

Gamma-ray irradiation effects on optical coatings and polarizers for edge Thomson scattering system in ITER

E. Yatsuka^a, K. Torimoto^a, M. Ishikawa^a, T. Hatae^a

National Institutes for Quantum and Radiological Science and Technology (QST)^a

Conclusions

- Laser-induced damage threshold (LIDT) of AR and HR coatings at the laser wavelengths:
- A) Contrary to expectation, LIDT of AR coating is more likely higher for the irradiated samples at a wavelength of 1064 nm.
- B) Regarding HR coatings, LIDT was not noticeably degraded by gamma-ray irradiation.

1: Half-wave plate

4:90° polarization rotator

(for P-polarization

- Broadband AR-coated windows and wire-grid polarizers for the collection optics: **II**.
 - A) AR-coated window decreased monotonously (3% @10 MGy, 600 nm)

- ✓ YAG laser (λ =1064 nm) is the probing beam and ruby laser (λ =694 nm) is used for *in-situ* calibration of spectral transmission collection optics to detector.
- ✓ Laser beams are produced in the diagnostic building and transferred to plasma with many mirrors.
- Scattered light with a wavelength of 590-1070 nm are analyzed to determine electron temperature and density.
- > Optical elements in the Interspace (between port plug and bioshield) should withstand total gamma-ray dose of the order of MGy.
- Radiation hardness of laser injection window must be demonstrated. •Vacuum window is confinement barrier for tritium, beryllium, etc.
 - •High power laser beam passes through the vacuum window.
 - •Laser-induced damage threshold (LIDT) after irradiation was unknown.

2. Gamma-ray Irradiation

B) Regarding wire-grid polarizers, no degradation was observed.

3. Laser-induced Damage Threshold (LIDT) after gamma-ray irradiation

2: Mirror

3: Polarizer

injection)

6: Sample

5: Focusing lens

3-2. Consideration on difference between ITER and this study

Item	ITER	This study
Repetition rate	100 Hz	100 Hz
Pulse duration	4 ns	8.4 ns
Beam size	45-58 mm	0.25 mm
Number of pulses	2×10^{9}	6×10^{3}
Typical beam energy density	0.3 J/cm ²	5-20 J/cm ²

3-3. LIDT of laser window

N-on-1 test for vacuum window

 \checkmark Incident energy density of 5 J/cm² (6,000 pulses) was injected onto 10 spots of an optical element, and then it is increased by 1 J/cm^2 .

P2-082

S-on-1 test for dielectric mirrors

- ✓ A certain incident energy density (6,000 pulses) was injected onto 3 spots.
- ✓ If damage occurs, incident energy density was decreased.

Although measurement was

number of samples, and there

possible with only a small

was also variation among

with 10 MGy.

70% reflection: 642 nm

samples, the measurement

result showed that LIDT was

✓ LIDT is sufficiently higher than

incident beam energy density

higher in the sample irradiated

- ✓ Pulse duration: Nanosecond laser pulse has LIDT dependence on pulse duration of $\tau^{1/2}$. LIDT decreases by a factor of 0.7 at the pulse duration of laser used in ITER.
- ✓ Beam size: LIDT dependence on beam size disappears when the spot-size exceeds 0.1 mm.
- ✓ Number of pulses: It has been empirically found that the LIDT of the AR coating stops decreasing after several hundred pulses.

2-1. Irradiation Facility

- ✓ Gamma-ray (⁶⁰Co) irradiation facilities of Takasaki Advanced Radiation Research Institute, QST.
- ✓ Dose rate ~ 10 kGy/h and maximum total dose ~ 10 MGy.
- All samples (typical size: 25 mm) were wrapped in aluminum foil.
- Temperature and humidity were not actively controlled in this study.

2-2. Specific demand of irradiation tests for ETS

High power laser optics with many kinds [Sec. 3]

- > Laser-induced damage threshold (LIDT) after irradiation
 - Anti-reflection (AR) coating for vacuum window
 - High-reflection (HR) coating for laser beam transfer mirrors
 - Beam splitter (BS) for laser beam alignment

Small intensity and linearly polarized signal [Sec. 4]

3-4. LIDT of dielectric mirrors

BS)

for

(Except

Reflectivity

 $\binom{9}{6}$

BS

q

90

Transmitt

98

96

94

92

Reflectivity or transmission at 1064 nm.

Wavelength (nm)

- Spectral transmission of broad-band AR coating
- Spectral transmission and extinction ratio of wire-grid polarizer (WGP)

2-3. Samples irradiated by gamma-ray

WGP with Fused silica substrate

WGP with Borosilicate glass

90 45°, P AR: 1064 nm Beam 5 10 Total Dose (MGy) AR: 694.3 nm splitter 50% reflection: 642 nm ✓ It seems that the gamma irradiation up to 10 MGy does not cause a significant drop in LIDT, except for the "S Mirror". 4. Gamma-ray irradiation effects on optical elements for scattered light collection Spectral transmission Spectral transmission of WGPs of collection window 3% degradation at Fransmission at λ=1064 nm Transmission at λ =632.8 nm 100 600 nm. Collection optics 8 includes 2 windows Transmission -Fused silica -0 MGy and 10 lenses. ── Display grade glass 40 -- Borosilicate glass -1 MGy 94 22% (acceptable) -Fused silica -3 MGy ─**■**─Display grade glass -10 MGy --Borosilicate glass total degradation is 92 expected at 600 nm. 6 4 Total Dose (MG_V) Total Dose (MGy) 90 WGP with fused silica substrate maintains 500 700 900 1100

performance. S/N improvement is expected.

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.