot	2011	7.7E-4	7.3E-3	3	K2
Root crops	Carrot	2012	4.1E-4	3.9E-3	3	S8
Root crops	Carrot	2015	5.1E-4	4.8E-3	1	M5
Root crops	Carrot	2016	3.3E-4	3.1E-3	1	M6
Root crops	Carrot	2017	1.3E-4	1.2E-3	1	M7
Root crops	Carrot	2018	5.7E-4	5.4E-3	1	M8
Root crops	Carrot	2019	1.6E-3	1.5E-2	1	M9
Root crops	Japanese radish	2011	2.0E-3	3.6E-2	3	K2
Root crops	Japanese radish	2012	1.8E-4	3.3E-3	3	S8
Root crops	Japanese radish	2012	1.7E-3	3.1E-2	-	A2
Root crops	Japanese radish	2012	3.9E-3	7.1E-2	-	A2
Root crops	Japanese radish	2012	3.9E-3	7.1E-2	-	A2
Root crops	Japanese radish	2012	3.5E-3	6.4E-2	-	A2
Root crops	Japanese radish	2012	4.2E-3	7.8E-2	-	A2
Root crops	Japanese radish	2012	6.1E-3	1.1E-1	-	A2
Root crops	Japanese radish	2012	9.6E-4	1.8E-2	1	M2
Root crops	Japanese radish	2012	1.1E-4	2.0E-3	1	M2
Root crops	Japanese radish	2013	2.0E-5	3.7E-4	1	M3
Root crops	Japanese radish	2013	2.0E-3	3.6E-2	1	M3
Root crops	Japanese radish	2013	1.1E-4	2.0E-3	1	M3
Root crops	Japanese radish	2014	1.3E-5	2.4E-4	1	M4
Root crops	Japanese radish	2014	7.9E-4	1.5E-2	1	M4
Root crops	Japanese radish	2014	9.7E-5	1.8E-3	1	M4
Root crops	Japanese radish	2015	1.3E-3	2.4E-2	1	M5
Root crops	Japanese radish	2016	2.3E-5	4.3E-4	1	M6
Root crops	Japanese radish	2016	7.7E-4	1.4E-2	1	M6
Root crops	Japanese radish	2017	9.6E-5	1.8E-3	1	M7
Root crops	Japanese radish	2017	6.3E-4	1.2E-2	1	M7
Root crops	Japanese radish	2018	1.2E-3	2.2E-2	1	M8
Root crops	Japanese radish	2018	6.7E-5	1.2E-3	1	M8
Root crops	Japanese radish	2019	5.4E-5	1.0E-3	1	M9
Root crops	Japanese radish	2019	1.5E-3	2.7E-2	1	M9
Root crops	Japanese radish	2019	9.9E-5	1.8E-3	1	M9
Root crops	Japanese radish	2020	1.3E-4	2.5E-3	1	M10
Root crops	Turnip	2011	1.5E-4	2.0E-3	3	K2
Root crops	Turnip	2012	8.8E-4	1.1E-2	3	S8
Root crops	Turnip	2012	2.2E-3	2.9E-2	-	A2

Root crops	Turnip	2012	4.4E-3	5.7E-2	-	A2
Root crops	Turnip	2012	1.8E-3	2.3E-2	-	A2
Root crops	Turnip	2012	2.6E-3	3.4E-2	-	A2
Root crops	Turnip	2012	4.9E-3	6.3E-2	-	A2
Root crops	Turnip	2012	4.3E-3	5.6E-2	-	A2
Tubers	All, GM	2011	8.5E-4	9.7E-3	7	
Tubers	All, GM	2012	1.5E-3	6.2E-3	4	
Tubers	All	2013	3.6E-3	1.1E - 2	1	
Tubers	All, GM	2015	4.1E-3	2.0E-2	4	
Tubers	All	2020	6.3E-4	3.1E-3	1	
Tubers	Konjac	2011	1.7E-3	4.5E-2	3	H2
Tubers	Konjac	2011	1.0E-3	2.6E-2	3	H2
Tubers	Potato	2011	6.9E-4	3.4E-3	3	K2
Tubers	Potato	2011	1.9E-3	9.6E-3	3	S 7
Tubers	Potato	2015	3.2E-3	1.6E-2	-	N2
Tubers	Potato	2015	2.8E-3	1.4E-2	-	N2
Tubers	Potato	2015	5.9E-3	2.9E-2	-	N2
Tubers	Potato	2015	5.4E-3	2.7E-2	-	N2
Tubers	Potato	2020	6.3E-4	3.1E-3	1	M10
Tubers	Sweet potato	2011	5.4E-3	1.6E-2	3	K2
Tubers	Sweet potato	2012	8.7E-4	2.6E-3	3	S 8
Tubers	Sweet potato	2012	2.8E-3	8.3E-3	-	S 1
Tubers	Sweet potato	2013	3.6E-3	1.1E-2	-	S 1
Tubers	Taro	2011	2.2E-4	1.4E-3	3	K2
Tubers	Taro	2012	6.8E-4	4.2E-3	3	S8
Tubers	Yacon	2011	1.2E-4		3	K2
Tubers	Yamanoimo	2012	2.8E-3	1.6E-2	3	S 8
Oil seeds						
Seeds	Sunflower	2011	6.6E-3	6.8E-3	-	H-1
Seeds	Sunflower	2011	5.0E-3	5.1E-3	-	H-1
Seeds	Sunflower	2011	1.4E-2	1.4E-2	-	H-1
Seeds	Sunflower	2011	1.8E-2	1.8E-2	-	H-1
Seeds	Sunflower	2011	3.1E-3	3.2E-3	-	H-1
Seeds	Sunflower	2011	3.5E-3	3.6E-3	-	H-1
Seeds	Sunflower	2011	3.3E-3	3.4E-3	-	H-1
Seeds	Sunflower	2011	3.4E-3	3.5E-3	-	H-1
Seeds	Sunflower	2011	2.7E-3	2.8E-3	-	H-1
Seeds	Rapeseed	2011	5.9E-2		-	H3
Seeds	Rapeseed	2011	3.7E-1		-	H3

Seeds	Rapeseed	2011	4.0E-1		-	H3
Seeds	Rapeseed	2011	4.1E-1		-	H3
Seeds	Rapeseed	2011	6.9E-2		-	H3
Other gains						
Other gains	Buckwheat	2012	1.1E-2	1.2E-2	1	M2
Other gains	Buckwheat	2012	1.4E-2	1.7E-2	1	M2
Other gains	Buckwheat	2013	3.6E-3	4.1E-3	1	M3
Other gains	Buckwheat	2014	4.1E-3	4.7E-3	1	M4
Other gains	Buckwheat	2015	2.0E-2	2.3E-2	1	M5
Other gains	Buckwheat	2016	3.3E-3	3.8E-3	1	M6
Other gains	Buckwheat	2016	8.3E-3	9.6E-3	1	M6
Other gains	Buckwheat	2017	1.6E-2	1.8E-2	1	M7
Other gains	Buckwheat	2018	1.9E-2	2.2E-2	1	M8
Other gains	Buckwheat	2019	5.0E-3	5.8E-3	1	M9
Other gains	Buckwheat	2020	6.8E-3	7.9E-3	1	M10
Other gains	Sweet corn	2011	4.3E-4	1.9E-3	3	K2
Other gains	Sorgham	2014		2.4E-3	3	S5
Fodder	All, GM	2012	2.5E-2		10	
Fodder	All, GM	2013	2.1E-2		10	
Fodder	All, GM	2014	1.5E-2		10	
Fodder	All, GM	2015	2.1E-2		10	
Fodder	All, GM	2016	1.7E-2		9	
Fodder	All, GM	2017	2.3E-2		9	
Fodder	All, GM	2018	1.9E-2		9	
Fodder	All, GM	2019	1.2E-2		8	
Fodder	All, GM	2020	1.8E-2		8	
Fodder	Pasture	2012	2.5E-3	1.3E-2	1	M2
Fodder	Pasture	2012	9.5E-2	4.8E-1	1	M2
Fodder	Pasture	2012	4.3E-2	2.2E-1	1	M2
Fodder	Pasture	2012	4.2E-2	2.1E-1	1	M2
Fodder	Pasture	2012	3.4E-2	1.7E-1	1	M2
Fodder	Pasture	2012	1.3E-2	6.5E-2	1	M2
Fodder	Pasture	2012	6.4E-3	3.2E-2	1	M2
Fodder	Pasture	2012	1.1E-2	5.5E-2	1	M2
Fodder	Pasture	2012	1.2E-1	5.8E-1	1	M2
Fodder	Pasture	2012	5.1E-2	2.6E-1	1	M2
Fodder	Pasture	2013	3.2E-3	1.6E-2	1	M3
Fodder	Pasture	2013	6.4E-2	3.2E-1	1	M3
Fodder	Pasture	2013	5.4E-2	2.7E-1	1	M3

Fodder	Pasture	2013	1.3E-2	6.5E-2	1	M3
Fodder	Pasture	2013	3.6E-2	1.8E-1	1	M3
Fodder	Pasture	2013	2.3E-2	1.2E-1	1	M3
Fodder	Pasture	2013	7.3E-2	3.6E-1	1	M3
Fodder	Pasture	2013	2.0E-3	1.0E-2	1	M3
Fodder	Pasture	2013	5.8E-3	2.9E-2	1	M3
Fodder	Pasture	2013	1.8E-1	8.9E-1	1	M3
Fodder	Pasture	2014	4.0E-4	2.0E-3	1	M4
Fodder	Pasture	2014	4.5E-2	2.3E-1	1	M4
Fodder	Pasture	2014	6.9E-3	3.5E-2	1	M4
Fodder	Pasture	2014	6.1E-2	3.0E-1	1	M4
Fodder	Pasture	2014	8.3E-3	4.2E-2	1	M4
Fodder	Pasture	2014	1.0E-2	5.1E-2	1	M4
Fodder	Pasture	2014	3.7E-2	1.9E-1	1	M4
Fodder	Pasture	2014	1.4E-3	6.9E-3	1	M4
Fodder	Pasture	2014	1.8E-1	8.8E-1	1	M4
Fodder	Pasture	2014	1.2E-1	6.0E-1	1	M4
Fodder	Pasture	2015	3.7E-2	1.8E-1	1	M5
Fodder	Pasture	2015	1.4E-1	7.1E-1	1	M5
Fodder	Pasture	2015	1.2E-2	5.8E-2	1	M5
Fodder	Pasture	2015	1.0E-2	5.1E-2	1	M5
Fodder	Pasture	2015	9.7E-3	4.8E-2	1	M5
Fodder	Pasture	2015	2.4E-2	1.2E-1	1	M5
Fodder	Pasture	2015	8.3E-4	4.1E-3	1	M5
Fodder	Pasture	2015	7.0E-1	3.5E+0	1	M5
Fodder	Pasture	2015	6.3E-2	3.1E-1	1	M5
Fodder	Pasture	2016	1.8E-2	9.1E-2	1	M6
Fodder	Pasture	2016	2.5E-2	1.2E-1	1	M6
Fodder	Pasture	2016	2.2E-2	1.1E-1	1	M6
Fodder	Pasture	2016	2.2E-2	1.1E-1	1	M6
Fodder	Pasture	2016	1.3E-2	6.6E-2	1	M6
Fodder	Pasture	2016	1.1E-2	5.7E-2	1	M6
Fodder	Pasture	2016	8.6E-4	4.3E-3	1	M6
Fodder	Pasture	2016	1.4E-1	6.9E-1	1	M6
Fodder	Pasture	2016	3.2E-2	1.6E-1	1	M6
Fodder	Pasture	2017	2.3E-2	1.2E-1	1	M7
Fodder	Pasture	2017	5.2E-2	2.6E-1	1	M7
Fodder	Pasture	2017	1.1E-2	5.6E-2	1	M7
Fodder	Pasture	2017	2.0E-2	1.0E-1	1	M7
Fodder	Pasture	2017	2.9E-2	1.4E-1	1	M7
Fodder	Pasture	2017	1.2E-3	6.2E-3	1	M7

Fodder	Pasture	2017	1.1E-1	5.3E-1	1	M7
Fodder	Pasture	2017	6.0E-2	3.0E-1	1	M7
Fodder	Pasture	2017	3.4E-2	1.7E-1	1	M7
Fodder	Pasture	2018	2.2E-3	1.1E-2	1	M8
Fodder	Pasture	2018	3.9E-2	1.9E-1	1	M8
Fodder	Pasture	2018	1.8E-2	8.9E-2	1	M8
Fodder	Pasture	2018	3.4E-2	1.7E-1	1	M8
Fodder	Pasture	2018	3.0E-2	1.5E-1	1	M8
Fodder	Pasture	2018	1.4E-3	6.9E-3	1	M8
Fodder	Pasture	2018	1.2E-1	6.0E-1	1	M8
Fodder	Pasture	2018	3.2E-2	1.6E-1	1	M8
Fodder	Pasture	2018	4.7E-2	2.4E-1	1	M8
Fodder	Pasture	2019	9.0E-3	4.5E-2	1	M9
Fodder	Pasture	2019	2.4E-2	1.2E-1	1	M9
Fodder	Pasture	2019	8.4E-3	4.2E-2	1	M9
Fodder	Pasture	2019	4.8E-3	2.4E-2	1	M9
Fodder	Pasture	2019	1.8E-3	8.9E-3	1	M9
Fodder	Pasture	2019	2.2E-2	1.1E-1	1	M9
Fodder	Pasture	2019	2.6E-2	1.3E-1	1	M9
Fodder	Pasture	2019	5.1E-2	2.6E-1	1	M9
Fodder	Pasture	2020	2.5E-2	1.2E-1	1	M10
Fodder	Pasture	2020	4.1E-2	2.1E-1	1	M10
Fodder	Pasture	2020	1.4E-2	6.9E-2	1	M10
Fodder	Pasture	2020	2.1E-2	1.1E-1	1	M10
Fodder	Pasture	2020	1.1E-3	5.4E-3	1	M10
Fodder	Pasture	2020	4.3E-2	2.1E-1	1	M10
Fodder	Pasture	2020	2.2E-2	1.1E-1	1	M10
Fodder	Pasture	2020	3.5E-2	1.7E-1	1	M10
Fodder	Corn	2015	2.5E-3	1.2E-2	1	M5
Fodder	Corn	2014	2.2E-3	1.1E-2	1	N1
Fodder	Italian rye-grass	2014	6.7E-3	3.3E-2	1	S4
Fodder	Orchard grass	2015	3.6E-3	1.8E-2	1	M1
Fodder	Orchard grass	2015	3.4E-3	1.7E-2	1	M1
Fodder	Orchard grass	2015	2.7E-3	1.3E-2	1	M1
Fodder	Orchard grass	2015	2.9E-3	1.4E-2	1	M1
Fodder	Orchard grass	2015	6.8E-3	3.4E-2	1	M1
Fodder	Orchard grass	2015	3.6E-3	1.8E-2	1	M1
Fodder	Orchard grass	2015	1.6E-2	8.1E-2	1	M1
Fodder	Sudangrass	2015	3.8E-3	1.9E-2	1	Y1
Fodder	Sudangrass	2015	5.7E-3	2.9E-2	1	Y1
Fodder	Corn	2015	2.2E-3	1.1E-2	1	Y2

Non-edible						
Non-edible	Welsh onion	2011	2.9E-3		3	K2
Non-edible	Cabbage	2011	2.5E-4		3	K2
Non-edible	Chinese cabbage	2011	1.1E-3		3	K2
Non-edible	Lettuce	2011	1.4E-3		3	K2
Non-edible	Broccoli	2011	1.6E-3		3	K2
Non-edible	Cucumber	2011	3.9E-3		3	K2
Non-edible	Tomato	2011	3.4E-3		3	K2
Non-edible	Cherry tomato	2011	2.9E-3		3	K2
Non-edible	Eggplant	2011	6.5E-3		3	K2
Non-edible	Green pepper	2011	6.1E-3		3	K2
Non-edible	Strawberry	2011	2.4E-3		3	K2
Non-edible	Field bean	2011	1.6E-2		3	K2
Non-edible	Soybean(Edamame)	2011	4.2E-3		3	K2
Non-edible	Japanese radish	2011	3.6E-3		3	K2
Non-edible	Turnip	2011	5.1E-4		3	K2
Non-edible	Carrot	2011	4.8E-3		3	K2
Non-edible	Sweet corn	2011	2.7E-3		3	K2
Non-edible	Potato	2011	1.0E-2		3	K2
Non-edible	Sweet potato	2011	5.4E-3		3	K2
Non-edible	Taro	2011	1.9E-3		3	K2
Non-edible	Yacon	2011	2.2E-4		3	K2
Non-edible	Rape, leaves and stems	2011	1.0E-1		-	H3
Non-edible	Rape, leaves and stems	2011	4.4E-1		-	H3
Non-edible	Rape, leaves and stems	2011	1.7E-1		-	H3
Non-edible	Rape, leaves and stems	2011	7.8E-1		-	H3
Non-edible	Rape, leaves and stems	2011	3.0E-2		-	H3
Non-edible	Asparagus October	2011	4.3E-3		3	F1
Non-edible	Asparagus October	2011	3.3E-3		3	F1
Non-edible	Asparagus October	2011	5.6E-3		3	F1
Non-edible	Sorgham	2014		6.5E-3	3	S5
Non-edible	Sorgham	2014		5.1E-3	3	S5

References list

Code	Details
A1	Arai 2011 (https://www.pref.fukushima.lg.jp/uploaded/attachment/453446.pdf)
A2	Aung, H. P., Djedidi, S., Oo, A. Z., Aye, Y. S., Yokoyama, T., Suzuki, S., Sekimoto, H. and Bellingrath-Kimura, S. D. (2015). Growth and ¹³⁷ Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan. <i>Science of the Total Environment</i> , <i>521</i> , 261-269.
E1	Endo, R., Kadokura, H., Tanaka, K., Ubukata, S., Tsubura, H., and Ozaki, Y. (2013). Analysis of factors involved in absorption of radioactive caesium for processing tomatoes. <i>Radioisotopes (Tokyo)</i> , <i>62</i> (5), 275-280.
F1	Fukushima prefecture 2014, Guidelines for decontamination and technical measures for radioactive cesium in crops, No.3 (https://www.pref.fukushima.lg.jp/uploaded/attachment/61508.pdf)
H1	Hirayama 2011a (https://www.pref.fukushima.lg.jp/uploaded/attachment/453447.pdf)
H2	Hirayama 2011b (https://www.pref.fukushima.lg.jp/uploaded/attachment/453449.pdf)
Н3	Hirayama 2011c (https://www.pref.fukushima.lg.jp/uploaded/attachment/453448.pdf)
K1	Kanayama, Y., Omura, M., Goryo, T., Shigeta, T., Shibuya, T., and Nakai, Y. (2018). Radiocesium distribution in soil and Brassica napus grown in contaminated soils. <i>The Horticulture Journal</i> , 87(2), 250-257.
K2	Kobayashi 2013 (https://www.pref.fukushima.lg.jp/uploaded/attachment/254096.pdf)
M1	Matsuki 2015 (https://www.pref.fukushima.lg.jp/uploaded/attachment/456173.pdf)
M2	農林水産省関係放射能調查研究年報 H24
M3	(http://www.library-archive.maff.go.jp/Contents/200440857) 農林水産省関係放射能調査研究年報 H25
M4	(http://www.library-archive.maff.go.jp/Contents/200440865) 農林水産省関係放射能調査研究年報 H26
M5	(http://www.library-archive.maff.go.jp/Contents/200486777) 農林水産省関係放射能調査研究年報 H27
M6	(http://www.library-archive.maff.go.jp/Contents/200506780) 農林水産省関係放射能調査研究年報 H28
M7	(http://www.library-archive.maff.go.jp/Contents/200512796) 農林水産省関係放射能調査研究年報 H29
	(http://www.library-archive.maff.go.jp/Contents/200518652)
M8	農林水產省関係放射能調查研究年報 H30 (http://www.library-archive.maff.go.jp/Contents/200523314)
M9	農林水産省関係放射能調查研究年報 R1 (http://www.library-archive.maff.go.jp/Contents/200537298)
M10	農林水産省関係放射能調查研究年報 R2 (http://www.library-archive.maff.go.jp/Contents/200544369)
N1	Nemoto 2014 (https://www.pref.fukushima.lg.jp/uploaded/attachment/454896.pdf)
N2	Nemoto 2015 (https://www.pref.fukushima.lg.jp/uploaded/attachment/456177.pdf)
01	Ono 2013 (https://www.pref.fukushima.lg.jp/uploaded/attachment/453916.pdf)
S 1	Seiichi Saito 2013a (https://www.pref.fukushima.lg.jp/uploaded/attachment/453923.pdf)

- S2 SeiichiSaito 2013b (https://www.pref.fukushima.lg.jp/uploaded/attachment/454026.pdf)
- S3 杉浦広幸,酒井創,香山雪彦. (2014). 福島市で栽培したシノブフユナ (Brassica rapa)の部位 と栽培土壌における放射性セシウム濃度の推移. 日本放射線安全管理学会誌, 13(2), 159-165.
- S4 Suzuki 2014a (https://www.pref.fukushima.lg.jp/uploaded/attachment/454893.pdf)
- S5 Suzuki 2014b (https://www.pref.fukushima.lg.jp/uploaded/attachment/454892.pdf)
- S6 Tadaaki Saito 2011 (https://www.pref.fukushima.lg.jp/uploaded/attachment/453424.pdf)
- S7 Takashi Saito 2011 (https://www.pref.fukushima.lg.jp/uploaded/attachment/453427.pdf)
- S8 Takashi Saito 2012 (https://www.pref.fukushima.lg.jp/uploaded/attachment/453787.pdf)
- T1 Takeuchi 2013a (https://www.pref.fukushima.lg.jp/uploaded/attachment/453942.pdf)
- T2 Takeuchi 2013b (https://www.pref.fukushima.lg.jp/uploaded/attachment/453943.pdf)
- Y1 Yanagida 2015a (https://www.pref.fukushima.lg.jp/uploaded/attachment/456174.pdf)
- Y2 Yanagida 2015b (https://www.pref.fukushima.lg.jp/uploaded/attachment/456176.pdf)
- Y3 Yoshitoku 2012 (https://www.pref.fukushima.lg.jp/uploaded/attachment/453806.pdf)

System	Species	Sampling date	Bq/kg	Water sampling date	Bq/L	CR
Abukuma River	Amur Minnow	2014/6/25	11.0	2014/6/24	0.077	143
Abukuma River	Amur Minnow	2014/6/27	10.0	2014/6/24	0.015	667
Abukuma River	Amur Minnow	2014/8/28	9.3	2014/8/26	0.087	107
Abukuma River	Amur Minnow	2014/8/29	15.0	2014/8/26	0.049	306
Abukuma River	Amur Minnow	2014/10/23	13.0	2014/10/21	0.026	500
Abukuma River	Amur Minnow	2014/12/3	14.0	2014/12/4	0.020	700
Abukuma River	Amur Minnow	2015/6/17	5.3	2015/6/18	0.064	83
Abukuma River	Amur Minnow	2015/8/25	11.0	2015/8/18	0.062	177
Abukuma River	Amur Minnow	2015/12/2	8.2	2015/12/1	0.032	256
Abukuma River	Amur Minnow	2015/12/8	8.2	2015/12/1	0.024	342
Abukuma River	Amur Minnow	2016/10/23	13.0	2016/10/17	0.037	351
Abukuma River	Amur Minnow	2016/10/23	4.1	2016/10/17	0.018	228
Abukuma River	Amur Minnow	2017/6/20	7.5	2017/6/13	0.013	577
Abukuma River	Amur Minnow	2017/8/25	11.0	2017/8/30	0.016	688
Uda River	Amur Minnow	2014/6/28	40.0	2014/6/25	0.044	909
Uda River	Amur Minnow	2018/10/20	2.9	2018/10/23	0.005	580
Mano River	Amur Minnow	2014/7/4	32.0	2014/7/4	0.046	703
Mano River	Amur Minnow	2015/6/20	32.0	2015/6/19	0.043	744
Mano River	Amur Minnow	2015/10/23	25.0	2015/10/23	0.024	1042
Mano River	Amur Minnow	2017/6/14	13.0	2017/6/14	0.012	1083
Mano River	Amur Minnow	2017/8/22	7.2	2017/8/28	0.016	450
Mano River	Amur Minnow	2018/6/6	11.0	2018/6/6	0.013	846
Mano River	Amur Minnow	2018/8/28	11.0	2018/8/28	0.023	478
Hayama Lake	Amur Minnow	2015/6/25	7.8	2015/6/24	0.055	143
Hayama Lake	Amur Minnow	2017/6/16	19.0	2017/6/16	0.023	826
Hayama Lake	Amur Minnow	2017/8/21	8.2	2017/8/21	0.018	456
Hayama Lake	Amur Minnow	2018/6/1	31.0	2018/6/1	0.013	2385
Hayama Lake	Amur Minnow	2018/10/22	32.0	2018/10/22	0.009	3478
Akimoto Lake	Amur Minnow	2014/6/24	11.0	2014/6/24	0.017	638
Akimoto Lake	Amur Minnow	2014/8/26	6.0	2014/8/26	0.018	336
Akimoto Lake	Amur Minnow	2014/8/26	17.0	2014/8/26	0.018	951
Akimoto Lake	Amur Minnow	2014/10/21	9.7	2014/10/21	0.030	323
Akimoto Lake	Amur Minnow	2015/6/16	13.0	2015/6/16	0.065	199
Akimoto Lake	Amur Minnow	2015/12/1	9.5	2015/12/1	0.016	601
Akimoto Lake	Amur Minnow	2016/6/6	3.8	2016/6/6	0.011	360
Akimoto Lake	Amur Minnow	2016/8/18	4.3	2016/8/19	0.029	150
Akimoto Lake	Amur Minnow	2016/10/18	10.0	2016/10/18	0.044	230
Akimoto Lake	Amur Minnow	2017/6/19	4.5	2017/6/20	0.008	533

Table S4 Concentration ratio (CR, L/kg fresh mass) of radiocaesium in freshwater fish (whole)

Akimoto Lake	Amur Minnow	2017/8/25	5.0	2017/8/25	0.012	429
Akimoto Lake	Amur Minnow	2017/10/18	7.3	2017/10/18	0.011	658
Akimoto Lake	Amur Minnow	2018/8/30	3.3	2018/8/30	0.012	270
Akimoto Lake	Amur Minnow	2018/12/1	3.4	2018/12/1	0.010	338
Abukuma River	Ayu	2014/6/27	10.0	2014/6/24	0.015	667
Abukuma River	Ayu	2014/8/25	14.0	2014/8/26	0.120	117
Abukuma River	Ayu	2014/8/29	15.0	2014/8/26	0.049	306
Abukuma River	Ayu	2015/6/24	53.0	2015/6/18	0.130	408
Abukuma River	Ayu	2015/8/23	93.0	2015/8/18	0.052	1788
Abukuma River	Ayu	2016/6/1	14.0	2016/5/26	0.026	538
Uda River	Ayu	2017/6/17	16.0	2017/6/14	0.009	1720
Uda River	Ayu	2018/6/2	21.0	2018/6/6	0.014	1500
Uda River	Ayu	2018/8/25	18.0	2018/8/28	0.010	1800
Uda River	Ayu	2018/10/20	16.0	2018/10/23	0.005	3200
Ota River	Ayu	2014/9/1	960.0	2014/9/1	0.310	3097
Ota River	Ayu	2016/5/30	140.0	2016/5/30	0.092	1522
Mano River	Ayu	2014/7/4	53.0	2014/7/4	0.046	1165
Mano River	Ayu	2014/8/30	38.0	2014/9/3	0.070	547
Mano River	Ayu	2015/6/20	75.0	2015/6/19	0.043	1744
Mano River	Ayu	2016/6/1	21.0	2016/5/31	0.016	1313
Mano River	Ayu	2016/10/20	44.0	2016/10/20	0.014	3143
Mano River	Ayu	2017/6/14	35.0	2017/6/14	0.012	2917
Mano River	Ayu	2017/8/22	94.0	2017/8/28	0.016	5875
Mano River	Ayu	2018/6/1	24.0	2018/6/6	0.013	1846
Mano River	Ayu	2018/6/6	44.0	2018/6/6	0.013	3385
Mano River	Ayu	2018/8/27	18.0	2018/8/28	0.023	783
Mano River	Ayu	2018/8/28	32.0	2018/8/28	0.023	1391
Mano River	Ayu	2018/10/23	35.0	2018/10/23	0.012	2917
Niida River	Ayu	2014/7/3	95.0	2014/7/5	0.480	198
Niida River	Ayu	2014/7/3	260.0	2014/7/5	0.480	542
Niida River	Ayu	2014/8/31	150.0	2014/9/2	0.185	811
Niida River	Ayu	2015/6/19	150.0	2015/6/17	0.670	224
Niida River	Ayu	2015/8/22	170.0	2015/8/22	0.130	1308
Niida River	Ayu	2016/6/1	98.0	2016/5/27	0.036	2722
Niida River	Ayu	2017/6/18	110.0	2017/6/15	0.029	3793
Niida River	Ayu	2017/8/22	32.0	2017/8/28	0.110	291
Niida River	Ayu	2018/9/1	47.0	2018/9/7	0.050	940
Hayama Lake	Ayu	2018/8/26	23.0	2018/8/27	0.016	1438
Abukuma River	White spotted char	2014/6/27	24.0	2014/6/24	0.015	1600
Mano River	White spotted char	2018/10/31	3.6	2018/10/23	0.012	300
Hayama Lake	White spotted char	2017/12/4	39.0	2017/12/4	0.010	4021
Hayama Lake	White spotted char	2018/8/27	480.0	2018/8/27	0.016	30000
-----------------	--------------------	------------	-------	------------	-------	-------
Hayama Lake	White spotted char	2018/10/22	140.0	2018/10/22	0.009	15217
Akimoto Lake	White spotted char	2014/6/24	55.0	2014/6/24	0.017	3188
Akimoto Lake	White spotted char	2014/8/27	53.0	2014/8/26	0.018	2965
Akimoto Lake	White spotted char	2014/8/27	69.0	2014/8/26	0.018	3860
Akimoto Lake	White spotted char	2014/10/21	34.0	2014/10/21	0.030	1133
Akimoto Lake	White spotted char	2014/12/3	33.0	2014/12/4	0.018	1808
Akimoto Lake	White spotted char	2015/6/16	57.0	2015/6/16	0.065	874
Akimoto Lake	White spotted char	2015/8/26	46.0	2015/8/27	0.017	2746
Akimoto Lake	White spotted char	2015/10/21	32.0	2015/10/21	0.013	2379
Akimoto Lake	White spotted char	2015/12/1	35.0	2015/12/1	0.016	2215
Akimoto Lake	White spotted char	2016/6/6	41.0	2016/6/6	0.011	3886
Akimoto Lake	White spotted char	2016/6/6	8.4	2016/6/6	0.011	796
Akimoto Lake	White spotted char	2016/6/6	5.2	2016/6/6	0.011	493
Akimoto Lake	White spotted char	2016/10/18	30.0	2016/10/18	0.044	690
Akimoto Lake	White spotted char	2016/12/1	27.0	2016/12/1	0.011	2547
Akimoto Lake	White spotted char	2017/6/20	49.0	2017/6/20	0.008	5799
Akimoto Lake	White spotted char	2017/6/20	9.0	2017/6/20	0.008	1065
Akimoto Lake	White spotted char	2017/6/19	3.0	2017/6/20	0.008	355
Akimoto Lake	White spotted char	2017/8/25	34.0	2017/8/25	0.012	2918
Akimoto Lake	White spotted char	2017/10/18	30.0	2017/10/18	0.011	2703
Akimoto Lake	White spotted char	2017/12/1	31.0	2017/12/1	0.014	2153
Akimoto Lake	White spotted char	2018/5/30	47.0	2018/5/30	0.006	8246
Inawashiro Lake	White spotted char	2015/6/17	30.0	2015/6/17	0.012	2439
Inawashiro Lake	White spotted char	2015/6/17	53.0	2015/6/17	0.012	4309
Inawashiro Lake	White spotted char	2015/8/26	85.0	2015/8/27	0.014	6296
Inawashiro Lake	White spotted char	2015/10/20	75.0	2015/10/20	0.012	6383
Inawashiro Lake	White spotted char	2016/6/5	50.0	2016/6/5	0.010	4843
Inawashiro Lake	White spotted char	2016/6/5	40.0	2016/6/5	0.010	3874
Inawashiro Lake	White spotted char	2016/6/5	86.0	2016/6/5	0.011	7818
Inawashiro Lake	White spotted char	2016/8/18	58.0	2016/8/18	0.011	5273
Inawashiro Lake	White spotted char	2016/10/19	45.0	2016/10/19	0.010	4627
Inawashiro Lake	White spotted char	2016/10/19	43.0	2016/10/19	0.010	4410
Inawashiro Lake	White spotted char	2017/6/19	43.0	2017/6/19	0.009	5029
Inawashiro Lake	White spotted char	2017/8/24	1.5	2017/8/24	0.008	184
Inawashiro Lake	White spotted char	2017/10/18	45.0	2017/10/18	0.008	5590
Inawashiro Lake	White spotted char	2018/5/29	15.0	2018/5/29	0.006	2344
Inawashiro Lake	White spotted char	2018/10/17	37.0	2018/10/17	0.007	5362
Abukuma River	Japanese dace	2014/6/25	11.0	2014/6/24	0.077	143
Abukuma River	Japanese dace	2014/6/27	15.0	2014/6/24	0.015	1000
Abukuma River	Japanese dace	2014/8/28	24.0	2014/8/26	0.087	276

Abukuma River	Japanese dace	2014/8/29	28.0	2014/8/26	0.049	571
Abukuma River	Japanese dace	2014/12/2	19.0	2014/12/4	0.014	1357
Abukuma River	Japanese dace	2015/8/21	14.0	2015/8/18	0.052	269
Abukuma River	Japanese dace	2015/8/21	11.0	2015/8/18	0.052	212
Abukuma River	Japanese dace	2015/8/25	14.0	2015/8/18	0.020	700
Abukuma River	Japanese dace	2015/10/21	28.0	2015/10/20	0.019	1474
Abukuma River	Japanese dace	2016/10/23	10.0	2016/10/17	0.037	270
Abukuma River	Japanese dace	2016/10/23	5.3	2016/10/17	0.018	294
Abukuma River	Japanese dace	2016/12/2	6.7	2016/12/9	0.011	609
Abukuma River	Japanese dace	2017/6/20	19.0	2017/6/13	0.013	1462
Abukuma River	Japanese dace	2017/6/9	8.3	2017/6/13	0.023	361
Abukuma River	Japanese dace	2017/8/25	12.0	2017/8/30	0.016	750
Abukuma River	Japanese dace	2018/10/19	11.0	2018/10/25	0.009	1236
Abukuma River	Japanese dace	2018/10/20	4.1	2018/10/25	0.007	577
Abukuma River	Japanese dace	2018/12/1	6.7	2018/12/7	0.012	583
Abukuma River	Japanese dace	2018/12/2	13.0	2018/12/7	0.008	1566
Uda River	Japanese dace	2014/6/28	26.0	2014/6/25	0.044	591
Uda River	Japanese dace	2014/9/2	28.0	2014/9/4	0.036	778
Uda River	Japanese dace	2015/8/19	16.0	2015/8/19	0.023	696
Uda River	Japanese dace	2015/10/22	15.0	2015/10/21	0.009	1667
Uda River	Japanese dace	2016/10/20	8.2	2016/10/18	0.008	1025
Uda River	Japanese dace	2016/12/4	11.0	2016/12/8	0.006	1833
Uda River	Japanese dace	2017/12/2	8.3	2017/12/5	0.004	2243
Uda River	Japanese dace	2018/6/2	7.7	2018/6/6	0.014	550
Uda River	Japanese dace	2018/8/25	11.0	2018/8/28	0.010	1100
Uda River	Japanese dace	2018/10/20	7.1	2018/10/23	0.005	1420
Ota River	Japanese dace	2014/7/1	790.0	2014/7/8	0.340	2324
Ota River	Japanese dace	2014/9/1	570.0	2014/9/1	0.310	1839
Ota River	Japanese dace	2014/10/23	750.0	2014/10/25	0.330	2273
Ota River	Japanese dace	2014/12/6	550.0	2014/12/3	0.250	2200
Ota River	Japanese dace	2015/6/19	470.0	2015/6/16	0.190	2474
Ota River	Japanese dace	2015/8/21	430.0	2015/8/21	0.280	1536
Ota River	Japanese dace	2015/10/24	330.0	2015/10/24	0.200	1650
Ota River	Japanese dace	2015/12/9	230.0	2015/12/5	0.200	1150
Ota River	Japanese dace	2016/5/30	350.0	2016/5/30	0.180	1944
Ota River	Japanese dace	2016/8/21	270.0	2016/8/22	0.720	375
Ota River	Japanese dace	2016/12/6	350.0	2016/12/6	0.150	2333
Ota River	Japanese dace	2017/6/15	260.0	2017/6/15	0.130	2000
Ota River	Japanese dace	2017/12/6	330.0	2017/12/6	0.170	1941
Ota River	Japanese dace	2018/6/7	330.0	2018/6/7	0.140	2357
Mano River	Japanese dace	2014/10/26	49.0	2014/10/23	0.062	797

Mano River	Japanese dace	2014/12/2	80.0	2014/12/6	0.027	3019
Mano River	Japanese dace	2015/8/22	15.0	2015/8/20	0.058	259
Mano River	Japanese dace	2015/8/22	40.0	2015/8/20	0.032	1250
Mano River	Japanese dace	2015/10/23	31.0	2015/10/23	0.024	1292
Mano River	Japanese dace	2015/12/4	35.0	2015/12/4	0.022	1591
Mano River	Japanese dace	2016/6/1	29.0	2016/5/31	0.024	1208
Mano River	Japanese dace	2016/10/20	26.0	2016/10/20	0.014	1857
Mano River	Japanese dace	2016/12/7	14.0	2016/12/5	0.017	824
Mano River	Japanese dace	2017/6/14	24.0	2017/6/14	0.012	2000
Mano River	Japanese dace	2017/8/22	15.0	2017/8/28	0.016	938
Mano River	Japanese dace	2017/12/5	12.0	2017/12/5	0.010	1250
Mano River	Japanese dace	2018/6/6	20.0	2018/6/6	0.013	1538
Mano River	Japanese dace	2018/8/27	7.1	2018/8/28	0.023	309
Mano River	Japanese dace	2018/10/23	21.0	2018/10/23	0.012	1750
Niida River	Japanese dace	2014/7/3	150.0	2014/7/5	0.480	313
Niida River	Japanese dace	2014/8/31	150.0	2014/9/2	0.185	811
Niida River	Japanese dace	2014/12/5	95.0	2014/12/2	0.220	432
Niida River	Japanese dace	2015/6/19	47.0	2015/6/17	0.670	70
Niida River	Japanese dace	2015/8/22	79.0	2015/8/22	0.130	608
Niida River	Japanese dace	2015/10/25	92.0	2015/10/22	0.032	2875
Niida River	Japanese dace	2015/12/3	66.0	2015/12/3	0.029	2276
Niida River	Japanese dace	2016/6/1	45.0	2016/5/27	0.036	1250
Niida River	Japanese dace	2016/10/21	40.0	2016/10/19	0.021	1905
Niida River	Japanese dace	2016/12/8	34.0	2016/12/7	0.038	895
Niida River	Japanese dace	2017/6/18	26.0	2017/6/15	0.029	897
Niida River	Japanese dace	2018/6/2	28.0	2018/6/7	0.031	903
Niida River	Japanese dace	2018/10/21	40.0	2018/10/24	0.036	1111
Hayama Lake	Japanese dace	2014/10/28	260.0	2014/10/27	0.098	2653
Hayama Lake	Japanese dace	2015/12/7	150.0	2015/12/7	0.059	2528
Hayama Lake	Japanese dace	2017/6/16	29.0	2017/6/16	0.023	1261
Hayama Lake	Japanese dace	2017/10/20	18.0	2017/10/20	0.079	228
Hayama Lake	Japanese dace	2017/12/4	30.0	2017/12/4	0.010	3093
Hayama Lake	Japanese dace	2018/6/1	63.0	2018/6/1	0.013	4846
Hayama Lake	Japanese dace	2018/8/27	66.0	2018/8/27	0.028	2400
Hayama Lake	Japanese dace	2018/8/26	34.0	2018/8/27	0.016	2125
Akimoto Lake	Japanese dace	2014/6/24	86.0	2014/6/24	0.017	4986
Akimoto Lake	Japanese dace	2014/8/27	53.0	2014/8/26	0.018	2965
Akimoto Lake	Japanese dace	2014/10/21	57.0	2014/10/21	0.030	1900
Akimoto Lake	Japanese dace	2014/12/3	38.0	2014/12/4	0.018	2082
Akimoto Lake	Japanese dace	2015/6/16	40.0	2015/6/16	0.065	613
Akimoto Lake	Japanese dace	2015/8/26	33.0	2015/8/27	0.017	1970

Akimoto Lake	Japanese dace	2015/10/21	33.0	2015/10/21	0.013	2454
Akimoto Lake	Japanese dace	2016/6/6	40.0	2016/6/6	0.011	3791
Akimoto Lake	Japanese dace	2016/6/6	23.0	2016/6/6	0.011	2180
Akimoto Lake	Japanese dace	2016/10/18	54.0	2016/10/18	0.044	1241
Akimoto Lake	Japanese dace	2016/12/1	29.0	2016/12/1	0.011	2736
Akimoto Lake	Japanese dace	2017/6/20	37.0	2017/6/20	0.008	4379
Akimoto Lake	Japanese dace	2017/8/25	29.0	2017/8/25	0.012	2489
Akimoto Lake	Japanese dace	2017/10/18	44.0	2017/10/18	0.011	3964
Akimoto Lake	Japanese dace	2017/12/1	35.0	2017/12/1	0.014	2431
Akimoto Lake	Japanese dace	2018/5/30	39.0	2018/5/30	0.006	6842
Akimoto Lake	Japanese dace	2018/10/18	4.3	2018/10/18	0.007	585
Akimoto Lake	Japanese dace	2018/12/1	28.0	2018/12/1	0.010	2786
Inawashiro Lake	Japanese dace	2014/6/26	61.0	2014/6/26	0.017	3588
Inawashiro Lake	Japanese dace	2015/6/17	45.0	2015/6/17	0.012	3659
Inawashiro Lake	Japanese dace	2015/6/17	53.0	2015/6/17	0.012	4309
Inawashiro Lake	Japanese dace	2015/6/14	41.0	2015/6/17	0.013	3154
Inawashiro Lake	Japanese dace	2015/6/14	21.0	2015/6/17	0.013	1615
Inawashiro Lake	Japanese dace	2015/8/26	28.0	2015/8/27	0.014	2074
Inawashiro Lake	Japanese dace	2015/8/26	13.0	2015/8/27	0.014	963
Inawashiro Lake	Japanese dace	2015/8/22	8.8	2015/8/27	0.012	733
Inawashiro Lake	Japanese dace	2015/10/20	17.0	2015/10/20	0.012	1447
Inawashiro Lake	Japanese dace	2015/12/2	5.6	2015/12/2	0.012	487
Inawashiro Lake	Japanese dace	2016/6/5	19.0	2016/6/5	0.010	1840
Inawashiro Lake	Japanese dace	2016/6/5	31.0	2016/6/5	0.010	3002
Inawashiro Lake	Japanese dace	2016/6/5	48.0	2016/6/5	0.011	4364
Inawashiro Lake	Japanese dace	2016/6/5	29.0	2016/6/5	0.011	2636
Inawashiro Lake	Japanese dace	2016/8/18	25.0	2016/8/18	0.011	2273
Inawashiro Lake	Japanese dace	2016/8/18	12.0	2016/8/18	0.010	1244
Inawashiro Lake	Japanese dace	2016/8/18	15.0	2016/8/18	0.010	1554
Inawashiro Lake	Japanese dace	2016/10/19	14.0	2016/10/19	0.010	1440
Inawashiro Lake	Japanese dace	2016/10/19	29.0	2016/10/19	0.010	2982
Inawashiro Lake	Japanese dace	2016/10/19	15.0	2016/10/19	0.010	1538
Inawashiro Lake	Japanese dace	2016/10/19	28.0	2016/10/19	0.010	2872
Inawashiro Lake	Japanese dace	2017/6/19	28.0	2017/6/19	0.009	3275
Inawashiro Lake	Japanese dace	2017/10/18	12.0	2017/10/18	0.008	1491
Inawashiro Lake	Japanese dace	2018/5/29	10.0	2018/5/29	0.006	1563
Inawashiro Lake	Japanese dace	2018/10/17	16.0	2018/10/17	0.007	2319
Abukuma River	Pale chub	2014/8/28	14.0	2014/8/26	0.087	161
Abukuma River	Pale chub	2014/8/29	16.0	2014/8/26	0.049	327
Abukuma River	Pale chub	2014/10/23	18.0	2014/10/21	0.026	692
Abukuma River	Pale chub	2015/8/25	12.0	2015/8/18	0.020	600

Abukuma River	Pale chub	2015/12/2	13.0	2015/12/1	0.032	406
Abukuma River	Pale chub	2016/10/23	13.0	2016/10/17	0.037	351
Abukuma River	Pale chub	2016/12/2	7.3	2016/12/9	0.011	664
Abukuma River	Pale chub	2018/10/20	6.8	2018/10/25	0.007	958
Abukuma River	Pale chub	2018/12/1	3.9	2018/12/7	0.012	339
Abukuma River	Pale chub	2018/12/2	6.8	2018/12/7	0.008	819
Uda River	Pale chub	2014/6/28	22.0	2014/6/25	0.044	500
Uda River	Pale chub	2014/9/2	15.0	2014/9/4	0.036	417
Uda River	Pale chub	2014/12/7	19.0	2014/12/5	0.012	1583
Uda River	Pale chub	2015/10/22	17.0	2015/10/21	0.009	1889
Uda River	Pale chub	2015/12/3	13.0	2015/12/2	0.006	2167
Uda River	Pale chub	2016/10/20	8.6	2016/10/18	0.008	1075
Uda River	Pale chub	2016/12/4	10.0	2016/12/8	0.006	1667
Uda River	Pale chub	2017/6/17	13.0	2017/6/14	0.009	1398
Uda River	Pale chub	2018/8/25	12.0	2018/8/28	0.010	1200
Uda River	Pale chub	2018/10/20	5.9	2018/10/23	0.005	1180
Ota River	Pale chub	2014/7/1	420.0	2014/7/8	0.340	1235
Ota River	Pale chub	2014/9/1	210.0	2014/9/1	0.310	677
Ota River	Pale chub	2014/10/23	480.0	2014/10/25	0.330	1455
Ota River	Pale chub	2014/12/6	340.0	2014/12/3	0.250	1360
Ota River	Pale chub	2016/5/30	490.0	2016/5/30	0.180	2722
Ota River	Pale chub	2016/8/21	190.0	2016/8/22	0.720	264
Ota River	Pale chub	2017/6/15	240.0	2017/6/15	0.130	1846
Ota River	Pale chub	2018/6/7	220.0	2018/6/7	0.140	1571
Mano River	Pale chub	2014/7/4	120.0	2014/7/4	0.046	2637
Mano River	Pale chub	2015/6/20	61.0	2015/6/19	0.043	1419
Mano River	Pale chub	2015/6/20	80.0	2015/6/19	0.043	1860
Mano River	Pale chub	2015/8/20	92.0	2015/8/20	0.032	2875
Mano River	Pale chub	2015/10/23	25.0	2015/10/23	0.024	1042
Mano River	Pale chub	2016/6/1	12.0	2016/5/31	0.024	500
Mano River	Pale chub	2016/10/20	22.0	2016/10/20	0.014	1571
Mano River	Pale chub	2017/6/14	22.0	2017/6/14	0.012	1833
Mano River	Pale chub	2017/8/22	18.0	2017/8/28	0.016	1125
Mano River	Pale chub	2018/6/6	17.0	2018/6/6	0.013	1308
Mano River	Pale chub	2018/8/27	4.5	2018/8/28	0.023	196
Mano River	Pale chub	2018/8/28	18.0	2018/8/28	0.023	783
Niida River	Pale chub	2014/7/3	110.0	2014/7/5	0.480	229
Niida River	Pale chub	2014/8/31	80.0	2014/9/2	0.185	432
Niida River	Pale chub	2014/10/24	170.0	2014/10/24	0.180	944
Niida River	Pale chub	2014/12/5	110.0	2014/12/2	0.220	500
Niida River	Pale chub	2015/6/19	59.0	2015/6/17	0.670	88

Niida River	Pale chub	2015/8/22	69.0	2015/8/22	0.130	531
Niida River	Pale chub	2015/12/3	62.0	2015/12/3	0.029	2138
Niida River	Pale chub	2016/6/1	38.0	2016/5/27	0.036	1056
Niida River	Pale chub	2017/6/18	27.0	2017/6/15	0.029	931
Niida River	Pale chub	2018/6/2	36.0	2018/6/7	0.031	1161
Akimoto Lake	Pale chub	2015/6/16	32.0	2015/6/16	0.065	491
Akimoto Lake	Pale chub	2016/10/18	13.0	2016/10/18	0.044	299
Inawashiro Lake	Pale chub	2014/9/2	6.4	2014/8/27	0.014	465
Inawashiro Lake	Pale chub	2015/8/21	12.0	2015/8/27	0.012	1000
Inawashiro Lake	Pale chub	2015/12/2	6.1	2015/12/2	0.012	530
Inawashiro Lake	Pale chub	2016/8/18	6.3	2016/8/18	0.010	653
Inawashiro Lake	Pale chub	2016/10/19	9.3	2016/10/19	0.010	956
Inawashiro Lake	Pale chub	2016/10/19	4.8	2016/10/19	0.010	492
Inawashiro Lake	Pale chub	2017/6/19	7.8	2017/6/19	0.009	912
Inawashiro Lake	Pale chub	2017/10/18	7.8	2017/10/18	0.008	969
Inawashiro Lake	Pale chub	2018/10/17	7.7	2018/10/17	0.007	1116
Abukuma River	Largemouth bass	2018/10/19	7.0	2018/10/25	0.009	761
Niida River	Largemouth bass	2014/8/31	150.0	2014/9/2	0.185	811
Hayama Lake	Largemouth bass	2015/12/7	350.0	2015/12/7	0.059	5899
Hayama Lake	Largemouth bass	2018/8/27	350.0	2018/8/27	0.028	12727
Akimoto Lake	Largemouth bass	2015/6/16	85.0	2015/6/16	0.065	1304
Akimoto Lake	Largemouth bass	2016/6/6	84.0	2016/6/6	0.011	7962
Akimoto Lake	Largemouth bass	2017/10/18	42.0	2017/10/18	0.011	3784
Akimoto Lake	Largemouth bass	2018/12/1	29.0	2018/12/1	0.010	2886
Abukuma River	Japanese fluvial sculpin	2014/8/29	6.8	2014/8/26	0.049	139
Abukuma River	Japanese fluvial sculpin	2015/8/25	8.4	2015/8/18	0.020	420
Abukuma River	Japanese fluvial sculpin	2015/12/8	5.3	2015/12/1	0.024	221
Abukuma River	Japanese fluvial sculpin	2016/10/23	3.7	2016/10/17	0.018	206
Abukuma River	Japanese fluvial sculpin	2016/12/2	3.5	2016/12/9	0.011	318
Abukuma River	Japanese fluvial sculpin	2017/8/25	3.1	2017/8/30	0.016	194
Abukuma River	Japanese fluvial sculpin	2018/12/1	2.2	2018/12/7	0.004	564
Uda River	Japanese fluvial sculpin	2018/12/2	8.7	2018/12/6	0.006	1381
Ota River	Japanese fluvial sculpin	2014/9/1	640.0	2014/9/1	0.310	2065
Ota River	Japanese fluvial sculpin	2015/10/24	600.0	2015/10/24	0.200	3000
Ota River	Japanese fluvial sculpin	2016/5/30	700.0	2016/5/30	0.180	3889
Ota River	Japanese fluvial sculpin	2016/8/21	530.0	2016/8/22	0.720	736
Ota River	Japanese fluvial sculpin	2017/6/15	430.0	2017/6/15	0.130	3308
Ota River	Japanese fluvial sculpin	2018/10/24	430.0	2018/10/24	0.180	2389
Ota River	Japanese fluvial sculpin	2018/12/5	440.0	2018/12/5	0.180	2444
Mano River	Japanese fluvial sculpin	2017/6/14	31.0	2017/6/14	0.012	2583
Mano River	Japanese fluvial sculpin	2018/6/6	34.0	2018/6/6	0.013	2615

Mano River	Japanese fluvial sculpin	2018/10/23	23.0	2018/10/23	0.012	1917
Niida River	Japanese fluvial sculpin	2017/6/18	41.0	2017/6/15	0.029	1414
Niida River	Japanese fluvial sculpin	2018/10/21	32.0	2018/10/24	0.036	889
Akimoto Lake	Japanese fluvial sculpin	2014/6/24	14.0	2014/6/24	0.017	812
Akimoto Lake	Japanese fluvial sculpin	2014/6/24	19.0	2014/6/24	0.017	1101
Akimoto Lake	Japanese fluvial sculpin	2016/6/6	12.0	2016/6/6	0.011	1137
Akimoto Lake	Japanese fluvial sculpin	2017/6/20	6.7	2017/6/20	0.008	793
Akimoto Lake	Japanese fluvial sculpin	2018/5/30	4.1	2018/5/30	0.006	719
Abukuma River	Pseudogobio esocinus (Kamatsuka)	2017/6/20	9.1	2017/6/13	0.013	700
Uda River	(Kamatsuka)	2014/6/28	18.0	2014/6/25	0.044	409
Uda River	Pseudogobio esocinus (Kamatsuka)	2016/10/20	6.3	2016/10/18	0.008	788
Uda River	(Kamatsuka)	2018/8/25	5.2	2018/8/28	0.010	520
Uda River	Pseudogobio esocinus (Kamatsuka)	2018/10/20	5.3	2018/10/23	0.005	1060
Mano River	(Kamatsuka)	2018/10/23	13.0	2018/10/23	0.012	1083
Niida River	Pseudogobio esocinus (Kamatsuka)	2015/8/22	45.0	2015/8/22	0.130	346
Niida River	<i>Pseudogobio esocinus</i> (Kamatsuka)	2016/6/1	38.0	2016/5/27	0.036	1056
Niida River	Pseudogobio esocinus (Kamatsuka)	2017/6/18	29.0	2017/6/15	0.029	1000
Niida River	Pseudogobio esocinus (Kamatsuka)	2018/6/2	25.0	2018/6/7	0.031	806
Inawashiro Lake	(Kamatsuka)	2014/9/2	9.6	2014/8/27	0.014	698
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2015/6/14	10.0	2015/6/17	0.013	769
Inawashiro Lake	(Kamatsuka)	2015/8/26	7.4	2015/8/27	0.014	548
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2015/10/20	4.5	2015/10/20	0.012	383
Inawashiro Lake	(Kamatsuka)	2015/10/18	8.0	2015/10/20	0.010	766
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2016/6/5	10.0	2016/6/5	0.011	909
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2016/8/18	11.0	2016/8/18	0.010	1140
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2016/10/19	7.9	2016/10/19	0.010	812
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2016/10/19	3.9	2016/10/19	0.010	400
Inawashiro Lake	<i>Pseudogobio esocinus</i> (Kamatsuka)	2017/6/19	8.5	2017/6/19	0.009	994
Inawashiro Lake	Pseudogobio esocinus (Kamatsuka)	2018/10/17	6.9	2018/10/17	0.007	1000
Abukuma River	(Gin-buna)	2018/10/19	6.4	2018/10/25	0.009	719
Abukuma River	Carassius auratus langsdorfii (Gin-buna)	2018/12/1	4.0	2018/12/7	0.012	348
Uda River	Carassius auratus langsdorfii (Gin-buna)	2018/10/20	7.5	2018/10/23	0.005	1500
Ota River	(Gin-buna)	2015/6/19	190.0	2015/6/16	0.190	1000
Ota River	Carassius auratus langsdorfii (Gin-buna)	2016/10/21	360.0	2016/10/21	0.110	3273
Ota River	(Gin-buna)	2017/6/15	230.0	2017/6/15	0.130	1769

Ota River	Carassius auratus langsdorfii (Gin-buna)	2018/10/24	170.0	2018/10/24	0.180	944
Mano River	Carassius auratus langsdorfii (Gin-buna)	2014/7/4	220.0	2014/7/4	0.046	4835
Mano River	Carassius auratus langsdorfii (Gin-buna)	2014/12/2	33.0	2014/12/6	0.027	1245
Mano River	Carassius auratus langsdorfii (Gin-buna)	2016/12/7	14.0	2016/12/5	0.017	824
Mano River	Carassius auratus langsdorfii (Gin-buna)	2017/12/6	11.0	2017/12/5	0.010	1146
Mano River	Carassius auratus langsdorfii (Gin-buna)	2018/10/23	11.0	2018/10/23	0.012	917
Niida River	Carassius auratus langsdorfii (Gin-buna)	2014/7/3	120.0	2014/7/5	0.480	250
Niida River	Carassius auratus langsdorfii (Gin-buna)	2014/10/24	170.0	2014/10/24	0.180	944
Niida River	Carassius auratus langsdorfii (Gin-buna)	2015/6/19	77.0	2015/6/17	0.670	115
Niida River	Carassius auratus langsdorfii (Gin-buna)	2015/8/22	120.0	2015/8/22	0.130	923
Niida River	Carassius auratus langsdorfii (Gin-buna)	2016/6/1	36.0	2016/5/27	0.036	1000
Niida River	Carassius auratus langsdorfii (Gin-buna)	2017/6/18	35.0	2017/6/15	0.029	1207
Niida River	Carassius auratus langsdorfii (Gin-buna)	2018/6/2	24.0	2018/6/7	0.031	774
Hayama Lake	Carassius auratus langsdorfii (Gin-buna)	2014/9/2	87.0	2014/9/4	0.105	831
Hayama Lake	Carassius auratus langsdorfii (Gin-buna)	2015/12/7	190.0	2015/12/7	0.059	3202
Hayama Lake	Carassius auratus langsdorfii (Gin-buna)	2017/8/20	82.0	2017/8/21	0.027	3037
Hayama Lake	Carassius auratus langsdorfii (Gin-buna)	2018/8/27	54.0	2018/8/27	0.028	1964
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2014/6/24	67.0	2014/6/24	0.017	3884
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2014/6/24	59.0	2014/6/24	0.017	3420
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2014/8/27	31.0	2014/8/26	0.018	1734
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2014/8/27	42.0	2014/8/26	0.018	2350
Akimoto Lake	(Gin-buna)	2014/10/21	42.0	2014/10/21	0.030	1400
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2015/6/16	58.0	2015/6/16	0.065	890
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2015/8/26	57.0	2015/8/27	0.017	3403
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2015/10/21	27.0	2015/10/21	0.013	2007
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2015/12/1	67.0	2015/12/1	0.016	4241
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2016/6/6	37.0	2016/6/6	0.011	3507
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2016/10/18	36.0	2016/10/18	0.044	828
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2016/12/1	37.0	2016/12/1	0.011	3491
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2017/6/20	32.0	2017/6/20	0.008	3787
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2017/8/25	39.0	2017/8/25	0.012	3348
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2017/10/18	37.0	2017/10/18	0.011	3333
Akimoto Lake	Carassius auratus langsdorfii (Gin-buna)	2018/5/30	40.0	2018/5/30	0.006	7018

Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2014/10/25	19.0	2014/10/22	0.014	1357
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/6/17	37.0	2015/6/17	0.012	3008
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/6/14	11.0	2015/6/17	0.013	846
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/6/10	15.0	2015/6/17	0.013	1154
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/8/26	22.0	2015/8/27	0.014	1630
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/8/26	7.1	2015/8/27	0.014	526
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/10/20	37.0	2015/10/20	0.012	3149
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2015/10/20	5.6	2015/10/20	0.012	477
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/6/5	25.0	2016/6/5	0.010	2421
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/6/5	26.0	2016/6/5	0.011	2364
Inawashiro Lake	(Gin-buna)	2016/8/18	5.7	2016/8/18	0.011	518
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/8/18	20.0	2016/8/18	0.011	1818
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/8/18	7.1	2016/8/18	0.010	736
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/8/18	18.0	2016/8/18	0.010	1865
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/10/19	13.0	2016/10/19	0.010	1337
Inawashiro Lake	(Gin-buna)	2016/10/19	22.0	2016/10/19	0.010	2262
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/10/19	7.8	2016/10/19	0.010	800
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2016/10/19	25.0	2016/10/19	0.010	2564
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2017/6/19	15.0	2017/6/19	0.009	1754
Inawashiro Lake	(Gin-buna)	2017/6/19	12.0	2017/6/19	0.009	1404
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2017/8/24	6.9	2017/8/24	0.008	847
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2017/10/18	14.0	2017/10/18	0.008	1739
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2018/5/29	23.0	2018/5/29	0.006	3594
Inawashiro Lake	Carassius auratus langsdorfii (Gin-buna)	2018/10/17	21.0	2018/10/17	0.007	3043
Abukuma River	Common carp	2015/10/15	22.0	2015/10/20	0.010	2200
Abukuma River	Common carp	2017/6/9	13.0	2017/6/13	0.023	565
Abukuma River	Common carp	2018/10/19	8.1	2018/10/25	0.009	910
Uda River	Common carp	2018/10/20	8.3	2018/10/23	0.005	1660
Ota River	Common carp	2016/5/30	1200.0	2016/5/30	0.180	6667
Ota River	Common carp	2016/12/6	190.0	2016/12/6	0.150	1267
Ota River	Common carp	2017/12/6	420.0	2017/12/6	0.170	2471
Ota River	Common carp	2018/10/24	210.0	2018/10/24	0.180	1167
Mano River	Common carp	2017/12/6	6.8	2017/12/5	0.010	708
Mano River	Common carp	2018/10/23	8.9	2018/10/23	0.012	742
Niida River	Common carp	2014/10/24	120.0	2014/10/24	0.180	667

Niida River	Common carp	2015/8/22	64.0	2015/8/22	0.130	492
Niida River	Common carp	2016/6/1	170.0	2016/5/27	0.036	4722
Niida River	Common carp	2017/6/18	15.0	2017/6/15	0.029	517
Niida River	Common carp	2018/10/21	27.0	2018/10/24	0.036	750
Hayama Lake	Common carp	2016/10/20	48.0	2016/10/22	0.028	1725
Hayama Lake	Common carp	2018/8/27	33.0	2018/8/27	0.028	1200
Akimoto Lake	Common carp	2014/6/24	33.0	2014/6/24	0.017	1913
Akimoto Lake	Common carp	2014/8/27	31.0	2014/8/26	0.018	1734
Akimoto Lake	Common carp	2015/6/16	30.0	2015/6/16	0.065	460
Akimoto Lake	Common carp	2015/9/10	34.0	2015/8/27	0.017	2030
Akimoto Lake	Common carp	2015/10/21	39.0	2015/10/21	0.013	2900
Akimoto Lake	Common carp	2015/12/1	20.0	2015/12/1	0.016	1266
Akimoto Lake	Common carp	2016/6/6	34.0	2016/6/6	0.011	3223
Akimoto Lake	Common carp	2016/10/18	22.0	2016/10/18	0.044	506
Akimoto Lake	Common carp	2016/12/1	33.0	2016/12/1	0.011	3113
Akimoto Lake	Common carp	2017/6/20	12.0	2017/6/20	0.008	1420
Akimoto Lake	Common carp	2017/12/1	37.0	2017/12/1	0.014	2569
Akimoto Lake	Common carp	2018/5/30	28.0	2018/5/30	0.006	4912
Inawashiro Lake	Common carp	2016/10/19	9.9	2016/10/19	0.010	1018
Abukuma River	Smallmouth bass	2014/8/25	22.0	2014/8/26	0.120	183
Abukuma River	Smallmouth bass	2015/6/24	26.0	2015/6/18	0.130	200
Abukuma River	Smallmouth bass	2017/6/9	21.0	2017/6/13	0.023	913
Abukuma River	Smallmouth bass	2018/10/19	13.0	2018/10/25	0.009	1413
Abukuma River	Smallmouth bass	2018/10/19	9.8	2018/10/25	0.009	1101
Abukuma River	Smallmouth bass	2018/12/1	9.7	2018/12/7	0.012	843
Uda River	Smallmouth bass	2018/6/2	20.0	2018/6/6	0.014	1429
Mano River	Smallmouth bass	2014/10/26	70.0	2014/10/23	0.062	1138
Mano River	Smallmouth bass	2017/8/22	26.0	2017/8/28	0.016	1625
Mano River	Smallmouth bass	2018/10/23	39.0	2018/10/23	0.012	3250
Hayama Lake	Smallmouth bass	2014/9/2	110.0	2014/9/4	0.105	1051
Hayama Lake	Smallmouth bass	2014/10/28	200.0	2014/10/27	0.098	2041
Hayama Lake	Smallmouth bass	2014/12/7	1000.0	2014/12/7	0.053	18868
Hayama Lake	Smallmouth bass	2015/12/7	340.0	2015/12/7	0.059	5730
Hayama Lake	Smallmouth bass	2016/12/8	240.0	2016/12/5	0.032	7423
Hayama Lake	Smallmouth bass	2017/6/16	190.0	2017/6/16	0.033	5758
Hayama Lake	Smallmouth bass	2017/6/16	400.0	2017/6/16	0.023	17391
Hayama Lake	Smallmouth bass	2017/8/21	59.0	2017/8/21	0.027	2185
Hayama Lake	Smallmouth bass	2017/8/21	100.0	2017/8/21	0.018	5556
Hayama Lake	Smallmouth bass	2018/6/4	130.0	2018/6/1	0.039	3377
Hayama Lake	Smallmouth bass	2018/6/1	200.0	2018/6/1	0.013	15385
Hayama Lake	Smallmouth bass	2018/8/27	42.0	2018/8/27	0.028	1527

Hayama Lake	Smallmouth bass	2018/8/27	260.0	2018/8/27	0.028	9455
Hayama Lake	Smallmouth bass	2018/10/22	150.0	2018/10/22	0.009	16304
Akimoto Lake	Smallmouth bass	2014/6/24	86.0	2014/6/24	0.017	4986
Akimoto Lake	Smallmouth bass	2014/6/24	130.0	2014/6/24	0.017	7536
Akimoto Lake	Smallmouth bass	2014/8/27	60.0	2014/8/26	0.018	3357
Akimoto Lake	Smallmouth bass	2014/8/27	81.0	2014/8/26	0.018	4531
Akimoto Lake	Smallmouth bass	2014/10/21	45.0	2014/10/21	0.030	1500
Akimoto Lake	Smallmouth bass	2015/6/16	100.0	2015/6/16	0.065	1534
Akimoto Lake	Smallmouth bass	2015/8/26	61.0	2015/8/27	0.017	3642
Akimoto Lake	Smallmouth bass	2015/10/21	71.0	2015/10/21	0.013	5279
Akimoto Lake	Smallmouth bass	2015/12/1	62.0	2015/12/1	0.016	3924
Akimoto Lake	Smallmouth bass	2016/6/6	75.0	2016/6/6	0.011	7109
Akimoto Lake	Smallmouth bass	2016/10/18	58.0	2016/10/18	0.044	1333
Akimoto Lake	Smallmouth bass	2016/12/1	51.0	2016/12/1	0.011	4811
Akimoto Lake	Smallmouth bass	2017/6/20	66.0	2017/6/20	0.008	7811
Akimoto Lake	Smallmouth bass	2017/8/25	30.0	2017/8/25	0.012	2575
Akimoto Lake	Smallmouth bass	2017/10/18	81.0	2017/10/18	0.011	7297
Akimoto Lake	Smallmouth bass	2017/12/1	33.0	2017/12/1	0.014	2292
Akimoto Lake	Smallmouth bass	2018/5/30	39.0	2018/5/30	0.006	6842
Inawashiro Lake	Smallmouth bass	2014/9/2	15.0	2014/8/27	0.014	1091
Inawashiro Lake	Smallmouth bass	2014/9/2	46.0	2014/8/27	0.014	3345
Inawashiro Lake	Smallmouth bass	2014/10/25	36.0	2014/10/22	0.014	2571
Inawashiro Lake	Smallmouth bass	2015/6/10	44.0	2015/6/17	0.013	3385
Inawashiro Lake	Smallmouth bass	2015/8/26	47.0	2015/8/27	0.014	3481
Inawashiro Lake	Smallmouth bass	2015/10/20	26.0	2015/10/20	0.012	2213
Inawashiro Lake	Smallmouth bass	2016/6/5	28.0	2016/6/5	0.010	2712
Inawashiro Lake	Smallmouth bass	2016/6/5	42.0	2016/6/5	0.011	3818
Inawashiro Lake	Smallmouth bass	2016/8/18	17.0	2016/8/18	0.010	1762
Inawashiro Lake	Smallmouth bass	2016/8/18	110.0	2016/8/18	0.010	11399
Inawashiro Lake	Smallmouth bass	2016/10/19	26.0	2016/10/19	0.010	2674
Inawashiro Lake	Smallmouth bass	2016/10/19	27.0	2016/10/19	0.010	2769
Inawashiro Lake	Smallmouth bass	2017/6/19	54.0	2017/6/19	0.009	6316
Inawashiro Lake	Smallmouth bass	2017/10/18	82.0	2017/10/18	0.008	10186
Inawashiro Lake	Smallmouth bass	2018/10/17	19.0	2018/10/17	0.007	2754
Abukuma River	Cherry salmon	2014/6/25	23.0	2014/6/24	0.077	299
Abukuma River	Cherry salmon	2018/10/20	0.5	2018/10/25	0.007	65
Uda River	Cherry salmon	2017/6/17	1.2	2017/6/14	0.009	129
Niida River	Cherry salmon	2017/6/18	34.0	2017/6/15	0.029	1172
Hayama Lake	Cherry salmon	2018/10/22	76.0	2018/10/22	0.009	8261
Akimoto Lake	Cherry salmon	2014/6/24	38.0	2014/6/24	0.017	2203
Akimoto Lake	Cherry salmon	2014/8/27	38.0	2014/8/26	0.018	2126

Akimoto Lake	Cherry salmon	2015/6/16	33.0	2015/6/16	0.065	506
Akimoto Lake	Cherry salmon	2015/8/26	33.0	2015/8/27	0.017	1970
Akimoto Lake	Cherry salmon	2015/12/1	48.0	2015/12/1	0.016	3038
Akimoto Lake	Cherry salmon	2016/6/6	41.0	2016/6/6	0.011	3886
Akimoto Lake	Cherry salmon	2017/6/20	18.0	2017/6/20	0.008	2130
Akimoto Lake	Cherry salmon	2017/8/25	27.0	2017/8/25	0.012	2318
Akimoto Lake	Cherry salmon	2017/10/18	30.0	2017/10/18	0.011	2703
Akimoto Lake	Cherry salmon	2018/5/30	38.0	2018/5/30	0.006	6667
Inawashiro Lake	Cherry salmon	2015/6/17	5.9	2015/6/17	0.012	480
Inawashiro Lake	Cherry salmon	2015/6/17	42.0	2015/6/17	0.012	3415
Inawashiro Lake	Cherry salmon	2015/6/17	59.0	2015/6/17	0.012	4797
Inawashiro Lake	Cherry salmon	2016/6/5	48.0	2016/6/5	0.011	4364
Inawashiro Lake	Cherry salmon	2017/6/19	0.9	2017/6/19	0.009	108
Inawashiro Lake	Cherry salmon	2017/10/18	67.0	2017/10/18	0.008	8323
Inawashiro Lake	Cherry salmon	2018/10/17	9.3	2018/10/17	0.007	1348
Uda River	Cobitis Linnaeus (Shimadojou)	2016/10/20	5.5	2016/10/18	0.008	688
Uda River	<i>Cobitis Linnaeus</i> (Shimadojou)	2017/6/17	6.6	2017/6/14	0.009	710
Uda River	Cobitis Linnaeus (Shimadojou)	2018/6/2	5.0	2018/6/6	0.014	357
Uda River	Cobitis Linnaeus (Shimadojou)	2018/8/25	6.3	2018/8/28	0.010	630
Ota River	(Shimadojou)	2014/10/23	660.0	2014/10/25	0.330	2000
Ota River	Cobitis Linnaeus (Shimadojou)	2015/6/19	320.0	2015/6/16	0.190	1684
Ota River	<i>Cobitis Linnaeus</i> (Shimadojou)	2015/10/24	370.0	2015/10/24	0.200	1850
Ota River	Cobitis Linnaeus (Shimadojou)	2016/5/30	180.0	2016/5/30	0.180	1000
Ota River	Cobitis Linnaeus (Shimadojou)	2016/8/21	220.0	2016/8/22	0.720	306
Ota River	(Shimadojou)	2017/6/15	250.0	2017/6/15	0.130	1923
Mano River	Cobitis Linnaeus (Shimadojou)	2016/6/1	22.0	2016/5/31	0.024	917
Mano River	<i>Cobitis Linnaeus</i> (Shimadojou)	2017/8/22	19.0	2017/8/28	0.016	1188
Mano River	Cobitis Linnaeus (Shimadojou)	2018/6/6	17.0	2018/6/6	0.013	1308
Uda River	<i>Rhinogobius nagoyae</i> (Shimayoshinobori)	2014/6/28	35.0	2014/6/25	0.044	795
Uda River	(Shimayoshinobori)	2014/12/7	26.0	2014/12/5	0.012	2167
Uda River	Rhinogobius nagoyae (Shimayoshinobori)	2015/8/19	23.0	2015/8/19	0.023	1000
Uda River	(Shimayoshinobori)	2015/10/22	19.0	2015/10/21	0.009	2111
Uda River	Rhinogobius nagoyae (Shimayoshinobori)	2015/12/3	19.0	2015/12/2	0.006	3167
Uda River	(Shimayoshinobori)	2016/12/4	15.0	2016/12/8	0.006	2500
Uda River	Rhinogobius nagoyae (Shimayoshinobori)	2017/12/2	11.0	2017/12/5	0.004	2973
Ota River	Rhinogobius nagoyae (Shimayoshinobori)	2014/10/23	1400.0	2014/10/25	0.330	4242

Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2014/7/4	130.0	2014/7/4	0.046	2857
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2014/8/30	70.0	2014/9/3	0.070	1007
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2014/10/26	94.0	2014/10/23	0.062	1528
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2014/12/2	65.0	2014/12/6	0.027	2453
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2015/6/20	76.0	2015/6/19	0.043	1767
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2015/10/23	63.0	2015/10/23	0.024	2625
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2015/12/4	33.0	2015/12/4	0.022	1500
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2016/12/7	32.0	2016/12/5	0.017	1882
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2017/6/14	27.0	2017/6/14	0.012	2250
Mano River	Rhinogobius nagoyae (Shimayoshinobori)	2017/8/22	17.0	2017/8/28	0.016	1063
Mano River	(Shimayoshinobori)	2017/12/5	13.0	2017/12/5	0.010	1354
Niida River	Rhinogobius nagoyae (Shimayoshinobori)	2014/8/31	190.0	2014/9/2	0.185	1027
Niida River	Rhinogobius nagoyae (Shimayoshinobori)	2014/10/24	190.0	2014/10/24	0.180	1056
Niida River	Rhinogobius nagoyae (Shimayoshinobori)	2014/12/5	210.0	2014/12/2	0.220	955
Niida River	Rhinogobius nagoyae (Shimayoshinobori)	2015/10/25	97.0	2015/10/22	0.032	3031
Abukuma River	Pond loach	2014/6/25	15.0	2014/6/24	0.077	195
Abukuma River	Pond loach	2014/6/25	11.0	2014/6/24	0.077	143
Abukuma River	Pond loach	2014/6/27	17.0	2014/6/24	0.015	1133
Abukuma River	Pond loach	2014/8/28	11.0	2014/8/26	0.087	126
Abukuma River	Pond loach	2014/8/29	8.4	2014/8/26	0.049	171
Abukuma River	Pond loach	2014/10/23	13.0	2014/10/21	0.026	500
Abukuma River	Pond loach	2014/12/3	11.0	2014/12/4	0.020	550
Abukuma River	Pond loach	2014/12/2	12.0	2014/12/4	0.014	857
Abukuma River	Pond loach	2015/6/17	12.0	2015/6/18	0.064	188
Abukuma River	Pond loach	2015/6/18	8.9	2015/6/18	0.022	405
Abukuma River	Pond loach	2015/8/25	12.0	2015/8/18	0.062	194
Abukuma River	Pond loach	2015/8/25	14.0	2015/8/18	0.020	700
Abukuma River	Pond loach	2015/10/21	12.0	2015/10/20	0.019	632
Abukuma River	Pond loach	2015/12/2	9.2	2015/12/1	0.032	288
Abukuma River	Pond loach	2016/10/23	9.1	2016/10/17	0.037	246
Abukuma River	Pond loach	2016/10/23	7.6	2016/10/17	0.018	422
Abukuma River	Pond loach	2016/12/2	9.2	2016/12/9	0.008	1122
Abukuma River	Pond loach	2017/6/20	6.7	2017/6/13	0.013	515
Abukuma River	Pond loach	2017/8/25	7.8	2017/8/30	0.016	488
Uda River	Pond loach	2014/6/28	11.0	2014/6/25	0.044	250
Uda River	Pond loach	2015/6/18	10.0	2015/6/20	0.026	385
Uda River	Pond loach	2018/6/2	4.0	2018/6/6	0.014	286

Ota River	Pond loach	2014/7/1	530.0	2014/7/8	0.340	1559
Ota River	Pond loach	2014/12/6	480.0	2014/12/3	0.250	1920
Ota River	Pond loach	2016/5/30	280.0	2016/5/30	0.180	1556
Mano River	Pond loach	2014/7/4	120.0	2014/7/4	0.046	2637
Mano River	Pond loach	2015/6/20	11.0	2015/6/19	0.043	256
Mano River	Pond loach	2015/8/20	120.0	2015/8/20	0.032	3750
Mano River	Pond loach	2015/10/23	77.0	2015/10/23	0.024	3208
Mano River	Pond loach	2018/6/6	13.0	2018/6/6	0.013	1000
Mano River	Pond loach	2018/8/28	22.0	2018/8/28	0.023	957
Niida River	Pond loach	2016/6/1	28.0	2016/5/27	0.036	778
Niida River	Pond loach	2016/10/21	16.0	2016/10/19	0.021	762
Niida River	Pond loach	2017/6/18	36.0	2017/6/15	0.029	1241
Niida River	Pond loach	2018/6/2	29.0	2018/6/7	0.031	935
Hayama Lake	Pond loach	2017/6/16	31.0	2017/6/16	0.023	1348
Hayama Lake	Pond loach	2017/12/4	18.0	2017/12/4	0.010	1856
Hayama Lake	Pond loach	2018/10/22	5.9	2018/10/22	0.009	641
Inawashiro Lake	Pond loach	2014/6/26	1.2	2014/6/26	0.017	71
Inawashiro Lake	Pond loach	2015/6/17	1.9	2015/6/17	0.013	146
Inawashiro Lake	Pond loach	2015/8/26	1.0	2015/8/27	0.012	83
Inawashiro Lake	Pond loach	2015/10/20	1.4	2015/10/20	0.010	134
Inawashiro Lake	Pond loach	2016/8/18	1.9	2016/8/18	0.010	197
Inawashiro Lake	Pond loach	2016/10/18	1.5	2016/10/19	0.010	154
Inawashiro Lake	Pond loach	2017/6/19	1.0	2017/6/19	0.009	117
Inawashiro Lake	Pond loach	2017/8/24	0.8	2017/8/24	0.008	101
Inawashiro Lake	Pond loach	2017/12/1	1.6	2017/12/1	0.007	225
Inawashiro Lake	Pond loach	2018/8/21	2.3	2018/8/21	0.007	324
Abukuma River	Japanese common catfish	2015/6/24	46.0	2015/6/18	0.130	354
Abukuma River	Japanese common catfish	2017/6/9	35.0	2017/6/13	0.023	1522
Abukuma River	Japanese common catfish	2018/10/19	4.9	2018/10/25	0.009	551
Ota River	Japanese common catfish	2014/10/23	89.0	2014/10/25	0.330	270
Mano River	Japanese common catfish	2015/8/20	21.0	2015/8/20	0.032	656
Mano River	Japanese common catfish	2016/6/1	62.0	2016/5/31	0.024	2583
Mano River	Japanese common catfish	2017/6/14	32.0	2017/6/14	0.012	2667
Niida River	Japanese common catfish	2014/10/24	90.0	2014/10/24	0.180	500
Niida River	Japanese common catfish	2015/10/25	91.0	2015/10/22	0.032	2844
Niida River	Japanese common catfish	2016/6/1	150.0	2016/5/27	0.036	4167
Niida River	Japanese common catfish	2016/10/21	37.0	2016/10/19	0.021	1762
Niida River	Japanese common catfish	2017/6/18	250.0	2017/6/15	0.029	8621
Niida River	Japanese common catfish	2018/6/2	120.0	2018/6/7	0.031	3871
Niida River	Japanese common catfish	2018/6/2	76.0	2018/6/7	0.031	2452
Hayama Lake	Japanese common catfish	2015/6/25	510.0	2015/6/24	0.055	9358

Hayama Lake	Japanese common catfish	2016/12/8	340.0	2016/12/5	0.032	10515
Hayama Lake	Japanese common catfish	2017/8/20	410.0	2017/8/21	0.027	15185
Hayama Lake	Japanese common catfish	2018/6/1	300.0	2018/6/1	0.013	23077
Hayama Lake	Japanese common catfish	2018/8/27	220.0	2018/8/27	0.028	8000
Akimoto Lake	Japanese common catfish	2015/10/21	130.0	2015/10/21	0.013	9665
Akimoto Lake	Japanese common catfish	2016/12/1	93.0	2016/12/1	0.011	8774
Akimoto Lake	Japanese common catfish	2017/12/1	47.0	2017/12/1	0.014	3264
Akimoto Lake	Japanese common catfish	2018/12/1	25.0	2018/12/1	0.010	2488
Inawashiro Lake	Japanese common catfish	2015/6/17	76.0	2015/6/17	0.012	6179
Inawashiro Lake	Japanese common catfish	2016/10/19	11.0	2016/10/19	0.010	1131
Inawashiro Lake	Japanese common catfish	2016/10/19	15.0	2016/10/19	0.010	1538
Inawashiro Lake	Japanese common catfish	2017/6/19	32.0	2017/6/19	0.009	3743
Inawashiro Lake	Japanese common catfish	2017/10/18	5.2	2017/10/18	0.008	646
Inawashiro Lake	Japanese common catfish	2018/10/17	6.9	2018/10/17	0.007	1000
Inawashiro Lake	Japanese common catfish	2018/10/17	4.4	2018/10/17	0.007	638
Abukuma River	Japanese barbel	2015/6/24	15.0	2015/6/18	0.130	115
Abukuma River	Japanese barbel	2016/9/2	43.0	2016/9/7	0.009	4778
Abukuma River	Japanese barbel	2016/12/8	13.0	2016/12/9	0.006	2031
Abukuma River	Japanese barbel	2017/6/9	95.0	2017/6/13	0.023	4130
Abukuma River	Japanese barbel	2017/12/7	29.0	2017/12/8	0.019	1526
Abukuma River	Japanese barbel	2018/10/19	11.0	2018/10/25	0.009	1196
Abukuma River	Japanese barbel	2018/10/19	16.0	2018/10/25	0.009	1798
Abukuma River	Japanese barbel	2018/12/1	3.0	2018/12/7	0.012	261
Abukuma River	Japanese barbel	2018/12/1	3.7	2018/12/7	0.012	322
Abukuma River	Japanese barbel	2018/12/5	4.8	2018/12/7	0.014	343
Uda River	Japanese barbel	2016/10/20	6.1	2016/10/18	0.008	763
Uda River	Japanese barbel	2018/8/25	4.1	2018/8/28	0.010	410
Uda River	Japanese barbel	2018/10/20	4.7	2018/10/23	0.005	940
Niida River	Japanese barbel	2016/10/21	17.0	2016/10/19	0.021	810
Niida River	Japanese barbel	2018/10/21	29.0	2018/10/24	0.036	806
Akimoto Lake	Japanese barbel	2014/6/24	72.0	2014/6/24	0.017	4174
Akimoto Lake	Japanese barbel	2014/8/27	44.0	2014/8/26	0.018	2462
Akimoto Lake	Japanese barbel	2014/10/21	23.0	2014/10/21	0.030	767
Akimoto Lake	Japanese barbel	2014/12/3	76.0	2014/12/4	0.018	4164
Akimoto Lake	Japanese barbel	2015/6/16	43.0	2015/6/16	0.065	660
Akimoto Lake	Japanese barbel	2015/8/26	42.0	2015/8/27	0.017	2507
Akimoto Lake	Japanese barbel	2015/10/21	35.0	2015/10/21	0.013	2602
Akimoto Lake	Japanese barbel	2015/12/1	55.0	2015/12/1	0.016	3481
Akimoto Lake	Japanese barbel	2016/6/6	34.0	2016/6/6	0.011	3223
Akimoto Lake	Japanese barbel	2016/10/18	44.0	2016/10/18	0.044	1011
Akimoto Lake	Japanese barbel	2016/12/1	24.0	2016/12/1	0.011	2264

Akimoto Lake	Japanese barbel	2017/6/20	15.0	2017/6/20	0.008	1775
Akimoto Lake	Japanese barbel	2017/8/25	35.0	2017/8/25	0.012	3004
Akimoto Lake	Japanese barbel	2017/10/18	38.0	2017/10/18	0.011	3423
Akimoto Lake	Japanese barbel	2018/5/30	19.0	2018/5/30	0.006	3333
Inawashiro Lake	Japanese barbel	2014/10/25	24.0	2014/10/22	0.014	1714
Inawashiro Lake	Japanese barbel	2015/6/10	25.0	2015/6/17	0.013	1923
Inawashiro Lake	Japanese barbel	2015/6/10	27.0	2015/6/17	0.013	2077
Inawashiro Lake	Japanese barbel	2015/10/20	7.8	2015/10/20	0.012	664
Inawashiro Lake	Japanese barbel	2016/6/5	13.0	2016/6/5	0.010	1259
Inawashiro Lake	Japanese barbel	2016/6/5	28.0	2016/6/5	0.011	2545
Inawashiro Lake	Japanese barbel	2016/8/18	26.0	2016/8/18	0.011	2364
Inawashiro Lake	Japanese barbel	2016/8/18	14.0	2016/8/18	0.010	1451
Inawashiro Lake	Japanese barbel	2016/8/18	30.0	2016/8/18	0.010	3109
Inawashiro Lake	Japanese barbel	2016/10/19	24.0	2016/10/19	0.010	2468
Inawashiro Lake	Japanese barbel	2016/10/19	21.0	2016/10/19	0.010	2154
Inawashiro Lake	Japanese barbel	2017/6/19	18.0	2017/6/19	0.009	2105
Inawashiro Lake	Japanese barbel	2018/5/29	17.0	2018/5/29	0.006	2656
Inawashiro Lake	Japanese barbel	2018/10/17	20.0	2018/10/17	0.007	2899
Abukuma River	Japanese eel	2018/10/20	5.3	2018/10/25	0.007	746
Uda River	Japanese eel	2017/6/17	24.0	2017/6/14	0.009	2581
Uda River	Japanese eel	2018/6/2	25.0	2018/6/6	0.014	1786
Uda River	Japanese eel	2018/6/2	23.0	2018/6/6	0.014	1643
Uda River	Japanese eel	2018/8/25	46.0	2018/8/28	0.010	4600
Ota River	Japanese eel	2014/10/23	150.0	2014/10/25	0.330	455
Ota River	Japanese eel	2015/10/24	550.0	2015/10/24	0.093	5914
Ota River	Japanese eel	2016/5/30	2400.0	2016/5/30	0.180	13333
Ota River	Japanese eel	2016/8/21	290.0	2016/8/22	0.720	403
Ota River	Japanese eel	2017/6/15	560.0	2017/6/15	0.130	4308
Ota River	Japanese eel	2018/6/7	580.0	2018/6/7	0.140	4143
Mano River	Japanese eel	2015/6/21	160.0	2015/6/19	0.043	3721
Mano River	Japanese eel	2016/6/1	36.0	2016/5/31	0.016	2250
Mano River	Japanese eel	2017/6/14	38.0	2017/6/14	0.012	3167
Mano River	Japanese eel	2017/6/14	52.0	2017/6/14	0.012	4333
Mano River	Japanese eel	2017/8/22	59.0	2017/8/28	0.016	3688
Mano River	Japanese eel	2017/12/6	14.0	2017/12/5	0.010	1458
Mano River	Japanese eel	2018/6/6	100.0	2018/6/6	0.013	7692
Niida River	Japanese eel	2014/10/24	210.0	2014/10/24	0.180	1167
Niida River	Japanese eel	2016/6/1	150.0	2016/5/27	0.036	4167
Niida River	Japanese eel	2017/6/18	120.0	2017/6/15	0.029	4138
Niida River	Japanese eel	2017/8/22	7.2	2017/8/28	0.110	65
Niida River	Japanese eel	2018/6/2	84.0	2018/6/7	0.031	2710

Abukuma River	Bluegill	2015/8/21	11.0	2015/8/18	0.052	212
Ota River	Bluegill	2015/10/24	1400.0	2015/10/24	0.200	7000
Mano River	Bluegill	2017/6/14	17.0	2017/6/14	0.012	1417
Mano River	Bluegill	2018/12/4	16.0	2018/12/6	0.014	1143
Niida River	Bluegill	2014/8/31	110.0	2014/9/2	0.185	595
Hayama Lake	Bluegill	2017/6/16	40.0	2017/6/16	0.033	1212
Hayama Lake	Bluegill	2017/6/16	29.0	2017/6/16	0.023	1261
Hayama Lake	Bluegill	2017/8/21	35.0	2017/8/21	0.027	1296
Hayama Lake	Bluegill	2018/6/4	35.0	2018/6/1	0.039	909
Hayama Lake	Bluegill	2018/8/27	40.0	2018/8/27	0.028	1455
Hayama Lake	Bluegill	2018/8/27	56.0	2018/8/27	0.028	2036
Akimoto Lake	Bluegill	2014/10/21	25.0	2014/10/21	0.030	833
Akimoto Lake	Bluegill	2015/6/16	27.0	2015/6/16	0.065	414
Akimoto Lake	Bluegill	2015/8/26	38.0	2015/8/27	0.017	2269
Akimoto Lake	Bluegill	2016/10/18	35.0	2016/10/18	0.044	805
Akimoto Lake	Bluegill	2017/10/18	20.0	2017/10/18	0.011	1802
Abukuma River	Yamame trout	2014/6/27	4.6	2014/6/24	0.015	307
Abukuma River	Yamame trout	2014/6/27	6.0	2014/6/24	0.015	400
Abukuma River	Yamame trout	2014/8/28	17.0	2014/8/26	0.087	195
Abukuma River	Yamame trout	2014/8/28	25.0	2014/8/26	0.087	287
Abukuma River	Yamame trout	2014/8/29	7.3	2014/8/26	0.049	149
Abukuma River	Yamame trout	2014/8/29	12.0	2014/8/26	0.049	245
Abukuma River	Yamame trout	2014/8/29	28.0	2014/8/26	0.049	571
Abukuma River	Yamame trout	2014/10/23	19.0	2014/10/21	0.026	731
Abukuma River	Yamame trout	2014/10/23	34.0	2014/10/21	0.026	1308
Abukuma River	Yamame trout	2014/12/3	32.0	2014/12/4	0.020	1600
Abukuma River	Yamame trout	2014/12/2	8.6	2014/12/4	0.014	614
Abukuma River	Yamame trout	2015/6/17	7.8	2015/6/18	0.064	122
Abukuma River	Yamame trout	2015/6/18	7.7	2015/6/18	0.022	350
Abukuma River	Yamame trout	2015/8/25	13.0	2015/8/18	0.062	210
Abukuma River	Yamame trout	2015/8/25	7.3	2015/8/18	0.020	365
Abukuma River	Yamame trout	2015/8/25	8.6	2015/8/18	0.020	430
Abukuma River	Yamame trout	2015/10/21	11.0	2015/10/20	0.019	579
Abukuma River	Yamame trout	2015/12/2	9.9	2015/12/1	0.032	309
Abukuma River	Yamame trout	2015/12/8	3.8	2015/12/1	0.024	158
Abukuma River	Yamame trout	2017/6/20	11.0	2017/6/13	0.013	846
Abukuma River	Yamame trout	2017/8/25	11.0	2017/8/30	0.016	688
Abukuma River	Yamame trout	2017/12/2	2.3	2017/12/8	0.005	500
Uda River	Yamame trout	2017/12/2	8.0	2017/12/5	0.004	2162
Ota River	Yamame trout	2015/10/24	310.0	2015/10/24	0.200	1550
Ota River	Yamame trout	2016/5/30	320.0	2016/5/30	0.180	1778

Ota River	Yamame trout	2018/12/5	250.0	2018/12/5	0.180	1389
Mano River	Yamame trout	2014/10/26	46.0	2014/10/23	0.062	748
Mano River	Yamame trout	2015/6/20	41.0	2015/6/19	0.043	953
Mano River	Yamame trout	2017/12/5	6.8	2017/12/5	0.010	708
Niida River	Yamame trout	2015/6/19	36.0	2015/6/17	0.670	54
Niida River	Yamame trout	2016/6/1	29.0	2016/5/27	0.036	806
Niida River	Yamame trout	2016/12/8	42.0	2016/12/7	0.038	1105
Niida River	Yamame trout	2018/6/2	27.0	2018/6/7	0.031	871
Hayama Lake	Yamame trout	2015/6/25	14.0	2015/6/24	0.055	257
Hayama Lake	Yamame trout	2017/6/16	33.0	2017/6/16	0.023	1435
Hayama Lake	Yamame trout	2017/12/7	58.0	2017/12/4	0.048	1208
Hayama Lake	Yamame trout	2017/12/4	46.0	2017/12/4	0.010	4742
Hayama Lake	Yamame trout	2018/6/1	27.0	2018/6/1	0.013	2077
Hayama Lake	Yamame trout	2018/8/27	36.0	2018/8/27	0.016	2250
Akimoto Lake	Yamame trout	2014/6/24	23.0	2014/6/24	0.017	1333
Akimoto Lake	Yamame trout	2015/12/1	23.0	2015/12/1	0.016	1456
Akimoto Lake	Yamame trout	2016/6/6	14.0	2016/6/6	0.011	1327
Akimoto Lake	Yamame trout	2017/6/20	8.4	2017/6/20	0.008	994
Inawashiro Lake	Yamame trout	2017/8/24	1.1	2017/8/24	0.008	135
Mano River	Japanese smelt	2014/12/2	8.3	2014/12/6	0.027	313
Hayama Lake	Japanese smelt	2017/6/16	36.0	2017/6/16	0.023	1565
Hayama Lake	Japanese smelt	2017/12/7	30.0	2017/12/4	0.048	625
Hayama Lake	Japanese smelt	2018/6/1	69.0	2018/6/1	0.013	5308
Akimoto Lake	Japanese smelt	2014/8/27	18.0	2014/8/26	0.018	1007
Akimoto Lake	Japanese smelt	2014/10/21	16.0	2014/10/21	0.030	533
Akimoto Lake	Japanese smelt	2014/12/3	19.0	2014/12/4	0.018	1041
Akimoto Lake	Japanese smelt	2015/6/16	15.0	2015/6/16	0.065	230
Akimoto Lake	Japanese smelt	2015/8/26	15.0	2015/8/27	0.017	896
Akimoto Lake	Japanese smelt	2015/10/21	17.0	2015/10/21	0.013	1264
Akimoto Lake	Japanese smelt	2015/12/1	9.5	2015/12/1	0.016	601
Akimoto Lake	Japanese smelt	2016/6/6	11.0	2016/6/6	0.011	1043
Akimoto Lake	Japanese smelt	2016/10/18	8.8	2016/10/18	0.044	202
Akimoto Lake	Japanese smelt	2016/12/1	14.0	2016/12/1	0.011	1321
Akimoto Lake	Japanese smelt	2017/6/20	26.0	2017/6/20	0.008	3077
Akimoto Lake	Japanese smelt	2017/8/25	14.0	2017/8/25	0.012	1202
Akimoto Lake	Japanese smelt	2017/10/18	19.0	2017/10/18	0.011	1712
Akimoto Lake	Japanese smelt	2018/5/30	18.0	2018/5/30	0.006	3158

System	Species	Sampling date	Bq/kg	Water sampling date	Bq/L	CR
Off Iwaki	Greenling	2014/7/18	14.0	2014/7/18	0.006	2240
Off Iwaki	Greenling	2015/6/26	2.5	2015/6/26	0.005	532
Off Iwaki	Greenling	2016/6/21	3.0	2016/6/21	0.004	759
Off Iwaki	Greenling	2017/6/28	1.7	2017/6/28	0.005	358
Off Watari	Greenling	2015/10/27	1.9	2015/10/27	0.010	193
Off Watari	Greenling	2018/6/4	0.4	2018/6/4	0.010	40
Off Watari	Greenling	2018/12/4	0.5	2018/12/3	0.005	95
Off Soma	Greenling	2014/10/29	2.0	2014/10/29	0.029	70
Off Soma	Greenling	2015/6/22	1.7	2015/6/22	0.020	87
Off Soma	Greenling	2016/10/24	1.8	2016/10/24	0.012	150
Off Soma	Greenling	2017/12/5	1.2	2017/12/7	0.009	132
Off Iwaki	Stone flounder	2014/9/5	2.3	2014/9/5	0.007	322
Off Iwaki	Stone flounder	2014/10/29	2.2	2014/10/29	0.013	169
Off Iwaki	Stone flounder	2015/6/26	3.1	2015/6/26	0.005	660
Off Iwaki	Stone flounder	2015/10/23	1.1	2015/10/23	0.015	73
Off Iwaki	Stone flounder	2016/6/21	4.2	2016/6/21	0.004	1063
Off Iwaki	Stone flounder	2016/9/5	1.8	2016/9/5	0.027	68
Off Iwaki	Stone flounder	2017/6/28	1.9	2017/6/28	0.005	400
Off Iwaki	Stone flounder	2018/6/5	0.3	2018/6/5	0.004	89
Off Iwaki	Stone flounder	2018/8/21	0.8	2018/8/21	0.002	318
Off Watari	Stone flounder	2015/8/19	5.1	2015/8/19	0.012	425
Off Watari	Stone flounder	2015/10/27	1.4	2015/10/27	0.010	142
Off Watari	Stone flounder	2016/10/25	0.7	2016/10/26	0.012	60
Off Watari	Stone flounder	2016/12/7	0.8	2016/12/7	0.005	176
Off Soma	Stone flounder	2017/6/21	1.9	2017/6/27	0.093	20
Off Soma	Stone flounder	2018/10/21	1.9	2018/10/17	0.010	196
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2014/7/18	1.8	2014/7/18	0.006	288
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2014/10/29	1.2	2014/10/29	0.013	92
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2015/6/26	1.0	2015/6/26	0.005	206
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2015/12/6	2.7	2015/12/6	0.006	432
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2016/6/21	1.5	2016/6/21	0.004	380
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2016/9/5	0.9	2016/9/5	0.027	33

Table S5 Concentration ratio (CR, L/kg fresh mass) of radiocaesium in marine fish (whole)

Off Iwaki	Lepidotrigla microptera (Kanagashira)	2017/6/28	1.2	2017/6/28	0.005	253
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2017/8/19	1.7	2017/8/19	0.005	343
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2017/10/17	1.3	2017/10/17	0.007	197
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2018/6/5	0.6	2018/6/5	0.004	163
Off Iwaki	Lepidotrigla microptera (Kanagashira)	2018/8/21	1.8	2018/8/21	0.002	735
Off Watari	Lepidotrigla microptera (Kanagashira)	2015/12/9	0.4	2015/12/9	0.011	38
Off Iwaki	Common skate	2014/7/18	41.0	2014/7/18	0.006	6560
Off Iwaki	Common skate	2014/9/5	23.0	2014/9/5	0.007	3217
Off Iwaki	Common skate	2014/10/29	9.3	2014/10/29	0.013	715
Off Iwaki	Common skate	2014/12/12	16.0	2014/12/12	0.004	4103
Off Iwaki	Common skate	2015/6/26	8.7	2015/6/26	0.005	1851
Off Iwaki	Common skate	2015/8/21	9.7	2015/8/21	0.007	1347
Off Iwaki	Common skate	2015/10/23	9.7	2015/10/23	0.015	647
Off Iwaki	Common skate	2015/12/6	13.0	2015/12/6	0.006	2080
Off Iwaki	Common skate	2016/6/21	12.0	2016/6/21	0.004	3038
Off Iwaki	Common skate	2016/9/5	5.1	2016/9/5	0.027	192
Off Iwaki	Common skate	2016/10/22	4.0	2016/10/22	0.012	327
Off Iwaki	Common skate	2016/12/3	4.3	2016/12/3	0.005	896
Off Iwaki	Common skate	2017/6/28	5.3	2017/6/28	0.005	1116
Off Iwaki	Common skate	2017/8/19	3.1	2017/8/19	0.005	626
Off Iwaki	Common skate	2017/10/17	3.7	2017/10/17	0.007	561
Off Iwaki	Common skate	2017/12/2	3.8	2017/12/2	0.006	644
Off Iwaki	Common skate	2018/6/5	1.7	2018/6/5	0.004	447
Off Iwaki	Common skate	2018/8/21	3.2	2018/8/21	0.002	1306
Off Watari	Common skate	2016/9/6	0.9	2016/9/6	0.010	86
Off Iwaki	Japanese seaperch	2014/12/12	14.0	2014/12/12	0.004	3590
Off Iwaki	Japanese seaperch	2015/10/23	2.0	2015/10/23	0.015	133
Off Iwaki	Japanese seaperch	2015/12/6	2.1	2015/12/6	0.006	336
Off Iwaki	Japanese seaperch	2016/12/3	2.8	2016/12/3	0.005	583
Off Iwaki	Japanese seaperch	2017/6/28	2.4	2017/6/28	0.005	505
Off Iwaki	Japanese seaperch	2018/12/4	1.3	2018/12/4	0.002	667
Off Watari	Japanese seaperch	2015/12/9	0.8	2015/12/9	0.011	72
Off Watari	Japanese seaperch	2018/10/22	1.0	2018/10/17	0.006	166
Off Iwaki	Crimson sea bream	2014/7/18	1.9	2014/7/18	0.006	304
Off Iwaki	Crimson sea bream	2014/9/5	2.8	2014/9/5	0.007	392
Off Iwaki	Crimson sea bream	2014/10/29	3.7	2014/10/29	0.013	285

Off Iwaki	Crimson sea bream	2014/10/29	1.7	2014/10/29	0.013	131
Off Iwaki	Crimson sea bream	2014/12/12	1.5	2014/12/12	0.004	385
Off Iwaki	Crimson sea bream	2015/6/26	0.9	2015/6/26	0.005	200
Off Iwaki	Crimson sea bream	2015/10/23	2.7	2015/10/23	0.015	180
Off Iwaki	Crimson sea bream	2016/9/5	1.0	2016/9/5	0.027	37
Off Watari	Crimson sea bream	2014/10/30	0.7	2014/10/30	0.010	76
Off Watari	Crimson sea bream	2017/8/21	0.4	2017/8/23	0.009	39
Off Watari	Crimson sea bream	2018/8/28	0.4	2018/8/22	0.012	35
Off Iwaki	Bastard halibut	2014/7/18	3.5	2014/7/18	0.006	560
Off Iwaki	Bastard halibut	2014/9/5	1.1	2014/9/5	0.007	154
Off Iwaki	Bastard halibut	2014/10/29	1.7	2014/10/29	0.013	131
Off Iwaki	Bastard halibut	2014/12/12	1.1	2014/12/12	0.004	282
Off Iwaki	Bastard halibut	2015/6/26	1.6	2015/6/26	0.005	340
Off Iwaki	Bastard halibut	2015/8/21	1.0	2015/8/21	0.007	132
Off Iwaki	Bastard halibut	2015/10/23	0.7	2015/10/23	0.015	45
Off Iwaki	Bastard halibut	2015/12/6	1.6	2015/12/6	0.006	256
Off Iwaki	Bastard halibut	2016/6/21	1.0	2016/6/21	0.004	253
Off Iwaki	Bastard halibut	2016/9/5	1.1	2016/9/5	0.027	42
Off Iwaki	Bastard halibut	2016/10/22	1.2	2016/10/22	0.012	98
Off Iwaki	Bastard halibut	2016/12/3	0.5	2016/12/3	0.005	110
Off Iwaki	Bastard halibut	2017/6/28	0.7	2017/6/28	0.005	143
Off Iwaki	Bastard halibut	2017/8/19	1.1	2017/8/19	0.005	222
Off Iwaki	Bastard halibut	2017/10/17	1.3	2017/10/17	0.007	197
Off Iwaki	Bastard halibut	2017/12/2	1.2	2017/12/2	0.006	203
Off Iwaki	Bastard halibut	2018/6/5	0.8	2018/6/5	0.004	203
Off Iwaki	Bastard halibut	2018/8/21	0.7	2018/8/21	0.002	265
Off Watari	Bastard halibut	2014/7/2	1.7	2014/7/2	0.018	97
Off Watari	Bastard halibut	2014/10/30	0.4	2014/10/30	0.010	45
Off Watari	Bastard halibut	2014/12/11	4.9	2014/12/11	0.010	490
Off Watari	Bastard halibut	2015/6/23	1.0	2015/6/23	0.018	54
Off Watari	Bastard halibut	2015/8/19	0.9	2015/8/19	0.012	77
Off Watari	Bastard halibut	2015/10/27	1.2	2015/10/27	0.010	122
Off Watari	Bastard halibut	2015/12/9	0.6	2015/12/9	0.011	52
Off Watari	Bastard halibut	2016/6/2	0.9	2016/6/6	0.008	124
Off Watari	Bastard halibut	2016/9/6	0.7	2016/9/6	0.010	70
Off Watari	Bastard halibut	2016/10/25	1.0	2016/10/26	0.012	85
Off Watari	Bastard halibut	2016/12/7	0.7	2016/12/7	0.005	147
Off Watari	Bastard halibut	2017/8/21	0.5	2017/8/23	0.009	57
Off Watari	Bastard halibut	2018/8/28	0.5	2018/8/22	0.012	38
Off Iwaki	Gurnard	2014/9/5	0.7	2014/9/5	0.007	103
Off Iwaki	Gurnard	2014/10/29	1.4	2014/10/29	0.013	108

Off Iwaki	Gurnard	2014/10/29	1.8	2014/10/29	0.013	138
Off Iwaki	Gurnard	2015/6/26	1.4	2015/6/26	0.005	298
Off Iwaki	Gurnard	2015/8/21	1.3	2015/8/21	0.007	181
Off Iwaki	Gurnard	2015/10/23	1.6	2015/10/23	0.015	107
Off Iwaki	Gurnard	2015/12/6	1.1	2015/12/6	0.006	176
Off Iwaki	Gurnard	2016/10/22	2.1	2016/10/22	0.012	171
Off Iwaki	Gurnard	2016/12/3	1.3	2016/12/3	0.005	271
Off Iwaki	Gurnard	2017/8/19	1.1	2017/8/19	0.005	222
Off Iwaki	Gurnard	2018/8/21	0.6	2018/8/21	0.002	233
Off Iwaki	Starspotted smooth-hound	2014/7/18	14.0	2014/7/18	0.006	2240
Off Iwaki	Starspotted smooth-hound	2014/9/5	7.5	2014/9/5	0.007	1049
Off Iwaki	Starspotted smooth-hound	2014/10/29	1.8	2014/10/29	0.013	138
Off Iwaki	Starspotted smooth-hound	2014/12/12	1.7	2014/12/12	0.004	436
Off Iwaki	Starspotted smooth-hound	2015/8/21	2.8	2015/8/21	0.007	389
Off Iwaki	Starspotted smooth-hound	2015/10/23	3.1	2015/10/23	0.015	207
Off Iwaki	Starspotted smooth-hound	2015/12/6	2.8	2015/12/6	0.006	448
Off Iwaki	Starspotted smooth-hound	2016/6/21	2.2	2016/6/21	0.004	557
Off Iwaki	Starspotted smooth-hound	2016/9/5	3.5	2016/9/5	0.027	132
Off Iwaki	Starspotted smooth-hound	2016/10/22	3.4	2016/10/22	0.012	278
Off Iwaki	Starspotted smooth-hound	2017/8/19	3.8	2017/8/19	0.005	768
Off Iwaki	Starspotted smooth-hound	2018/8/21	2.6	2018/8/21	0.002	1061
Off Soma	Flathead mullet	2014/7/16	54.0	2014/7/16	0.025	2160
Off Soma	Flathead mullet	2014/9/2	44.0	2014/9/2	0.021	2146
Off Soma	Flathead mullet	2014/12/10	15.0	2014/12/10	0.016	968
Off Soma	Flathead mullet	2015/6/22	2.7	2015/6/22	0.020	138
Off Soma	Flathead mullet	2015/8/20	12.0	2015/8/20	0.019	632
Off Soma	Flathead mullet	2015/10/22	9.5	2015/10/28	0.022	432
Off Soma	Flathead mullet	2016/8/20	1.7	2016/8/26	0.026	67
Off Soma	Flathead mullet	2017/8/19	7.9	2017/8/23	0.027	293
Off Soma	Flathead mullet	2018/6/2	8.3	2018/6/4	0.031	268
Off Soma	Flathead mullet	2018/8/26	13.0	2018/8/22	0.013	1000
Off Soma	Flathead mullet	2018/10/21	10.0	2018/10/17	0.010	1031
Off Iwaki	Yellow striped flounder	2014/7/18	5.0	2014/7/18	0.006	800
Off Iwaki	Yellow striped flounder	2014/9/5	1.7	2014/9/5	0.007	238
Off Iwaki	Yellow striped flounder	2014/12/12	3.9	2014/12/12	0.004	1000
Off Iwaki	Yellow striped flounder	2015/12/6	2.5	2015/12/6	0.006	400
Off Iwaki	Yellow striped flounder	2016/6/21	1.8	2016/6/21	0.004	456
Off Iwaki	Yellow striped flounder	2016/12/3	1.7	2016/12/3	0.005	354
Off Iwaki	Yellow striped flounder	2017/6/28	1.5	2017/6/28	0.005	316
Off Iwaki	Yellow striped flounder	2018/6/5	1.8	2018/6/5	0.004	474
Off Watari	Yellow striped flounder	2015/8/19	0.6	2015/8/19	0.012	53

Off Watari	Yellow striped flounder	2018/6/4	0.4	2018/6/4	0.010	41
Off Watari	Yellow striped flounder	2018/8/28	0.4	2018/8/22	0.012	37
Off Iwaki	Marbled flounder	2014/7/18	6.0	2014/7/18	0.006	960
Off Iwaki	Marbled flounder	2014/9/5	4.4	2014/9/5	0.007	615
Off Iwaki	Marbled flounder	2014/10/29	5.7	2014/10/29	0.013	438
Off Iwaki	Marbled flounder	2014/12/12	2.8	2014/12/12	0.004	718
Off Iwaki	Marbled flounder	2015/6/26	7.9	2015/6/26	0.005	1681
Off Iwaki	Marbled flounder	2015/8/21	1.5	2015/8/21	0.007	208
Off Iwaki	Marbled flounder	2015/10/23	2.4	2015/10/23	0.015	160
Off Iwaki	Marbled flounder	2015/12/6	1.0	2015/12/6	0.006	160
Off Iwaki	Marbled flounder	2016/6/21	2.1	2016/6/21	0.004	532
Off Iwaki	Marbled flounder	2016/9/5	1.5	2016/9/5	0.027	57
Off Iwaki	Marbled flounder	2016/10/22	1.7	2016/10/22	0.012	139
Off Iwaki	Marbled flounder	2017/6/28	3.8	2017/6/28	0.005	800
Off Iwaki	Marbled flounder	2017/8/19	1.1	2017/8/19	0.005	222
Off Iwaki	Marbled flounder	2017/10/17	1.1	2017/10/17	0.007	167
Off Iwaki	Marbled flounder	2018/6/5	1.7	2018/6/5	0.004	447
Off Iwaki	Marbled flounder	2018/8/21	4.7	2018/8/21	0.002	1918
Off Watari	Marbled flounder	2014/10/30	1.1	2014/10/30	0.010	114
Off Watari	Marbled flounder	2016/12/7	1.9	2016/12/7	0.005	418
Off Iwaki	John dory	2014/9/5	0.9	2014/9/5	0.007	120
Off Iwaki	John dory	2014/10/29	0.7	2014/10/29	0.013	50
Off Iwaki	John dory	2015/6/26	0.7	2015/6/26	0.005	149
Off Iwaki	John dory	2016/9/5	0.6	2016/9/5	0.027	21
Off Iwaki	John dory	2016/10/22	0.8	2016/10/22	0.012	66
Off Iwaki	John dory	2017/8/19	0.4	2017/8/19	0.005	79
Off Iwaki	John dory	2018/6/5	0.5	2018/6/5	0.004	124
Off Watari	John dory	2014/7/2	2.5	2014/7/2	0.018	143
Off Watari	John dory	2014/10/30	0.8	2014/10/30	0.010	84
Off Watari	John dory	2015/6/23	0.4	2015/6/23	0.018	23
Off Watari	John dory	2016/9/6	0.5	2016/9/6	0.010	47
Off Watari	Yellowfin goby	2014/12/11	2.6	2014/12/11	0.010	260
Off Watari	Yellowfin goby	2015/10/27	4.3	2015/10/27	0.010	437
Off Watari	Yellowfin goby	2018/6/4	1.7	2018/6/4	0.010	173
Off Soma	Yellowfin goby	2014/7/16	3.4	2014/7/16	0.025	136
Off Soma	Yellowfin goby	2014/12/10	3.3	2014/12/10	0.016	213
Off Soma	Yellowfin goby	2018/10/21	1.5	2018/10/17	0.010	155
Off Soma	Yellowfin goby	2018/12/2	1.3	2018/12/3	0.007	181
Off Iwaki	Round-nose flounder	2014/7/18	2.1	2014/7/18	0.006	336
Off Iwaki	Round-nose flounder	2015/6/26	2.0	2015/6/26	0.005	426
Off Iwaki	Round-nose flounder	2015/8/21	1.4	2015/8/21	0.007	194

Off Iwaki	Round-nose flounder	2015/12/6	1.9	2015/12/6	0.006	304
Off Iwaki	Round-nose flounder	2016/6/21	1.6	2016/6/21	0.004	405
Off Iwaki	Round-nose flounder	2016/12/3	1.6	2016/12/3	0.005	333
Off Iwaki	Round-nose flounder	2017/6/28	2.0	2017/6/28	0.005	421
Off Iwaki	Round-nose flounder	2017/8/19	2.0	2017/8/19	0.005	404
Off Iwaki	Round-nose flounder	2018/6/5	1.2	2018/6/5	0.004	316
Off Iwaki	Round-nose flounder	2018/8/21	1.1	2018/8/21	0.002	449

l able St	0 INAUIUAU	•																
Sample No.	Sampling date	Place	Sample name	Tissue	Treatment	Fresh mass, g	Dry mass, g	I-131 Bq/kg	+1	Cs-137, Bq/kg	+	Cs-134, Bq/kg	H	K-40, Bq/kg	Ŧ	Pulp /Pericarp	Wash /Raw	Boiled /Wash
220	2011/9/29	0	Citrus natsudaidai (Amanatsumikan)	Pulp		101.5	4.4			24	2	21	1.1			0.47		
222	2011/9/29	Ø	Čitrus natsudaidai (Amanatsumikan)	Pericarp		75.9	18.9			51	б	41	1.9					
221	2011/9/29	Ø	Čitrus natsudaidai (Amanatsumikan)	Pulp		118.0	4.7			25	7	24	1.1			0.35		
223	2011/9/29	Ø	Citrus natsudaidai (Amanatsumikan)	Pericarp		72.6	16.8			72	б	55	1.6					
1280	2013/9/17	Ø	Čitrus natsudaidai (Amanatsumikan)	Pulp		232.3	29.0			3.0	0.2	1.6	0.2	85	4	0.55		
1279	2013/9/17	Ø	Citrus natsudaidai (Amanatsumikan)	Pericarp		122.5	35.0			5.4	0.5	2.7	0.3	118	8			
1673	2014/8/18	Ø	Citrus natsudaidai (Amanatsumikan)	Pulp		228.1	35.6			4.8	0.4	1.5	0.3	III	٢	1.66		
1674	2014/8/18	Ø	Čitrus natsudaidai (Amanatsumikan)	Pericarp		126.0	35.8			2.9	0.2	1.3	0.1	74	ю			
1925	2015/8/21	Ø	Citrus natsudaidai (Amanatsumikan)	Pulp		238.7	31.4			1.7	0.1	0.4	0.1	78	б	0.75		
1924	2015/8/21	Ø	Citrus natsudaidai (Amanatsumikan)	Pericarp		231.1	57.3			2.2	0.2	0.6	0.1	95	4			
1477	2014/3/18	Ø	Citrus natsudaidai (Amanatsumikan)	Pulp		218.9	27.6			7.7	0.2	2.9	0.1	57	7	0.52		
1475	2014/3/18	Ø	Čitrus natsudaidai (Amanatsumikan)	Pericarp		97.0	23.6			15.0	0.6	5.8	0.4	74	7			
1808	2015/3/26	Ø	Čitrus natsudaidai (Amanatsumikan)	Pulp		481.5	59.3			1.2	0.1	0.3	0.1	57	2	0.53		
1807	2015/3/26	Ø	Čitrus natsudaidai (Amanatsumikan)	Pericarp		246.2	53.3			2.3	0.2			62	4			
2003	2016/2/13	Ø	Čitrus natsudaidai (Amanatsumikan)	Pulp		534.6	52.5			0.8	0.1			51	7	0.54		
2002	2016/2/13	Ø	Čitrus natsudaidai (Amanatsumikan)	Pericarp		276.6	61.0			1.4	0.2			67	4			
2134	2017/1/20	Ø	Čitrus natsudaidai (Amanatsumikan)	Pulp		675.9	6.99			0.6	0.1			46	1	0.46		
2133	2017/1/20	ø	Čitrus natsudaidai (Amanatsumikan)	Pericarp		233.3	60.4			1.4	0.2			74	ŝ			
180	2011/7/28	0	Persimmon	Pulp		72.0	9.2			11	2	11	1.9			0.45		
181	2011/7/28	Ø	Persimmon	Pulp		77.1	9.4			6	1	6	1.2					
182	2011/7/28	0	Persimmon	Pericarp		55.5	14.8			22	7	20	1.8					
266	2011/10/4	Ø	Persimmon	Pulp		61.3	11.7			11	2	10	1.2			0.37		

	5	110			0.3	1.6	29.1	110.0	Pericarp	Persimmon	Ø	2014/8/20	1679
0.87	7	64			0.1	1.4	84.3	602.2	Pulp	Persimmon	Ø	2014/8/20	1680
	6	87			0.5	1.5	17.9	6.9	Pericarp	Persimmon	Ø	2013/10/12	1373
0.91	3	52	0.1	0.8	0.2	1.4	68.7	357.3	Pulp	Persimmon	Ø	2013/10/12	1372
	8	104			0.4	1.5	19.9	75.6	Pericarp	Persimmon	Ø	2013/10/12	1366
0.55	ю	50			0.2	0.8	78.3	439.6	Pulp	Persimmon	ø	2013/10/12	1365
	10	133	0.4	2.0	0.5	2.1	15.2	54.5	Pericarp	Persimmon	0	2013/10/8	1352
0.61	ю	56	0.1	0.7	0.1	1.2	74.3	419.9	Pulp	Persimmon	Ø	2013/10/8	1350
	8	91			0.5	1.5	18.0	76.7	Pericarp	Persimmon	0	2013/8/14	1242
	ю	52			0.2	0.4	39.3	274.8	Pulp	Persimmon	Ø	2013/8/14	1240
0.46	б	50			0.2	0.9	35.4	248.8	Pulp	Persimmon	Ø	2013/8/14	1239
	14	125			0.8	3.4	11.4	43.5	Pericarp	Persimmon	Ø	2013/8/8	1210
0.34	ю	45	0.1	0.7	0.2	1.2	32.5	255.9	Pulp	Persimmon	Ø	2013/8/8	1211
	٢	88			0.4	3.6	17.8	66.4	Pericarp	Persimmon	Ø	2012/9/13	654
0.67	2	55	0.1	1.3	0.1	2.4	51.9	325.6	Pulp	Persimmon	Ø	2012/9/13	655
	٢	88			0.4	3.3	17.0	65.4	Pericarp	Persimmon	Ø	2012/9/13	650
0.89	3	65	0.1	1.9	0.2	3.0	45.4	290.8	Pulp	Persimmon	Ø	2012/9/13	651
	14	93	0.7	4.2	0.8	6.7	9.5	40.0	Pericarp	Persimmon	Ø	2012/6/27	603
0.62	9	89	0.3	2.9	0.4	4.1	15.1	96.9	Pulp	Persimmon	Ø	2012/6/27	604
	14	109	0.6	4.8	0.8	4.5	10.0	42.0	Pericarp	Persimmon	Ø	2012/6/27	600
0.81	9	85	0.3	2.5	0.3	3.6	15.3	96.7	Pulp	Persimmon	Ø	2012/6/27	601
			2.4	19	3	17	4.4	15.8	Pericarp	Persimmon	Ø	2011/10/4	274
			1.0	10	1	12	9.8	55.0	Pulp	Persimmon	Ø	2011/10/4	272
0.57			0.8	5.7	1.3	7.0	11.2	60.9	Pulp	Persimmon	Ø	2011/10/4	271
			2.3	15	3	24	5.6	19.3	Pericarp	Persimmon	Ø	2011/10/4	269
			1.1	4.6	1.5	6.9	10.2	52.2	Pulp	Persimmon	0	2011/10/4	267

1717	2014/10/9	Ø	Persimmon	Pulp	343.2	60.9	0.8	0.1			60	3	0.65
1718	2014/10/9	ð	Persimmon	Pulp	348.0	61.7	0.7	0.1			69	3	
1716	2014/10/9	ð	Persimmon	Pericarp	90.9	25.2	1.1	0.3			123	9	
1909	2015/7/21	ð	Persimmon	Pulp	194.2	25.5	0.6	0.1			59	2	0.61
1910	2015/7/21	ð	Persimmon	Pericarp	33.1	8.9	0.9	0.4			122	6	
1937	2015/8/27	ð	Persimmon	Pulp	230.5	35.9	0.6	0.1			61	2	0.62
1936	2015/8/27	ð	Persimmon	Pericarp	35.7	9.8	1.0	0.4			115	8	
1971	2015/10/13	ð	Persimmon	Pulp	357.6	71.6	0.6	0.1			55	2	0.79
1970	2015/10/13	ð	Persimmon	Pericarp	88.6	23.8	0.7	0.3			124	9	
2114	2016/10/11	ð	Persimmon	Pulp	396.5	71.2	0.3	0.1			56	5	0.31
2115	2016/10/11	ð	Persimmon	Pulp	275.9	49.5	0.4	0.1			59	5	
2113	2016/10/11	ð	Persimmon	Pericarp	92.2	26.2	1.0	0.2			97	5	
2207	2017/10/24	ð	Persimmon	Pulp	369.7	74.7	0.2	0.0			64	1	0.62
2208	2017/10/24	ð	Persimmon	Pulp	439.0	84.1	0.3	0.0			61	1	
2206	2017/10/13	ð	Persimmon	Pericarp	85.9	26.1	0.4	0.1			135	3	
120	2011/6/7	ð	Loquat	Pulp	97.6	11.7	91	4	79	Э			0.53
117	2011/6/7	ð	Loquat	Pericarp	46.0	7.8	172	6	119	5			
121	2011/6/7	ð	Loquat	Pulp	109.8	13.2	81	4	76	ю			0.43
118	2011/6/7	ð	Loquat	Pericarp	33.9	5.8	214	12	131	9			
119	2011/6/7	ð	Loquat	Pericarp	36.6	6.2	162	10	112	5			
565	2012/6/8	ð	Loquat	Pulp	73.5	9.5	17	1	12	1	53	8	0.53
566	2012/6/8	ð	Loquat	Pericarp	18.0	3.2	33	7	23	7			
1136	2013/6/19	ð	Loquat	Pulp	154.9	17.3	2.7	0.2	1.5	0.2	53	4	0.64
1135	2013/6/19	ð	Loquat	Pericarp	27.7	4.3	4.3	1.0			94	17	
1160	2013/6/19	ð	Loquat	Pulp	159.2	12.9	6.2	0.3	3.4	0.2	49	4	0.62
1161	2013/6/19	ð	Loquat	Pericarp	31.3	4.3	10.1	1.0	4.6	6.0	88	15	

1609	2014/6/4	ð	Loquat	Pulp		137.0	11.3	2.0	0.2	0.7	0.1	49	Э	0.66	
1608	2014/6/4	Ø	Loquat	Pericarp		34.8	4.7	3.0	0.5	1.1	0.4	66	10		
1631	2014/6/11	0	Loquat	Pulp		85.9	11.8	4.8	0.3	1.5	0.2	56	5	0.77	
1632	2014/6/11	0	Loquat	Pericarp		13.5	2.5	6.2	1.4	3.3	1.2	95	22		
1871	2015/6/11	Ø	Loquat	Pulp		232.0	26.6	6.3	0.2	1.6	0.1	71	2	0.67	
1870	2015/6/11	Ø	Loquat	Pericarp		49.5	8.2	9.4	0.5	2.9	0.3	117	7		
1878	2015/6/11	0	Loquat	Pulp		332.2	45.5	1.0	0.1	0.4	0.1	58	2	0.58	
1877	2015/6/11	Ø	Loquat	Pericarp		69.3	12.3	1.7	0.3			107	9		
2067	2016/6/6	Ø	Loquat	Pulp		353.5	32.7	1.6	0.1			52	2	0.64	
2066	2016/6/6	0	Loquat	Pericarp		78.8	12.4	2.5	0.3			91	5		
2170	2017/6/4	0	Loquat	Pulp		338.2	36.4	0.5	0.0			46	1	0.38	
2169	2017/6/4	Ø	Loquat	Pericarp		72.7	11.9	1.4	0.1			88	7		
2175	2017/6/4	Ø	Loquat	Pulp		237.2	25.5	2.1	0.1			59	1	0.56	
2174	2017/6/4	0	Loquat	Pericarp		61.8	9.9	3.8	0.1			101	5		
582	2012/6/14	Ø	Knotweed	Above ground	Raw	234.2	29.6	3.3	0.2	2.0	0.2	127	5		1.014
583	2012/6/14	Ø	Knotweed	Above ground	Wash	216.1	28.0	3.4	0.2	2.1	0.2	129	5		
1217	2013/8/8	Ø	Knotweed	Leaf blade	Raw	150.7	28.5	1.7	0.2			132	9		0.728
1218	2013/8/8	Ø	Knotweed	Leaf blade	Wash	155.5	29.2	1.2	0.2			113	9		
1543	2014/4/24	Ø	Knotweed	Leaf blade	Raw	187.6	35.1	0.9	0.2			124	5	-	0.962
1545	2014/4/24	Ø	Knotweed	Leaf blade	Wash	197.8	36.9	0.9	0.2			111	5		
2038	2016/4/22	Ø	Knotweed	Leaves	Raw	176.3	33.9	1.3	0.2			31	1		1.323
2039	2016/4/22	Ø	Knotweed	Leaves	Wash	163.6	31.2	1.7	0.2			25	1		
304	2011/10/22	н	Japanese chestnut	Nut	Raw	7.77	42.9	892	10	708	6.5	244	27		
305	2011/10/22	н	Japanese chestnut	Nut	Boiled	81.7	44.8	613	8	465	5.2				
306	2011/10/22	н	Japanese chestnut	Soft skin	Raw	42.5	26.4	603	Ξ	473	6.8				
307	2011/10/22	ГЦ	Japanese chestnut	Hard skin	Raw	38.2	27.5	302	6	241	5.6				

μ μ	Japanese chestnut	Nut Safe alti-	Boiled	44.2	23.0 1.5	8968 507	13	693	7.9	219	36	1.00
Japanese	chestnut	Soft skin	Boiled	7.3	C.4 7	196 206	77 7	431 210	0 1 0 1 3.5			0.99
Japanese	chestnut	Hard skin U and aldin	Boiled	C.11	1.6	306 6460	14 26	210	8.4 1 0			1.01
Japanese	chestnut	rtaru skin Soft skin	Raw Raw	75	1.1 3.6	040U 6377	00 4	2965	10			
Japanese	chestnut	Nut	Raw	24.5	9.2	6297	53 1	2897	12	153	26	
Japanese	e chestnut	Hard skin	Boiled with hard skin	14.4	7.5	4072	25	1883	13			0.63
Japanese	chestnut	Soft skin	Boiled with hard skin	7.6	3.2	4960	36	2264	19			0.78
Japanese	e chestnut	Nut	Boiled with hard skin	30.9	10.6	5128	18	2335	6	118	21	0.81
Japanes	e chestnut	Hard skin	Raw	22.4	12.3	4650	25	2123	12			
Japanes	e chestnut	Soft skin	Raw	8.9	4.2	3120	26	1466	14			
Japanes	se chestnut	Nut	Raw	41.7	18.4	2832	13	1292	9	138	18	
Japane	se chestnut	Soft skin	Boiled with soft skin	10.6	2.9	752	12	343	٢			0.24
Japane	se chestnut	Nut	Boiled with soft skin	44.7	17.9	2319	11	1044	9	127	17	0.82
Japane	se chestnut	Boiled water, after		68.5	68.5	272	9	116	ю			
Japane	se chestnut	Hard skin	Boiled with hard skin	22.9	11.5	3566	21	1627	11			0.77
Japane	se chestnut	Soft skin	Boiled with hard skin	15.5	6.7	3277	21	1517	11	156	42	1.05
Japane	se chestnut	Nut	Boiled with hard skin Boiled with	75.8	32.1	3702	12	1686	9	143	13	1.31
Japane	se chestnut	Hard skin	hard skin & soak in water for 16 hours Boiled with	18.0	8.5	2445	18	1135	6			0.53
Japanes	se chestnut	Soft skin	hard skin & soak in water for 16 hours Boiled with	9.8	4.2	2400	22	1133	12			0.77
Japanes	e chestnut	Nut	hard skin & soak in water for 16 hours	47.8	18.3	1932	10	889	Ś	108	15	0.68
Somei ch	yoshino erry	Leaves	Raw	24.8	8.2	64	7	63	4.7			

06.0	0.10		0.29			1.01		0.72		0.65		0.68		0.65		0.67		0.87		0.79		0.70		0.39	1
																									0.8
		23	12	37	5	4	40	9	6	8	9	5	4	б	10	٢	9	5	9	5			18	16	11
		199	53	122	120	96	156	93	158	87	135	93	107	74	164	104	116	87	100	80			223	79	166
4.8	3.0	1.1	9.0	1.7	0.3	0.2	1.7	0.3	0.7	0.6	0.4	0.3	0.2	0.2	0.7	0.5	0.3	0.3	0.3	0.2	1.5	1.8	1.0	0.6	0.5
48	7	16.0	4.6	6.3	8.3	7.6	10.5	7.5	27.3	18.6	14.5	10.0	7.5	4.9	23.6	16.5	8.5	7.2	9.9	5.2	19	27	4.4	1.3	3.5
L	ю	1.6	0.9	2.3	0.4	0.4	2.4	0.5	1.1	1.0	0.7	0.5	0.4	0.3	1.1	0.8	0.6	0.4	0.5	0.4	7	б	1.0	0.9	0.6
58	9	23.2	6.7	13.2	15.2	14.3	17.8	12.9	54.9	35.5	27.5	18.6	15.1	9.6	45.2	30.4	15.6	13.6	11.7	9.2	23	33	6.6	2.6	5.4
		9.8	33.0	93.8	18.8	15.7	82.1	8.9	8.0	7.4	11.9	13.0	22.2	17.0	7.9	10.3	11.0	15.3	11.3	12.9	6.0	6.1	87.9	65.9	8.4
20.1	34.9	31.8	81.8	93.8	239.4	205.7	82.1	112.7	103.6	102.5	170.3	196.1	341.6	261.3	98.1	141.2	160.8	241.4	172.8	223.4	74.9	76.9	93.5	71.8	55.3
Blanching	Salted	Wash	Salted	Raw	Raw	Boiled	Raw	Boiled	Raw	Boiled	Raw	Boiled	Raw	Boiled	Raw	Boiled	Raw	Boiled	Raw	Boiled	Boiled	Raw	Raw	Boiled	Raw
Leaves	Leaves	Leaves	Leaves	Shoot-3	Shoot-3	Shoot-3	Shoot-4	Shoot-4	Shoot-5 upper	Shoot-5 upper	Shoot-5 middle	Shoot-5 middle	Shoot-5 lower	Shoot-5 lower	Shoot-6 upper	Shoot-6 upper	Shoot-6 middle	Shoot-6 middle	Shoot-6 lower	Shoot-6 lower	Shoot	Shoot	Nut	Nut	Leaves
Someiyoshino cherry	Someiyoshino cherry	Someiyoshino cherry	Someiyoshino cherry	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Bamboo	Peanut	Peanut	Japanese dock
Ø	Ø	Ø	0	C	C	U	U	U	U	C	C	C	U	C	U	U	U	U	C	C	Ι	Ι	Ι	Ι	Ø
2011/6/7	2011/6/7	2012/5/31	2012/5/31	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2013/4/9	2011/5/9	2011/5/9	2011/10/23	2011/10/23	2012/3/19
105	106	539	540	908	606	910	916	920	924	925	926	927	928	929	933	934	935	936	937	938	2240	2241	320	323	407

0.64		219 113	1487 942	1 3	17 9	19 9	185	6.3 7.7	52.3 69.2	Wash Wash-Boiled	Leaves Leaves	Garlic Garlic	чч	01/11/10
0.54		101	931	1	9	9	83	5.4	42.6	Wash-Boiled	Stem	Garlic	ш	01
		125	1002	1	13	6	153	4.6	36.9	Wash	Stem	Garlic	ч	/10
		6	96	0.7	5.6	0.5	7.1	56.5	54.3	ır	Soy sauce, afte	Garlic	ц	/10
0.24		17	67	0.3	7.4	1.0	8.1	46.1	51.3	Soak in soy sauce	Bulb	Garlic	ч	/10
		35	114	٢	27	б	33	4.9	39.7	Wash	Bulb	Garlic	Ч	/10
0.16		Э	48			0.2	0.1	5.0	117.1	Boiled	Stem	Field horsetail	Ø	26
		7	109			0.3	0.6	3.8	67.9	Raw	Stem	Field horsetail	Ø	26
0.47		5	53			0.2	0.6	4.6	102.7	Boiled	Stem	Field horsetail	Ø	20
		6	94			0.5	1.4	3.3	49.8	Raw	Stem	Field horsetail	Ø	/20
0.62		4	46			0.2	0.8	4.0	91.8	Boiled	Stem	Field horsetail	Ø	/18
		8	107			0.4	1.3	3.5	55.9	Raw	Stem	Field horsetail	0	/18
0.53		9	56		1.1	0.2	1.3	5.0	95.6	Boiled	Stem	Field horsetail	Ø	/28
		10	116	0.3	1.9	0.3	2.4	4.5	61.7	Raw	Stem	Field horsetail	Ø	/28
0.28		6	55		1.6	0.2	1.0	3.3	62.9	Boiled	Stem	Field horsetail	Ø	27
		10	89	0.5	2.2	0.4	3.7	4.1	54.6	Raw	Stem	Field horsetail	Ø	27
0.68		13	70		2.1	0.4	2.8	1.8	34.8	Boiled	Stem	Field horsetail	Ø	19
		15	118	0.7	3.5	0.5	4.1	2.3	33.2	Raw	Stem	Field horsetail	0	,19
0.61		22	64	1.3	19.4	2.1	40.3	2.9	30.9	Boiled	Leaves	Water dropwort	Ч	24
	0.90	30	194	1.9	29.9	3.0	59.6	3.4	28.2	Wash	Leaves	Water dropwort	Ч	24
		33	201	2.1	37.2	3.3	66.0	3.1	24.2	Raw	Leaves	Water dropwort	н	24
		6	200	0.3	2.2	0.4	4.1	8.8	85.0	Wash		Japanese dock	0	/14
	1.10	6	211	0.3	2.5	0.4	3.7	9.4	92.5	Raw		Japanese dock	Ø	14
0.51		6	100	0.4	2.4	0.5	2.2	8.6	60.8	Boiled	Leaves	Japanese dock	0	/19
		11	166	0.5	3.6	0.6	4.3	8.5	54.2	Wash	Leaves	Japanese dock	Ø	/19

276	2011/10/20	Ø	Giant butterbur	Leaf blade	Raw	104.5	14.3	18.5	0.9	15.5	0.7	268	15		
277	2011/10/20	Ø	Giant butterbur	Leaf blade	Wash	103.2	13.6	18.9	0.9	16.1	0.7	299	15	1.02	
278	2011/10/20	0	Giant butterbur	Leaf blade	Boiled	112.2	11.8	6.1	0.6	5.1	0.4	121	10		0.32
279	2011/10/20	Ø	Giant butterbur	Petiole	Raw	96.2	6.5	4.3	0.5	4.0	0.4	170	10		
280	2011/10/20	Ø	Giant butterbur	Petiole	Wash	92.3	6.0	5.4	0.6	4.4	0.4	202	11	1.24	
281	2011/10/20	Ø	Giant butterbur	Petiole	Boiled	89.5	4.5	3.0	0.4	2.1	0.3	129	8		0.55
282	2011/10/20	Ø	Giant butterbur I	Petiole, skin	Boiled	18.0	2.1	D.L.				2251	343		
426	2012/3/28	Ø	Giant butterbur	Leaves	Raw	27.1	4.3	7.9	1.4	6.8	1.2	241	23		
427	2012/3/28	õ	Giant butterbur	Leaves	Boiled	54.1	6.6	3.8	0.6	3.1	0.5	108	11		
449	2012/4/12	Ø	Giant butterbur	Leaf blade	Raw	96.5	14.5	15.4	0.8	10.6	0.6	201	12		
450	2012/4/12	Ø	Giant butterbur	Leaf blade	Wash	100.5	14.6	12.3	0.7	9.4	0.5	195	11	0.80	
451	2012/4/12	Ø	Giant butterbur	Leaf blade	Boiled	174.6	20.2	5.1	0.4	2.6	0.3	87	9		0.41
452	2012/4/12	Ø	Giant butterbur	Petiole	Raw	146.2	10.4	3.6	0.3	2.7	0.2	152	9		
453	2012/4/12	Ø	Giant butterbur	Petiole	Wash	140.2	9.7	3.3	0.3	2.4	0.2	159	9	0.92	
454	2012/4/12	Ø	Giant butterbur	Petiole	Boiled	176.5	11.3	2.6	0.2	1.5	0.2	137	5		0.81
455	2012/4/12	Ø	Giant butterbur	Petiole, skin	Boiled	32.3	4.1	D.L.							
456	2012/4/12	0	Giant butterbur	Leaf blade	Raw	69.0	11.8	15.9	0.9	11.5	9.0	214	14		
457	2012/4/12	Ø	Giant butterbur	Leaf blade	Wash	66.6	11.2	15.6	0.9	11.5	0.7	201	14	0.98	
458	2012/4/12	Ø	Giant butterbur	Leaf blade	Boiled	71.1	9.1	5.9	0.6	4.7	0.5	61	10		0.38
459	2012/4/12	0	Giant butterbur	Petiole	Raw	73.2	5.7	4.4	0.4	3.3	0.3	174	6		
460	2012/4/12	0	Giant butterbur	Petiole	Wash	74.7	5.6	3.2	0.4	3.1	0.3	181	6	0.73	
461	2012/4/12	Ø	Giant butterbur	Petiole	Boiled	65.6	4.0	3.8	0.4	1.8	0.3	140	6		1.17
462	2012/4/12	Ø	Giant butterbur I	Petiole, skin	Boiled	12.2	1.6	D.L.							
463	2012/4/17	0	Giant butterbur	Leaf blade	Raw	71.2	11.0	11.6	0.7	8.5	0.5	205	11		
464	2012/4/17	0	Giant butterbur	Leaf blade	Wash	69.3	10.5	12.3	0.7	9.4	0.5	157	10	1.07	
465	2012/4/17	0	Giant butterbur	Petiole	Raw	100.9	6.8	3.0	0.3	2.6	0.3	166	7		
466	2012/4/17	0	Giant butterbur	Petiole	Wash	97.3	6.7	2.7	0.3	2.3	0.3	141	7	0.90	
467	2012/4/17	0	Giant butterbur	Leaf blade	Raw	66.7	10.1	16.5	0.7	10.5	0.5	196	11		
468	2012/4/17	0	Giant butterbur	Leaf blade	Wash	72.6	10.9	9.5	0.7	6.7	0.5	185	12	0.58	
469	2012/4/17	0	Giant butterbur	Petiole	Raw	86.5	5.8	8.4	0.4	6.5	0.3	166	8		
470	2012/4/17	0	Giant butterbur	Petiole	Wash	88.7	6.1	3.7	0.4	2.9	0.3	164	7	0.45	

471	2012/4/24	Ø	Giant butterbur	Leaf blade	Raw	50.8	8.3	9.6	0.9	8.3	0.7	192	15		
472	2012/4/24	ð	Giant butterbur	Leaf blade	Wash	52.5	8.4	9.2	0.8	8.6	0.6	193	14	0.92	
473	2012/4/24	Ø	Giant butterbur	Leaf blade	Raw	50.3	8.3	9.7	0.9	8.8	0.7	169	14		
474	2012/4/24	Ø	Giant butterbur	Leaf blade	Wash	53.6	8.9	12.1	0.9	<i>T.T</i>	0.6	184	14	1.25	
475	2012/4/24	Ø	Giant butterbur	Petiole	Raw	157.1	10.8	3.4	0.3	2.4	0.2	169	6		
476	2012/4/24	Ø	Giant butterbur	Petiole	Wash	172.6	11.9	2.3	0.2	1.6	0.2	150	6	0.69	
477	2012/4/24	Ø	Giant butterbur	Leaf blade	Raw	47.0	8.1	16.7	1.1	13.1	0.8	208	16		
478	2012/4/24	Ø	Giant butterbur	Leaf blade	Wash	50.4	8.0	10.7	6.0	8.8	0.7	202	15	0.64	
479	2012/4/24	Ø	Giant butterbur	Leaf blade	Raw	52.5	8.6	12.9	0.9	9.2	0.7	191	14		
480	2012/4/24	Ø	Giant butterbur	Leaf blade	Wash	55.5	8.9	13.8	6.0	8.9	0.7	188	14	1.07	
481	2012/4/24	Ø	Giant butterbur	Petiole	Raw	143.0	9.7	4.2	0.3	2.9	0.2	156	6		
482	2012/4/24	Ø	Giant butterbur	Petiole	Wash	143.8	9.9	3.3	0.3	2.6	0.2	170	7	0.78	
483	2012/5/2	Ø	Giant butterbur	Leaf blade	Raw	70.0	9.7	13.2	0.7	9.4	0.6	221	13		
484	2012/5/2	Ø	Giant butterbur	Leaf blade	Wash	70.3	9.3	10.5	6.0	8.3	0.7	224	18	0.79	
485	2012/5/2	Ø	Giant butterbur	Leaf blade	Boiled	87.8	8.5	4.9	0.4	3.6	0.3	102	7	0.4	46
486	2012/5/2	Ø	Giant butterbur	Petiole	Raw	127.4	7.3	3.2	0.3	1.9	0.2	178	7		
487	2012/5/2	Ø	Giant butterbur	Petiole	Wash	112.0	7.1	3.5	0.3	2.0	0.3	208	8	1.11	
488	2012/5/2	Ø	Giant butterbur	Petiole	Boiled	113.4	4.2	2.9	0.2	1.7	0.2	167	6	0.8	83
489	2012/5/2	Ø	Giant butterbur	Petiole, skin	Boiled	20.2	2.2	D.L.							
490	2012/5/2	Ø	Giant butterbur	Leaf blade	Raw	83.1	12.0	14.6	0.9	9.5	0.7	255	17		
491	2012/5/2	Ø	Giant butterbur	Leaf blade	Wash	85.6	12.0	16.0	0.7	10.9	0.6	229	14	1.10	
492	2012/5/2	Ø	Giant butterbur	Leaf blade	Boiled	84.5	8.8	6.8	0.4	5.6	0.3	98	8	0.4	6
493	2012/5/2	0	Giant butterbur	Petiole	Raw	123.3	8.4	4.4	0.3	3.4	0.2	216	7		
494	2012/5/2	Ø	Giant butterbur	Petiole	Wash	143.9	8.6	4.1	0.3	2.7	0.2	169	6	0.93	
495	2012/5/2	Ø	Giant butterbur	Petiole	Boiled	108.9	5.4	4.1	0.3	2.6	0.3	168	7	0.9	66
496	2012/5/2	Ø	Giant butterbur	Petiole, skin	Boiled	18.4	2.4	D.L.							
705	2012/10/26	Ø	Giant butterbur	Leaf blade	Raw	51.8	6.8	7.5	0.5	5.0	0.4	212	6		
706	2012/10/26	Ø	Giant butterbur	Leaf blade	Wash	55.3	7.1	6.1	0.4	4.1	0.3	227	6	0.82	
707	2012/10/26	Ø	Giant butterbur	Petiole	Raw	53.2	3.5	1.7	0.4	1.9	0.3	184	8		
708	2012/10/26	Ø	Giant butterbur	Petiole	Wash	53.6	3.5	2.0	0.4	0.3	0.4	197	8	1.17	
892	2013/4/5	Ø	Giant butterbur	Leaf blade	Raw	84.8	13.4	7.5	9.0	4.0	0.4	205	10		

2013/4/5	Ø	Giant butterbur	Leaf blade	Wash	107.1	16.9	6.8	0.6	4.3	0.4	255	11	0.90	
4/5	Ø	Giant butterbur	Leaf blade	Boiled	111.5	14.4	3.2	0.3	1.7	0.2	104	5		0.48
/4/5	Ø	Giant butterbur	Petiole	Raw	100.3	6.4	2.4	0.3			149	7		
8/4/5	Ø	Giant butterbur	Petiole	Wash	103.4	7.2	1.6	0.3			179	7	0.68	
3/4/5	Ø	Giant butterbur	Petiole	Boiled	121.0	5.4	1.4	0.2			122	5		0.86
(/4/19	Ø	Giant butterbur	Leaf blade	Raw	92.7	14.8	9.6	0.6	4.3	0.4	200	10		
(/4/19	Ø	Giant butterbur	Leaf blade	Wash	98.9	14.9	9.8	0.5	4.6	0.4	221	6	1.02	
8/4/19	Ø	Giant butterbur	Leaf blade	Boiled	133.7	16.5	3.8	0.2	2.3	0.2	119	5		0.39
3/4/19	Ø	Giant butterbur	Petiole	Raw	99.2	7.9	2.0	0.3			201	8		
3/4/19	Ø	Giant butterbur	Petiole	Wash	112.6	8.4	2.7	0.3	1.5	0.2	181	7	1.34	
3/4/19	Ø	Giant butterbur	Petiole	Boiled	139.1	7.1	1.9	0.2	1.1	0.2	146	5		0.69
3/4/30	Ø	Giant butterbur	Leaf blade	Raw	109.2	15.0	9.1	0.5	4.4	0.3	227	6		
3/4/30	Ø	Giant butterbur	Leaf blade	Wash	114.3	16.2	9.4	0.5	4.5	0.3	224	6	1.04	
3/4/30	Ø	Giant butterbur	Leaf blade	Boiled	214.2	25.5	4.2	0.2	2.2	0.2	127	4		0.45
3/4/30	Ø	Giant butterbur	Petiole	Raw	135.8	9.5	2.2	0.3			200	6		
3/4/30	Ø	Giant butterbur	Petiole	Wash	140.1	10.6	2.5	0.3	1.3	0.2	203	6	1.10	
3/4/30	Ø	Giant butterbur	Petiole	Boiled	274.8	13.4	1.5	0.1	0.7	0.1	132	3		0.60
3/5/24	н	Giant butterbur	Leaf blade	Raw	51.0	10.5	119	3	49	2	252	22		
3/5/24	ч	Giant butterbur	Leaf blade	Wash	55.3	10.9	143	ю	71	2	224	20	1.20	
3/5/24	Ч	Giant butterbur	Petiole	Raw	45.8	4.6	57	2	29	2	248	22		
3/5/24	Ч	Giant butterbur	Petiole	Wash	55.8	4.8	48	2	25	2	243	19	0.85	
4/4/8	Ø	Giant butterbur	Leaf blade	Raw	147.2	26.6	3.8	0.3	1.4	0.2	220	9		
4/4/8	Ø	Giant butterbur	Leaf blade	Wash	171.6	29.6	3.7	0.3	1.6	0.2	216	6	0.98	
4/4/8	Ø	Giant butterbur	Leaf blade	Boiled	217.9	27.8	1.5	0.1	0.6	0.1	96	3		0.41
4/4/8	Ø	Giant butterbur	Petiole	Raw	142.9	10.8	1.2	0.2	0.5	0.1	185	4		
4/4/8	Ø	Giant butterbur	Petiole	Wash	156.5	11.9	1.1	0.2			175	5	0.91	
4/4/8	Ø	Giant butterbur	Petiole	Boiled	198.7	8.6	0.4	0.1			65	2		0.41
4/4/8	Ø	Giant butterbur	Petiole, skin	Boiled	33.1	4.3	1.9	0.6			174	13		
4/4/23	0	Giant butterbur	Leaf blade	Raw	172.5	30.6	4.5	0.4	1.7	0.2	227	8		
4/4/23	Ø	Giant butterbur	Leaf blade	Wash	179.7	30.7	3.0	0.2	1.4	0.2	200	5	0.66	
4/4/23	0	Giant butterbur	Petiole	Raw	196.8	15.9	1.5	0.1	0.5	0.1	174	3		

0.71		1.04		1.24		0.62		0.56		0.80			1.14		06.0		1.44		0.61		0.92).85		0.52		1.63		1.58	
-						-									-				-		-		-		-					
б	9	9	4	4	5	5	5	3	4	2	9																			
173	226	214	167	155	220	211	249	142	195	177	207																			
0.1	0.2	0.2		0.1			0.1	0.1	0.1	0.1		28	30	14	15	6	10	٢	9	٢	٢	9	9	13	10	4	5	б	б	с
0.4	1.1	1.4		0.4			1.0	0.6	0.3	0.3		1470	1769	618	526	337	484	294	192	298	273	262	236	304	136	74	90	47	63	41
0.1	0.3	0.2	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.3	39	40	19	20	12	14	10	8	10	10	6	8	17	13	5	٢	4	4	4
1.0	2.7	2.8	0.7	0.8	1.2	0.7	3.9	2.2	1.3	1.1	2.0	1506	1718	561	508	353	507	289	175	296	273	276	235	261	134	53	87	44	70	42
												72	61	26	27	10	11	٢	9	9	9	4	4	24	16	٢	٢	4	4	б
												8694	6264	1488	1358	329	483	193	133	129	123	25	27	1118	457	201	215	69	84	43
16.2	24.1	24.4	15.0	16.6	26.4	27.6	24.3	25.6	18.0	15.9	9.9	3.8	4.0	3.2	2.8	6.1	6.3	6.7	7.3	7.2	6.9	8.4	8.2	1.3	1.4	2.1	2.0	3.4	3.3	4.2
197.7	148.1	156.4	187.4	210.9	179.1	201.3	157.8	196.5	235.5	253.9	45.4	25.2	26.6	21.3	18.9	40.5	42.1	44.6	48.7	47.8	46.0	55.7	54.9	18.9	20.0	29.6	28.9	48.1	46.8	60.0
Wash	Raw	Wash	Raw	Wash	Raw	Wash	Wash	Boiled	Wash	Boiled	Boiled	Raw	Wash	Raw																
Petiole	Leaf blade	Leaf blade	Petiole	Petiole	Leaf blade	Leaf blade	Leaf blade	Leaf blade	Petiole	Petiole	Petiole, skin	Leaf blade	Petiole																	
Giant butterbur																														
ð	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0
2014/4/23	2014/5/8	2014/5/8	2014/5/8	2014/5/8	2014/11/19	2014/11/19	2015/5/5	2015/5/5	2015/5/5	2015/5/5	2015/5/5	2011/3/28	2011/3/28	2011/4/6	2011/4/6	2011/4/12	2011/4/12	2011/4/18	2011/4/18	2011/4/25	2011/4/25	2011/5/5	2011/5/5	2011/3/28	2011/3/28	2011/4/6	2011/4/6	2011/4/12	2011/4/12	2011/4/18
1529	1560	1562	1561	1563	1735	1736	1846	1848	1847	1849	1850								ı							·				ı

											1.13			1.00			0.17							0.44					0.46		
0.85		0.83		0.74		0.74		0.89		0.53						1.13					0.70		0.85			1.56		0.93			
					2	2	2	2	22	21	15	28	24	22	18	16	10	23	16	5	5	188	191	153	23	21	16	15	11	14	
					254	246	205	206	202	139	148	164	186	66	152	163	86	157	102	220	220	1149	1002	451	194	200	214	173	94	174	
2	б	ю	2	7					1.2	1.1	0.7	1.5	1.1	1.2		0.7						17	15	4	1.0	1.4	0.7	0.6	0.4		
31	55	40	49	39					6.8	3.8	3.8	12.5	7.4	8.9		3.5						578	441	157	4.4	2.9	3.4	2.0	1.4		
б	4	5	ŝ	б	0.1	0.1	0.0	0.0	1.3	1.1	0.9	1.9	1.4	1.4	1.1	0.9	0.5	1.3	0.9	0.2	0.2	52	49	31	1.3	1.2	0.8	0.8	0.3	0.8	
36	49	41	55	41	2.7	2.0	0.6	0.5	9.8	5.1	5.8	23.2	11.4	11.3	5.0	5.6	1.0	5.7	2.3	2.4	1.7	2841	2424	1073	3.3	5.2	4.8	4.5	2.1	4.7	
б	ю	4	7	7																											
37	32	37	11	7																											
5.0	3.0	2.7	3.9	4.3	38.3	37.7	25.0	26.7	3.1	3.2	3.7	2.1	2.6	2.1	3.3	3.7	3.6	2.6	2.7	20.1	18.7	5.8	5.6	6.3	4.0	4.1	7.5	7.3	7.8	7.5	
71.0	43.3	39.2	55.6	60.9	241.4	253.5	332.0	348.0	23.1	23.6	31.3	16.0	19.7	20.5	22.6	28.0	35.3	18.3	24.9	136.7	134.1	21.8	21.4	31.5	24.6	27.2	51.6	52.4	6.99	51.6	
Wash	Raw	Wash	Boiled	Raw	Wash	Boiled	Raw	Wash	Boiled	Raw	Boiled	Raw	Wash	Raw	Wash	Boiled	Raw	Wash	Raw	Wash	Boiled	Raw									
Petiole	Petiole	Petiole	Petiole	Petiole	Leaf blade	Leaf blade	Petiole	Petiole	Head	Leaves	Leaves	Leaves	Leaves	Leaves	Leaves	Leaves	Leaves	Leaves													
Giant butterbur	Mugwort	Mugwort	Mugwort	Mugwort	Mugwort	Mugwort	Mugwort	Mugwort	Mugwort																						
0	0	Ø	Ø	0	0	0	Ø	0	Ø	0	Ø	Ø	0	0	0	Ø	0	Ø	Ø	Ø	0	ц	н	ц	Ø	Ø	Ø	Ø	Ø	Ø	
2011/4/18	2011/4/25	2011/4/25	2011/5/5	2011/5/5	2018/4/11	2018/4/11	2018/4/11	2018/4/11	2012/3/12	2012/3/12	2012/3/12	2012/3/19	2012/3/19	2012/3/19	2013/3/13	2013/3/13	2013/3/13	2013/3/18	2013/3/18	2016/2/13	2016/2/13	2011/11/10	2011/11/10	2011/11/10	2012/3/12	2012/3/12	2012/3/27	2012/3/27	2012/3/27	2012/3/27	
ı	ı	I	ı	ı	2219	2221	2220	2222	378	379	380	399	400	401	788	789	062	161	792	1999	2000	330	331	332	381	382	417	418	419	ı	
	2012/3/27	Ø	Mugwort	Leaves	Wash	52.4	7.3	4.0	0.6			203	11	0.85																	
-----------	----------------	----------	---------------------------	--------------------	-----------------	-------	------	-----	-----	-----	-----	-----	----	------	------																
	2012/3/27	Ø	Mugwort	Leaves	Boiled	6.99	7.8	2.3	0.1			96	11		0.56																
576	2012/6/14	Ø	Mugwort	Leaves	Raw	130.7	16.0	6.5	0.4	4.2	0.3	185	8																		
577	2012/6/14	Ø	Mugwort	Leaves	Wash	129.8	16.0	6.4	0.4	5.0	0.3	183	8	0.99																	
586	2012/6/21	Ø	Mugwort	Leaves	Raw	76.5	17.5	8.1	0.7	5.1	0.5	234	14																		
587	2012/6/21	Ø	Mugwort	Leaves	Wash	82.3	18.1	4.8	9.0	3.4	0.5	251	13	0.60																	
588	2012/6/21	Ø	Mugwort	Leaves	Boiled	129.4	23.7	3.4	0.4	2.6	0.4	134	6		0.71																
702	2012/10/26	Ø	Mugwort	Leaves	Raw	47.8	9.7	1.6	0.6	3.1	0.5	223	12																		
703	2012/10/26	Ø	Mugwort	Leaves	Wash	52.5	10.0	2.1	0.6	2.1	0.4	221	11	1.36																	
704	2012/10/26	Ø	Mugwort	Leaves	Boiled	81.6	13.0	0.3	0.4	0.6	0.7	65	7		0.16																
1009	2013/5/8	Ø	Mugwort	Leaves	Raw	59.7	12.3	1.9	9.0			240	11																		
1010	2013/5/8	Ø	Mugwort	Leaves	Wash	55.8	11.1	1.7	0.5			274	12	0.87																	
1011	2013/5/8	Ø	Mugwort	Leaves	Boiled	88.4	14.6	0.7	0.3			136	7		0.41																
1055	2013/5/24	н	Mugwort	Leaves	Raw	32.3	7.6	376	9	196	б	306	32																		
1056	2013/5/24	ч	Mugwort	Leaves	Wash	33.9	8.0	411	9	201	ŝ	262	29	1.09																	
1057	2013/5/24	н	Mugwort	Leaves	Boiled	49.6	9.7	196	4	105	7	137	19		0.48																
1286	2013/9/26	н	Mugwort	Leaves	Raw	14.5	3.3	265	7	117	4	187	44																		
1287	2013/9/26	ч	Mugwort	Leaves	Wash	15.4	3.3	236	9	110	4	181	43	0.89																	
1288	2013/9/26	н	Mugwort	Leaves	Boiled	28.4	5.1	125	Э	54	7	119	21		0.53																
1415	2013/11/6	Ø	Mugwort	Leaves	Raw	161.3	27.1	1.3	0.2			197	6																		
1416	2013/11/6	Ø	Mugwort	Leaves	Wash	175.9	28.7	1.0	0.2			216	6	0.79																	
1747	2014/12/9	Ø	Mugwort	Leaves	Raw	84.5	15.4	1.0	0.3			182	6																		
1748	2014/12/9	õ	Mugwort	Leaves	Wash	77.5	14.7	0.8	0.3			177	7	0.77																	
1749	2014/12/9	Ø	Mugwort	Leaves	Boiled	103.6	14.2	0.3	0.2			48	4		0.37																
1856	2015/5/20	Ø	Mugwort	Leaves	Raw	158.4	38.3	1.4	0.2	0.7	0.2	297	5																		
1857	2015/5/20	Ø	Mugwort	Leaves	Wash	160.7	38.3	1.8	0.1	0.6	0.1	204	4	1.33																	
2041	2016/4/22	ð	Mugwort	Leaves	Raw	175.3	26.2	1.1	0.2			197	5																		
2042	2016/4/22	0	Mugwort	Leaves	Wash	188.7	28.4	1.6	0.2			205	5	1.37																	
*Q: QST-N	IIRS Chiba, F:	Fukushim	la Prefecture, I: Ibaraki	i Prefecture, C: (Chiba Prefectur	ə.																									

http://www.qst.go.jp/