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lack the activity of selenium�dependent glutathione peroxidase

(GSH�Px) isomers, were prepared using torula yeast�based SeD

diet. Mice were fed the torula yeast�based SeD diet and ultra�pure

water. Several different timings for starting the SeD diet were

assessed. The weekly time course of liver comprehensive GSH�Px

activity after weaning was monitored. Protein expression levels of

GPx1 and 4 in the liver were measured by Western blot analysis.

Gene expression levels of GPx1, 2, 3, 4, and 7 in the liver were

measured by quantitative real�time PCR. Apoptotic activity of

thymocytes after hydrogen peroxide (H2O2) exposure was com�

pared. Thirty�day survival rates after whole�body X�ray irradiation

were estimated. Pre�birth or right�after�birth starting of the SeD

diet in dams was unable to lead to creation of SeD mice due to

neonatal death. This suggests that Se is necessary for normal

birth and healthy growing of mouse pups. Starting the mother on

the SeD diet from 2 weeks after giving birth (SeD�trial�2w group)

resulted in a usable SeD mouse model. The liver GSH�Px activity

of the SeD�trial�2w group was almost none from 4 week olds, but

the mice survived for more than 63 weeks. Protein and gene

expression of GPx1 was suppressed in the SeD�trial�2w group, but

that of GPx4 was not. The thymocytes of the SeD�trial�2w group

were sensitive to H2O2�induced apoptosis. The SeD�trial�2w group

was sensitive to whole�body X�ray irradiation compared with

control mice. The SeD�trial�2w model may be a useful animal

model for H2O2/hydroperoxide�induced oxidative stress.
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IntroductionSelenium (Se), which is an essential trace element, has
important roles in the biological redox regulation system as

the catalytic center of several isozymes of the glutathione peroxi-
dase (GSH-Px or occasionally abbreviated as GPx) family.(1)

GSH-Px family enzymes can reduce hydrogen peroxide (H2O2) to
water at the expense of the reduced form glutathione (GSH). There
are four major Se-dependent GSH-Px isozymes, which contain
selenocysteine as the active center, in mammalian tissues, which
are classical GSH-Px isozyme (GPx1), gastrointestinal isozyme
(GPx2), plasma isozyme (GPx3), and phospholipid hydroperoxide
isozyme (PHGPx or GPx4).(2) PHGPx, which is a membrane
specific subclass of GSH-Px, can reduce phospholipid hydro-
peroxide to the corresponding alcohol in membrane.(3) Four other
GSH-Px members, GPx5, 6, 7, and 8, were recently reported in

mammals. GPx6 is a Se-dependent isozyme, whereas GPx5, 7,
and 8, which contain cysteine as their active center, are non-Se-
dependent isozymes.(4) Higher peroxidase activity is observed by
Se-dependent isozymes, but non-Se-dependent isozymes exhibit
relatively low peroxidase activity.(4) GPx7 is another type of PHGPx,
also known as NPGPx.(5)

A Se-deficient (SeD) rat model, which was prepared by feeding
a torula yeast-based SeD diet, was proposed as an oxidative stress
model.(6) In this model, pregnant Wistar rats on the 15th day of
pregnancy were fed the SeD diet. Newly born rats were kept
with their own mother for four weeks until weaning. The young
weaned rats were then fed the SeD diet until the experiments. This
SeD rat preparation method leads to the creation of 4-week-old
weaned rats with Se deficiency and almost no detectable GSH-Px
activity.(7)

Se deficiency causes malfunction of Se-dependent GSH-Px
isozymes, i.e., GPx1–4 and 6, and can cause oxidative stress due
to increased H2O2.

(8) However, the oxidative stress in Se deficiency
is not lethal to rats, in contrast to the marked inactivation of
comprehensive GSH-Px. It was previously reported that the SeD
model rats can survive more than 50 weeks, although they have
almost no GSH-Px throughout their life.(7) In addition, the SeD rats
were fertile when mated (unpublished data). Inactivity of GSH-Px
itself can not immediately cause oxidative stress. However, H2O2

levels can be easily increased in biological conditions lacking
GSH-Px activity and H2O2 levels in SeD rats may increase due to
additional oxidative stress.

On the other hand, GPx4 knockout(9,10) was embryonic lethal in
mice. Furthermore, seleno-cysteine tRNA gene knockout caused
early embryonic lethality in mice.(11) These results suggested that
Se is essential in mice during fetal development. Indeed, most SeD
mouse models reported were prepared by starting the SeD diet
after weaning or later.(12–15) By such post-weaning preparation,
only relatively older (>8 weeks old) SeD or Se-insufficient model
mice are available.

In this study, relatively young SeD model mice were prepared
using a torula yeast-based SeD diet. Several different timings for
starting the SeD diet were assessed and the weekly time course of
comprehensive GSH-Px activity after starting the SeD diet was
monitored. Sensitivity of the SeD model mice to X-ray- or H2O2/
hydroperoxide-induced oxidative stresses was investigated.
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Materials and Methods

Chemicals. Seleno-L-mechionin and sodium selenite was
purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan).

Preparation of animal models. The feeding schemes
described below are summarized in Fig. 1. SeD-trial-P: C3H/
HeSlc mice on the 15th day of pregnancy were purchased from
Japan SLC, Inc. (Hamamatsu, Japan) and then fed a torula yeast-
based SeD diet (F2SeDD, Oriental Yeast Co., Ltd., Tokyo, Japan)
and ultra-pure water (Milli-Q water). Newborn mice were caged
with their mothers.

SeD-trial-B: C3H/HeSlc mice on the 15th day of pregnancy
were purchased, and then fed a normal diet (MB-1, Funabashi
Farm Co., Funabashi, Japan) and ultra-pure water. The mother
mice were fed the SeD diet from 1 day after giving birth. Newborn
mice were caged with their mothers.

SeD-trial-2w: C3H/HeSlc mice on the 15th day of pregnancy
were purchased, and then fed a normal diet (MB-1) and ultra-pure
water. The mother mice were fed the SeD diet from 2 weeks after
giving birth. Newborn mice were caged with their mothers until
weaning at 4 weeks old. After weaning, the young mice were fed
the SeD diet and ultra-pure water until the experiments.

SeD-trial-4w: Female and male just-weaned (4 weeks old)
C3H/HeSlc mice were purchased, and then fed the SeD diet and
ultra-pure water until the experiments.

SeD-trial-8w: Female and male 8-week-old C3H/HeSlc mice
were purchased, and then fed the SeD diet and ultra-pure water
until the experiments.

Se-control (SeC): C3H/HeSlc mice on the 15th day of preg-
nancy were purchased, and housed under identical conditions to
the SeD-trial-2w group, except that Se-containing drinking water
was supplied. For the SeC1 group, 1.22 mg of seleno-L-mechionin
and 0.26 mg of sodium selenite, at a molar ratio of 8:2, was added
to 1 L of drinking water (0.64 mg/L of Se). For the SeC2 group,
half the amount of Se of the SeC1 group, i.e., 2-times diluted
Se-containing drinking water (0.32 mg/L of Se) was supplied.

Normal-control (NrmC): C3H/HeSlc mice 1 week younger
than the corresponding age were purchased, and used for experi-
ments after 1-week habituation. NrmC mice were fed a normal
diet (MB-1) and Milli-Q water until the experiments.

SeD rats were prepared as reported previously(4) to assess
reproducibility. Wistar rats on the 15th day of pregnancy were
purchased from Japan SLC, Inc., and then fed the SeD diet and
ultra-pure water. Newborn rats were caged with their mothers
until weaning at 4 weeks old. After weaning, the young rats were
fed the SeD diet and ultra-pure water until experiments.

The animal experiments were carried out in compliance with
the Guidelines for Animal Care and Use of the National Institute
of Radiological Sciences (NIRS), and approved by The Institu-
tional Animal Care and Use Committee of NIRS.

Sample preparation for measurement of comprehensive
GSH�Px activity, protein expression, and gene expression of
GSH�Px isozymes. The experimental animals were anesthetized
by breathing 2% isoflurane in air (700–1,000 L/min). Blood was
drawn from the right atrial appendage and the entire body was
perfused with ice-cooled saline (0.9% NaCl). The liver was
removed. After the perfused solution was removed by filter paper,

Fig. 1. Schematic drawing of the feeding period with the SeD diet and the timing for tissue sampling. Horizontal black arrows indicate the
feeding periods with the MB�1 diet. Horizontal dark gray arrows indicate implemented feeding periods with the SeD diet. Horizontal light gray
arrows indicate default feeding periods with the SeD diet, which was stopped due to death of the pups. Upward arrows indicate the timing of
tissue sampling for the measurement of comprehensive GSH�Px activity. Ultra�pure water (Milli�Q water) was given as drinking water except to the
SeC1 and 2 groups, which received Se�containing drinking water (0.64 or 0.32 mg/L of Se, respectively). Five male and female SeD�trial�2w mice were
each continued to be fed for lifetime observation.
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the liver was weighed. The liver sample was frozen in liquid
nitrogen and stored at –80°C until measurement of comprehensive
GSH-Px activity, protein expression, and gene expression of a
particular GSH-Px isozyme.

Measurement of comprehensive GSH�Px activity. The 
tissues/organs were homogenized with a 4-fold volume of physio-
logical saline (0.9% NaCl) (´5 homogenate). The tissue homoge-
nate was again diluted in saline (1.15% KCl) to 1/125–1/1,250.
Comprehensive GSH-Px activity in the tissue homogenate was
measured based on the method described by Paglia and
Valentine(16) with some modifications. Two-hundred microliters of
PBS (pH 7.4), 50 ml of 20 mM NaN3, 50 ml of 40 mM glutathione,
50 ml of 20 U/ml glutathione reductase, and 50 ml of 4 mM
NADPH were added in a microtube. An aliquot (500 ml) of the
diluted liver homogenate was added into the reaction mixture. The
reaction was started by adding 100 ml of 1.0 mM H2O2. The time
course of the absorption at 340 nm (NADPH) of the reaction
mixture was measured. The GSH-Px activity was calculated from
the slope of the plot of absorption over time. Consumption of
1 mmol of NADPH per minute was converted as 1 U of GSH-Px
activity. The GSH-Px activity was standardized by the protein
concentration and expressed as U/mg protein. The protein concen-
tration of the liver homogenate was measured using the method
described by Lowry et al.(17) with some modifications.

Protein expression levels of GSH�Px isozymes. Protein 
expression levels of GSH-Px subclass isozymes (GPx1 and 4)
were measured by Western blot analysis. Mouse livers were lysed
in RIPA buffer containing 1´ protease inhibitor cocktail (Nakalai
Tesque, Kyoto, Japan). Protein concentrations were quantified by
the Protein Assay Kit (Bio-Rad, CA) and equalized. Lysates were
mixed with 4´ sample buffer (200 mM Tris-HCl, pH 7.5; 50%
glycerin; 4% SDS; 0.04% bromophenol blue, and 50 mM DTT).
Samples were incubated at 95°C for 5 min and then cooled.
Proteins were size-fractionated by SDS-PAGE using Mini-
Protean TGX gel Any KD (Bio-Rad). Proteins were transferred
onto a nitrocellulose membrane (GE Healthcare, UK) by semi-dry
blotting (ATTO). Immunodetection of proteins was achieved by
specific primary antibodies: Gpx1 (AF2798, 1 mg/ml, R&D), Gpx4
(MAB5457, 0.5 mg/ml, R&D), and Actb (C4, 1:200 dilution,
Santa Cruz), and secondary HRP-conjugated anti-goat IgG anti-
body (1:5,000 dilution, proteintech) or anti-mouse IgG antibody
(1:5,000 dilution, Promega). Clarity Western ECL Blotting
Substrates (Bio-Rad) were used for quantification.

Gene expression levels of GSH�Px isozymes. Gene expres-
sion levels of GSH-Px subclass isozymes (GPx1, 2, 3, 4, and 7)
were measured for female NrmC and SeD-trial-2w groups. Total
RNA was isolated from the livers using Direct-zol RT (Zymo
Research, CA). Isolated total RNA was reverse-transcribed using
the PrimeScript RT-PCR Kit with random N6 primers (Takara
Bio, Shiga, Japan). Quantitative Real-time PCR (RT-PCR) was
performed using the Thunderbird SYBR qPCR mix (Toyobo Co,
Osaka, Japan) and the CFX Maestro (Bio-Rad). The housekeeping
gene Hprt1 was selected as an internal standard. Gene-specific
primers used for quantitative RT-PCR are listed in Table 1.

Sensitivity of the thymus cells to X�ray irradiation or H2O2

exposure. A male or female mouse from the NrmC or SeD-
trial-2w model group was anesthetized by breathing 2% isoflurane
in air. The mouse was euthanized by bleeding from the underarm.
The thymus was removed and squeezed using tweezers to obtain
thymocytes. The thymocytes were placed in cell culture medium
(RPMI-1640 Medium, Sigma) supplemented with 10% fetal
bovine serum (FBS) and grained into disaggregated cells. The
thymocytes were irradiated by 2 Gy of X-rays at a dose rate of
1.0 Gy/min, or were treated with 50, 100, or 500 mM H2O2 for
5 min. The H2O2-treated cells were washed once with Dulbecco’s
phosphate-buffered saline (PBS, Sigma), but X-ray-treated cells
were not. Cells were next incubated in the same culture medium
as above for 4 h at 37°C in 5% CO2 atmosphere. After incubation,

the size and number of thymocytes were measured by a flow
cytometer (FACSCalibur; Becton, Dickinson and Company,
Franklin Lakes, NJ). The ratio of shrunken thymocytes was
estimated as the ratio of apoptotic thymocytes.

Thirty�day survival rate after X�ray irradiation. Conscious 
mice were placed in a special acryl box for whole-body irradiation
and irradiated with 5.6 Gy of X-rays. Male and female NrmC and
SeD-trial-2w model mice were irradiated. Each group consisted
of 10 mice. X-ray irradiation was performed with PANTAK 320S
(Shimadzu, Kyoto, Japan). The effective energy was 80 keV under
the following conditions: X-ray tube voltage was 200 kV, X-ray
tube current was 20 mA, and the thickness and materials of the
pre-filter were 0.5-mm copper and 0.5-mm aluminum. The dose
rate of X-ray irradiation was 0.54 Gy/min when the distance
between the X-ray tube and the sample was 50 cm. Survival
curves after X-ray irradiation of mouse groups were observed.

Statistical Test. Significant differences were estimated by
alternative Student’s or Welch’s t tests. The test suitable for the
data was automatically selected according to variance. Signifi-
cance was considered at p<0.05.

Results and Discussion

The number of confirmed live births was 5.0 ± 0.8 (n = 4) and
4.2 ± 1.1 (n = 5) for SeD-trial-P and -B mothers, respectively. The
neonatal mice in both SeD-trial-P and -B groups were visually
smaller than normal pups and lacked active wiggling. The
mammary pads of mothers in both the SeD-trial-P and -B groups
were smaller than those in the control group during the lactation
period. The newborn pups survived less than 21 days in the SeD-
trial-P group and 13 days in the SeD-trial-B group. However, SeD
rats were prepared according to the method reported previously,(6)

i.e., starting the SeD diet from the 15th day of pregnancy. The rat
pups survived until they were used for measuring liver GSH-Px
activity at 8 weeks old even though they had no GSH-Px activity
(data not shown). In addition, the SeD rats had a normal life span,
which was more than 50 weeks.(7) This suggests that Se is essential
for mice to give birth and grow healthily. The reason may be
similar to that for the embryonic lethality of PHGPx knockout(9,10)

and seleno-cysteine tRNA gene knockout.(11)

For the first trial to prepare a SeD mouse model, the C3H/HeSlc
mouse strain was selected. This mouse strain was used in our
previous animal experiments to estimate the biological effects of
artificial oxidative stresses such as hyperthermia, X-rays, and/or
heavy-ion (carbon-ion) beam irradiation.(18–24) High linear energy
transfer (LET) beams, such as heavy-ion beams, yield more H2O2

than low LET photon radiation such as X-rays and/or gamma-
rays.(25) High LET beams can create H2O2 independently of
oxygen, but low LET radiation creates H2O2 mainly in an oxygen-
dependent manner.(26) Therefore, high LET beams can yield H2O2

Table 1. Gene�specific primers used for quantitative RT�PCR

Gene Primer sequence

Gpx1�F 5'�GGGACCTCGTGGACTGGTGGTGCT

Gpx1�R 5'�CCCGCCACCAGGTCGGACGTACT

Gpx2�F 5'�CGCCTGGTAGTTCTCGGCTTCCCTT

Gpx2�R 5'�GGGCTGGTACCCACCCCCAGGT

Gpx3�F 5'�GACCAGGTGGGGGCTTTGTGCCTAAT

Gpx3�R 5'�AGAGGCGGCCAGGTGAGCCCAG

Gpx4�F 5'�GTCCAGCCCAAGGGCAGGGGCAT

Gpx4�R 5'�GCGCTTCACCACGCAGCCGTTCT

Gpx7�F 5'�TTGCCCGCCGCACCTACAGTGTCT

Gpx7�R 5'�GGGGTCCCATGCTCCCACCACCTTT

Hprt1�F 5'�CAACGGGGGACATAAAAGTTATTGGTGGA

Hprt1�R 5'�TGCAACCTTAACCATTTTGGGGCTGT
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even under low-oxygen conditions such as in vivo. The Se-
deficient mouse model may be suitable for estimating the effects
of radiation-induced H2O2 and/or lipid peroxidation.

The time course of body and liver weights of SeD mice models
is shown in Fig. 2. The values in the SeD-trial-4w group at 4
weeks old and the SeD-trial-8w group at 8 weeks old were similar
to control values. There was no significant difference in liver
weight among groups at 8 weeks old. Percentage ratios of the liver
weight to the body weight at 8 weeks old were 7.45 ± 1.47,
5.18 ± 0.45, and 5.41 ± 0.36% for female SeD-trial-2w, SeD-trial-
4w, and SeD-trial-8w groups, respectively. The livers of female
SeD-trial-2w mice were swollen, although not significantly. Liver
swelling in the SeD model rats has been reported.(27,28)

To confirm Se deficiency, GSH-Px activity in the liver was
measured. GSH-Px activity in the liver at several ages is shown
in Fig. 3. The SeD-trial-8w group (squares) exhibited a rapid
decrease in GSH-Px activity during the 4-week period of the
experiment; however, they still had a relatively high GSH-Px
activity level at 12 weeks old. The SeD-trial-4w group (triangle)
also exhibited a rapid decrease in GSH-Px activity during the 4-
week period of the experiment; however, they still had slight
GSH-Px activity at 8 weeks old. The SeD-trial-4w group had no
GSH-Px activity at 10 weeks old. The SeD-trial-2w group (circles)
had almost no GSH-Px activity from 4 weeks old and throughout
their life. Starting the SeD diet in older mice makes it take longer
for the GSH-Px activity to become undetectable. However, the
SeD-trial-2w preparation method proposed in this study yielded
young (from 4 weeks old) SeD model mice. The SeD-trial-2w
mice survived for more than 63 weeks with life-long feeding of
the SeD diet and Milli-Q water.

A comparison of GSH-Px activity in the livers of NrmC, SeD-
trial-2w, SeC1, and SeC2 groups at 8 weeks old is shown in Fig. 4.

The SeD-trial-2w group had no GSH-Px activity, as shown in
Fig. 3. The tissue GSH-Px activity of female and male SeC1 mice,
which were fed the SeD diet and 0.64 mg/L of Se in drinking
water, recovered to 66% and 80% of that in female and male
NrmC mice, respectively. The female and male SeC2 mice, which
were fed the SeD diet and 0.32 mg/L of Se in drinking water,
exhibited 62% and 52% of the GSH-Px activity observed in
female and male NrmC mice, respectively.

The tissue Se content in the mouse models used in this study
was not measured. Tissue GSH-Px activity was reported to be a
good indicator of tissue Se content.(29) Matsumoto, et al.(7,30,31)

previously confirmed that feeding of a Se-deficient diet may lead
to limited or no Se in most tissues, and that it disturbs GSH-Px
activity in a rat model. Relatively low Se content can maintain
nearly normal GSH-Px activity,(30) whereas low GSH-Px activity
is not observed when Se content is maintained. The purpose of
this study was to create an animal model lacking GSH-Px activity,
and the observed near lack of GSH-Px activity confirmed Se-
deficiency.

A comparison of protein expression levels of GPx1 and GPx4
in the liver is shown in Fig. 5. The protein expression level of
GPx1 was suppressed in both male and female SeD-trial-2w
groups. However, protein expression levels of GPx4 were not
affected by Se deficiency. Next, the gene expression of subclasses
of GSH-Px was analyzed.

A comparison of gene expression levels of GSH-Px subclasses
in the liver is shown in Fig. 6. Female NrmC and SeD-trial-2w
groups were compared. GSH-Px gene expression was observed
in both NrmC and SeD-trial-2w groups, whereas GSH-Px activity
was almost absent in SeD model mice. The expression levels of
mRNA were in order of GPx1 > GPx4 > GPx7 > GPx3. GPx2 was
not measured in NrmC and SeD-trial-2w groups. Therefore, the

Fig. 2. Time courses of body and liver weights of the NrmC and SeD model mice. Body and liver weights of the (A) female and (B) male mice used
for assessing GSH�Px activity were measured just before the experiments. The mice were fasted one night before the experiment. Diamonds, circles,
triangles, and squares indicate values of NrmC, SeD�trial�2w, SeD�trial�4w, and SeD�trial�8w groups, respectively. The marks and error bars indicate
the average value ± SD of 3 mice.
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GSH-Px activity shown in Fig. 3 and 4 mainly reflected GPx1.
Se deficiency did not affect the gene expression level of GPx3, 4,
or 7, although the GPx1 gene expression level significantly
decreased in SeD mice. This suggests a role of Se in GPx1 mRNA
transcription or protein stability. Although the GPx1 gene expres-
sion level was lower in SeD mice, protein synthesis was retained.
However, the protein expression level of GPx1 in SeD mice was
reduced more than the reduction in the gene expression level
(Fig. 5). Se deficiency, i.e., exhaustion of selenium-containing
amino acids, may more greatly affect protein expression. These
results suggest that the elimination of GSH-Px activity in SeD
groups was due to the lack of Se.

Suppression of GPx1 protein expression was observed in all
male and female SeD-trial-2w mice subjected to the experiment.
Then, gene expression levels in the same identical liver samples of
the female SeD-trial-2w and NrmC mice were measured (Fig. 6).
Reduced GPx1 gene expression levels were noted in the SeD-trial-
2w group, which was almost one-quarter of the NrmC group. The
lower protein expression of GPx1 in the SeD-trial-2w group may
be due to the down-regulation of gene expression of GPx1 and
Se-deficiency may slightly affect its regulation. The detailed
mechanisms of the suppression of GPx1 gene expression should
be investigated in the future, but it is another focus.

Fig. 3. Time courses of GSH�Px activity in the liver of the NrmC and
SeD model mice. Liver GSH�Px activity was assessed for (A) female and
(B) male mice of each group. Diamonds, circles, triangles, and squares
indicate values of NrmC, SeD�trial�2w, SeD�trial�4w, and SeD�trial�8w
groups, respectively. The marks and error bars indicate the average
value ± SD of 3 mice.

Fig. 4. GSH�Px activity in the livers of the NrmC, SeD�trial�2w, SeC1,
and SeC2 groups assessed at 8 weeks old. Comparison of the GSH�Px
activity of (A) female and (B) male mice. The columns and error bars
indicate the average value ± SD of 3 mice.

Fig. 5. GPx1 and GPx4 protein expression in the liver. Western blotting
was used to analyze the expression of GPx1 and GPx4 protein in the liver
of the NrmC, SeD�trial�2w, SeC1, and SeC2 groups. Beta�actin (ACTB)
served as a loading control. The Western blotting images are represen�
tative from 3 independent sets.
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Suppressed protein expression of GPx4 was observed in two
(one male and one female) SeD-trial-2w mice (data not shown),
but the remaining mice had similar levels to those in other groups,
as shown in Fig. 5. As the GPx4 protein level was inherently lower
than that of GPx1, relatively low suppression of GPx4 protein
levels may be difficult to observe beyond inter-individual varia-
tion. However, slight up-regulation of GPx4 gene expression in
the SeD-trial-2w group was observed (Fig. 6), which was 1.57-
times higher than that in the NrmC group, but not significant.
Slightly up-regulated GPx4 gene expression in the SeD-trial-2w
was noted when another housekeeping gene was used as a stan-
dard. The up-regulation of anti-oxidative enzymes under oxidative
stress may be a natural feedback response of living organisms.

Markedly low selenium/selenocysteine levels may be related to
the lower protein expression levels of GSH-Px isozymes, but they
are not due to simple interruption of protein synthesis. Indeed,
detectable levels of proteins were synthesized using an alternate
amino acid instead of selenocysteine, as described below.

The antibody used in the Western blot experiment recognizes a
downstream region from the position of selenocysteine; therefore,
an alternate amino acid must be inserted into the synthesized
protein. Selenocysteine is encoded by the stop codon, UGA.
Targeted insertion of cysteine at the UGA selenocysteine codon of
thioredoxin reductase 1 was previously reported.(32) Furthermore,(33)

both GPx1 and GPx4 had significant levels of cysteine in place of
selenocysteine following treatment with Geneticin, an antibiotic,
but no detectable amounts of tryptophan, which is also encoded
by the UGA codon in some cases. Cysteine may be the major
alternative to selenocysteine. Analysis of the detailed mechanism
of this misreading/extemporaneous-reading is underway.

The Se content in this Se-deficient diet reported in the previous
paper was low (0.017 mg/kg), being one-fiftieth of that of the
normal diet (CE-2, CLEA Japan, Inc., Tokyo) but “not zero”.(34)

Low Se levels were maintained in some organs, such as the
kidneys and spleen, in the case of the Se-deficient rat model,
whereas no Se was detectable in the liver.(7)

Loss of the GPx1 gene has limited or no effects in mice,(35)

whereas the loss of the GPx4 gene is embryonic lethal.(9,10) Admin-
istration of excess vitamin E to the culture media rescued GPx4
knock-out mouse embryonic cell death.(36) The Se-deficient diet
contains 2.6-times more vitamin E (102 mg/kg) than the normal

diet (39 mg/kg), but this was unable to rescue the death of
SeD-trial-P and -B pups during infancy. As GPx4 gene expression
is inherently lower than that of GPx1 (as shown in Fig. 6), higher
vitamin E content in the Se-deficient diet may be able to save adult
mice from death even if they have almost no GSH-Px activity.

The gene and protein expression of GPx4 may be regulated by
feedback from pathological/physiological pathways at that age
and by alternative functions such as between selenocysteine and
cysteine.

A comparison of the ratio of apoptotic thymocytes after X-ray
irradiation or H2O2 exposure is shown in Fig. 7. Regardless of
the presence of selenium (left and right panels) and gender
(Fig. 7A or B), the ratio of apoptotic cells was around 20% for the
control (no test) cells. The ratio of apoptotic cells was increased by
X-ray irradiation and/or H2O2 exposure. At 2-Gy X-ray irradia-
tion, no significant difference was observed between thymocytes
from NrmC and SeD-trial-2w model mice. Concentrations of
50, 100, or 500 mM H2O2 led to significantly higher levels of

Fig. 6. Gene expression levels of GPx1, 2, 3, 4, and 7 in the liver. Quan�
titative RT�PCR was performed to evaluate gene expression of the GPx
family. The data are presented as a logarithmic plot of the 2�DCt values
and normalized by Hprt1 mRNA levels. The data are presented as the
average value ± SD of 3 mice from each group. ND, not detected, the
signal was below the sensitivity limit of the assay.

Fig. 7. A comparison of the sensitivity of thymocytes to oxidative
stress. Comparison of NrmC (left panel) and SeD�trial�2w (right panel)
model mice. (A) Female and (B) male groups were tested in the same
manner. The columns and error bars indicate the average value ± SD of
at least 3 experiments; each experiment was triplicated.
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apoptosis in SeD-trial-2w model mice than in those in NrmC
model mice, excluding 500 mM H2O2 in male mice thymocytes,
which exhibited no significant difference. X-ray irradiation was
reported to cause only 0.26 mM/Gy of H2O2 in water.(26) As H2O2

generation caused by low LET radiation, such as X-rays, requires
oxygen consumption, the X-ray-induced H2O2 generation in cells
or in vivo tissue may be much lower. Therefore, the main reactive
oxygen species (ROS) causing oxidative stress during the X-ray
irradiation in the thymocytes in this experiment was probably
hydroxyl radical (•OH). Downregulation of selenium may make
the mice thymocytes sensitive to the oxidative stress caused by
H2O2.

Thirty-day survival curves after whole-body X-ray irradiation
are shown in Fig. 8. Half of the male and female NrmC mice
survived for 30 days after X-ray irradiation, whereas all of the
SeD-trial-2w mice died by 15 days after irradiation. SeD-trial-2w
models demonstrated radio-sensitivity compared with NrmC
mice. The effects of X-ray irradiation on the survival of SeD mice
were marked even though the effects of X-rays on the SeD mouse
thymocytes were limited, as shown in Fig. 7. Delayed superoxide
generation after X-ray irradiation in vivo is expected to be due to
mitochondrial dysfunction.(37) Mitochondria oxidatively injured
by initial ROS during X-ray irradiation can generate excess
superoxide continuously for several days after X-ray irradiation.
Excess mitochondrial superoxide may yield excess H2O2 via the
physiological role of SOD.

In this study, healthy female control mice exhibited higher
GSH-Px activity in the liver than males at all ages examined
(Fig. 3). Several previous studies reported sex differences in
GSH-Px activity in the tissues of experimental animals. For
example, GSH-Px activity in liver cytosol of 4–29-month-old
Fischer 344 rats were higher in females.(38) Liver GSH-Px activities
in SD rats were higher in females at both 7 and 12 weeks of age.(39)

GSH-Px activity was higher in the liver mitochondria from female
rats than in those from male rats.(40) In humans, higher GSH-Px
activity in females than in males has been reported.(41,42) In general,
be it experimental animals(43,44) or humans,(45,46) females store more
body fat than males at the same age. Female mammals may require
greater antioxidative protection for fat/lipid molecules stored in
their body. GSH-Px family enzymes, especially both PHGPx
isozymes GPx4 and 7, are likely important for preventing lipid
oxidation. Our study demonstrated the large effects of Se-
deficiency, i.e., malfunction of GSH-Px, in female mice (Fig. 8).

SeD mice may be a useful animal model to investigate the
effects of H2O2 on radiobiological responses in detail. H2O2 is a
relatively stable molecule compared with other ROS, but it easily
accumulates and can move relatively long distances. In addition,
H2O2 can react with metal ions, such as Cu+ and/or Fe++, to make
•OH, which is known as a Fenton reaction. The reaction of O2

•-

and H2O2 can also yield •OH. The •OH again plays the essential
oxidant. The direct role of H2O2 in the effects of radiation

remains unclear, but it must be considered when discussing
radiobiological effects.

In conclusion, the same procedure that was reported for a SeD rat
model,(6–8,27,28) i.e., the SeD-trial-P group in this study, was unable
to be used to make SeD model mice due to neonatal death. Starting
the mother mice on the SeD diet from 2 weeks after giving birth,
i.e., the SeD-trial-2w group, yielded relatively young SeD model
mice. Liver GSH-Px activity in the SeD-trial-2w group was almost
absent at 4 weeks old. Supplying 0.64 or 0.32 mg/L of Se in
drinking water to the SeD-trial-2w group, i.e., SeC1 and SeC2
groups, restored GSH-Px activity. Protein expression of GPx1 was
suppressed in the SeD-trial-2w model mice, but that of GPx4 was
not. Although Se deficiency did not affect the gene expression of
GPx4, the GPx1 gene expression level was significantly sup-
pressed in the SeD-trial-2w model mice. These mice were also
radio-sensitive compared with the NrmC group mice. These SeD-
trial-2w model mice may represent a H2O2/hydroperoxide-induced
oxidative stress model for future experiments.
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