(12) 公開特許公報(A)

(11)特許出願公開番号

特開2013-217730 (P2013-217730A)

(43) 公開日 平成25年10月24日(2013.10.24)

(51) Int.Cl.			FΙ					テーマコー	ド(参考)
G21K	1/06	(2006.01)	G21K	1/06		Ν		2G020	
G01J	3/18	(2006.01)	GO1J	3/18				2H249	
GO2B	5/18	(2006.01)	GO2B	5/18					
GO2B	5/32	(2006.01)	GO2B	5/32					
			G21K	1/06		D			
			審査請求 未	請求	請求項	夏の数 6	ΟL	(全 15 頁)	最終頁に続く
(21) 出願番号		特願2012-87536((P2012-87536)	(71) 出	願人	5053747	783		
(22) 出願日		平成24年4月6日((2012.4.6)			独立行政	旼法人 [日本原子力研究	開発機構
						茨城県	那珂郡列	東海村村松4番	地49
				(71) 出	願人	0000042	271		
						日本電	子株式会	会社	
						東京都	昭島市に	武蔵野3丁目1	番2号
				(71) 出	願人	0000019	93		
						株式会社	生島津朝	製作所	
						京都府理	京都市「	中京区西ノ京桑	原町1番地
				(71) 出	願人	5041570)24		
						国立大学	学法人了	東北大学	
						宮城県	山台市	青葉区片平二丁	11番1号
				(74)代	理人	1000971	.13		
						弁理士	堀は	成之	
								最	終頁に続く

(54) 【発明の名称】分光装置

(19) 日本国特許**庁(JP)**

(57)【要約】

【課題】広い波長帯域をカバーできる分光装置を複数の 不等間隔溝回折格子を用いて得る。

【解決手段】ここでは3種類の不等間隔溝凹面回折格子 G₁~G₃が使用され、G₁の対応エネルギー範囲は5 0~200eV、G₂の対応エネルギー範囲は155~ 350eV、G₃のエネルギー範囲は300~2200 e Vとする。G₁~G₃について各々の波長範囲で回折 条件が満たされる。ここで、G₁~G₃をそれぞれの波 長域で高出力、高分解能とするために、回折格子の法線 方向から計ったG₁~G₃の入射角 $1 \sim 3$ は、 1 < っ< っとしている。全回折格子の法線を共通化し た上で、 1 < 2 < 3 を満足させるために、法線方 向にG₁~G₃の中心位置 $1 \sim 3$ が設定される(1 < 2 < 3)。G₁~G₃から1つの回折格子を適 宜選択でき、広い波長帯域をカバーする分光装置を構成 できるようになる。 【選択図】図4

【特許請求の範囲】

【請求項1】

対応波長範囲が異なる複数の不等間隔溝回折格子を具備し、所望出力光の波長に対応し て前記複数の不等間隔溝回折格子のうちから一つの不等間隔溝回折格子が選択され、当該 一つの不等間隔溝回折格子に光源から発した入射光が入射し、回折された回折光が出力光 として全ての前記不等間隔溝回折格子に共通とされた結像面に照射される設定とされ、前 記一つの不等間隔溝回折格子を選択し前記入射光を入射させる位置に設置させる切換手段 を具備する分光装置であって、

前記切換手段は、前記複数の不等間隔溝回折格子の中から前記一つの不等間隔溝回折格 子を選択するに際して、各不等間隔溝回折格子の格子面の中心を通る法線を共通とし、前 記光源が前記格子面の上側にある場合に、対応波長範囲の短い順に前記格子面が高い位置 に設定されるように、前記一つの不等間隔溝回折格子を選択し設置させることを特徴とす る分光装置。

【請求項2】

前 記 光 源 は 、 0 . 5 ~ 2 5 n m の 波 長 の 光 を 発 す る こ と を 特 徴 と す る 請 求 項 1 に 記 載 の 分 光 装 置 。

【請求項3】

前記不等間隔溝回折格子における格子面は凹面形状とされたことを特徴とする請求項1 又は2に記載の分光装置。

【請求項4】

前記不等間隔溝回折格子における格子溝は非球面ホログラフィック露光法を用いて形成されたことを特徴とする請求項1から請求項3までのいずれか1項に記載の分光装置。

【請求項5】

前記不等間隔溝回折格子における格子面に多層膜が形成されたことを特徴とする請求項 1から請求項4までのいずれか1項に記載の分光装置。

【請求項6】

前記切換手段は、

前記不等間隔溝回折格子の格子面の中心を通る法線が共通となる位置に前記複数の不等間 隔溝回折格子を並進移動又は回転移動させることによって前記一つの不等間隔溝回折格子 を選択することを特徴とする請求項1から請求項5までのいずれか1項に記載の分光装置

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、不等間隔溝回折格子が用いられる分光装置に関する。

【背景技術】

[0002]

単色でない入射光から所望の波長をもつ単色の光を出力する分光装置は、各種の物理実験や計測において広く用いられている。軟X線領域の光を出力する分光装置としては、回 折格子(例えば矩形溝のラミナー型回折格子)を用いたものが知られている。この場合、 この回折格子を用いた分光装置においては、回折格子の格子面に対する入射角や出射角(回折角)を選択することによって、所望の波長の単色光を取り出すことができる。ここで 、凹面回折格子を用いれば、分光だけでなく、同時に結像も行わせることもできる。 【0003】

こうした軟X線領域における回折格子においては、入射角等を制御することによって単 色光の波長を制御することができるものの、一つの回折格子を用いて得られる波長範囲(エネルギー範囲)には限度があり、この限度を超えた範囲では回折効率が大きく低下する 、あるいは分解能が大きく低下する。このため、この範囲を広くするための構造が提案さ れている。例えば、特許文献1には、格子面において格子間隔を均一とせずに分布をもた せることによって、この範囲を広くした不等間隔溝回折格子が記載されている。また、回

10

折格子の回折面上を複数の領域に区分し、各領域において対応波長範囲を最適化した構成 が特許文献 2 に記載されている。

[0004]

軟 X 線領域の光に対応した不等間隔溝凹面回折格子を用いた分光装置の場合、実用的な 回折効率と分解能を維持できるエネルギー範囲としては、例えば、格子定数の中心値を1 / 1 2 0 0 mm、入射角度(格子面の法線と入射光のなす角度)を8 7 °に設定した場合 、6 0 ~ 2 5 0 e V (波長 2 0 ~ 5 n m)程度である。不等間隔溝回折格子で回折された 回折光の結像面は平面とすることができるため、検出器としてCCDのような二次元検出 器を用いた場合、当該エネルギー領域の光を同時に検出することができる。これは不等間 隔溝凹面回折格子を用いた分光装置の特徴である。また、格子定数を1 / 2 4 0 0 mm、 入射角度を 8 8 . 7 °と設定した場合、2 5 0 ~ 1 2 4 0 e V (波長 5 ~ 1 n m)程度と なる。この場合も、結像面は平面となるため、当該領域の光を同時検出可能である。しか しながら、例えば、6 0 ~ 1 2 4 0 e V において一様に高い回折効率、分解能が得られる 単一の不等間隔溝凹面回折格子を得ることは現実には困難である。

このため、例えば特許文献3には、複数の不等間隔溝回折格子を切り替えて使用する技術が記載されている。この技術においては、複数の不等間隔溝回折格子が、平行移動や回転によって切り替えられる。

【先行技術文献】 【特許文献】 【0006】 【特許文献1】特開2006-133280号公報 【特許文献2】特開2009-300303号公報 【特許文献3】特開2007-273477号公報 【発明の概要】 【発明が解決しようとする課題】

不等間隔溝回折格子においては、格子定数、溝パターン(溝関数)、溝形状、格子面表 面の物質等のパラメータが、所望のエネルギー範囲と回折格子の光学的位置関係(光源の 位置、入射角度、焦点距離等)を考慮した上で、高い回折効率と分解能が得られるように 定められる。この際、対応波長範囲が異なれば、最適な光学的位置関係は異なる。これは 、回折効率と入射角の関係には波長依存性があるためである。例えば、軟X線領域におけ る比較的高いエネルギー(短い波長)の光の回折効率を高くするには、低いエネルギー(長い波長)の場合と比べ、より90°に近い入射角にする必要がある。ここで、入射角は 回折格子の法線から計るものとする。

【 0 0 0 8 】

このため、特許文献3に記載のように、複数の不等間隔溝回折格子を切り替えて使用す る場合には、不等間隔溝回折格子毎に入射角度や像面の位置を調整することが必要となる 。この場合、この調整作業は非常に煩雑となる。特に、エネルギー範囲が広く、多くの不 等間隔溝回折格子を使用する場合には、この作業は非常に煩雑となり、高い精度を得るこ とも困難であった。

【 0 0 0 9 】

すなわち、広い波長帯域をカバーできる分光装置を複数の不等間隔溝回折格子を用いて 得ることは困難であった。

[0010]

本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。

【課題を解決するための手段】

本発明は、上記課題を解決すべく、以下に掲げる構成とした。

10

本発明の分光装置は、対応波長範囲が異なる複数の不等間隔溝回折格子を具備し、所望 出力光の波長に対応して前記複数の不等間隔溝回折格子のうちから一つの不等間隔溝回折 格子が選択され、当該一つの不等間隔溝回折格子に光源から発した入射光が入射し、回折 された回折光が出力光として全ての前記不等間隔溝回折格子に共通とされた結像面に照射 される設定とされ、前記一つの不等間隔溝回折格子を選択し前記入射光を入射させる位置 に設置させる切換手段を具備する分光装置であって、前記切換手段は、前記複数の不等間 隔溝回折格子の中から前記一つの不等間隔溝回折格子を選択するに際して、各不等間隔溝 回折格子の格子面の中心を通る法線を共通とし、前記光源が前記格子面の上側にある場合 に、対応波長範囲の短い順に前記格子面が高い位置に設定されるように、前記一つの不等 間隔溝回折格子を選択し設置させることを特徴とする。

(4)

本 発 明 の 分 光 装 置 に お い て 、 前 記 光 源 は 、 0 . 5 ~ 2 5 n m の 波 長 の 光 を 発 す る こ と を 特 徴 と す る 。

本発明の分光装置において、前記不等間隔溝回折格子における格子面は凹面形状とされたことを特徴とする。

本発明の分光装置において、前記不等間隔溝回折格子における格子溝は非球面ホログラ フィック露光法を用いて形成されたことを特徴とする。

本発明の分光装置は、前記不等間隔溝回折格子における格子面に多層膜が形成されたことを特徴とする。

本発明の分光装置において、前記切換手段は、前記不等間隔溝回折格子の格子面の中心 を通る法線が共通となる位置に前記複数の不等間隔溝回折格子を並進移動又は回転移動さ ²⁰ せることによって前記一つの不等間隔溝回折格子を選択することを特徴とする。

【発明の効果】

[0012]

本発明は以上のように構成されているので、 複数の不等間隔溝回折格子を用いて広い波 長帯域をカバーできる分光装置を得ることができる。

【図面の簡単な説明】

[0013]

【図1】不等間隔溝凹面回折格子が使用される際の形態を示した図である。

- 【図2】入射角をパラメータとして、軟X線領域における分光装置のスループットのエネ ルギー依存性を計算した結果である。
- 【 図 3 】 3 種類の不等間隔溝凹面回折格子における光源、入射光、回折光、像面の位置関 係を示す図である。
- 【図4】3種類の不等間隔溝凹面回折格子における光源、入射光、回折光、像面の位置関係を回折格子の中心位置の×軸方向へのオフセット を考慮して重ね合わせた図である。 【図5】本発明の実施の形態に係る分光装置における焦点の分布を示す図である。
- 【図6】非球面ホログラフィック露光法によって不等間隔溝パターンを形成する際の構成 (第1の例)を示す図である。

【図7】非球面ホログラフィック露光法によって不等間隔溝パターンを形成する際の構成 (第2の例)を示す図である。

【図8】本発明の実施の形態に係る分光装置において用いられる不等間隔溝凹面回折格子 ⁴⁰の結像特性の一例である。

- 【図9】本発明の実施の形態に係る分光装置の第1の例の構成である。
- 【図10】本発明の実施の形態に係る分光装置の第1の例の変形例の構成である。
- 【図11】本発明の実施の形態に係る分光装置の構成の第2の例である。
- 【図12】本発明の実施の形態に係る分光装置の第3の例の構成である。
- 【図13】本発明の実施の形態に係る分光装置の第3の例の変形例の構成である。

【発明を実施するための形態】

【0014】

以下、本発明の実施の形態に係る分光装置について説明する。この分光装置においては、3種類の不等間隔溝凹面回折格子が切り替えられて使用されるものとする。図1は、単 ⁵⁰

ーの不等間隔溝凹面回折格子10が分光装置中において使用される際の形態を示す図である。ここでは光源20、入射光100、回折光200を含む、格子面11に垂直な断面が示されている。この不等間隔溝凹面回折格子10は、光源(点光源)20が発した単色でない光(軟X線)を回折・分光して像面30においてエネルギー(波長)毎に結像するものとする。すなわち、像面30において所望波長をもつ単色の出力光が得られる。(×、y、z)軸の座標原点をOとするが、ここでは、Oは格子面11の中心(回折格子中心)に等しいものとする。×軸は原点Oから図1中の格子面11に垂直に上側に向かう方向とし、この方向は回折格子中心における格子面11の法線方向となる。y軸は×軸と入射光100、回折光200を含む平面(図1における紙面)内で原点Oから×軸と垂直に光源20の存在する側に向かうものとする。図示されていないが、z軸は、原点Oを通り紙面と垂直に紙面の向こう側から手前に向かうものとする(右手系)。すなわち、z軸の方向は格子面11に向かう入射光100とその回折光200を含む平面と垂直な方向となる。

rは原点Oから光源20までの距離(入射光100の光路長)、r,は不等間隔溝凹面 回折格子10の焦点距離であり、回折光200の光路長と等しいものとする。入射角 は 入射光100と×軸のなす角度、回折角(出射角) は、回折光200と×軸のなす角度 として定義し、 、 ともに反時計回りを正にとる。また、光源20から×軸に平行に延びた直線(y軸への垂線)とy軸との交点をP、像面30から×軸に平行に延びる直線(y軸への垂線)とy軸との交点をQとする。

【0016】

不等間隔溝凹面回折格子10の設計において用いられるパラメータについて説明する。 入射角 、回折角 、光源20までの距離r、焦点距離r'は光源20、像面30とこの 不等間隔溝凹面回折格子10との位置関係によって定まる。凹面の曲率半径(曲率中心は 図1中の上側にあるものとする)をR、回折光の波長を 、回折次数をm、有効格子定数 を (回折格子中心における格子定数)とし、特許文献1に記載のように、n番目の格子 溝のy軸上への射影座標をwとした場合、展開係数n₂₀、n₃₀、n₄₀を用いて溝関 数n(w)と の積を(1)式のように記載すると、(2)~(4)式が成立する。 【0017】

【数1】

$$n\sigma = w + n_{20}w^2 + n_{30}w^3 + n_{40}w^4 + \cdots \qquad \cdots \qquad (1)$$

$$\frac{\cos^{2} \alpha}{r} + \frac{\cos^{2} \beta}{r'} - \frac{\cos \alpha + \cos \beta}{R} + 2n_{20} \frac{m \lambda}{\sigma} = 0 \quad \cdots \quad (2)$$

$$\int_{\left[\frac{0}{2} 0 \ 1 \ 9 \ 1\right]}^{\left[\frac{0}{2} 0 \ 1 \ 9 \ 1\right]} \int_{\left[\frac{1}{2} \frac{1}{2} \ 0 \ 1\right]}^{40}$$

$$\sin \alpha + \sin \beta = \frac{m \lambda}{\sigma} \quad \cdots \quad (3)$$

$$\int_{\left[\frac{0}{2} 0 \ 2 \ 0 \ 1\right]}^{\left[\frac{0}{2} \ 0 \ 2 \ 0 \ 1\right]} r = \frac{PO}{\cos \alpha} \quad , \quad r' = \frac{OQ}{\cos \beta} \quad \cdots \quad (4)$$

20

30

50

(3)式、(4)式より、rとr'は、波長の関数となる。従って、光学的位置関係を規定するパラメータである、、r、r'を一定として対応する全てので上記の関係が成立させるようにRとn₂₀を設定することは現実には不可能であることは明らかである。このため、実際には、対象とする波長範囲内において、これらのパラメータがいずれも狭い範囲内に収まるように、n(w)、R等を設定することになる。なお、上記の位置関係は、(1)式の係数のうちのn₂₀によって定まる。n₃₀、n₄₀等は焦点(上記の位置関係)には大きな影響を与えず、コマ収差に大きく影響を与えるが、この点については後述し、ここではn₃₀、n₄₀については無視する。

(6)

ここで、対応する波長範囲が広いほど上記の設定が困難になることは明らかである。このため、ここでは複数の不等間隔溝凹面回折格子(G₁~G_n)を用い、各々が異なる対応波長範囲(G₁:波長 12~ 11、G2: 22~ 21、・・・ G_n: n2 ~ n1、 11~ 12、 21~ 22、・・・、 n1~ n2であり、各々の中心波長においては、(11 + 12)/2>(21 + 22)/2>・・・>(n 1 + n2)/2とする)をもつものとする。すなわち、G_kにおいては、 kが大きい順に高いエネルギー(短い波長)に対応している。この場合には、 Rとn20の設定は、 G 1~G_nで独立に行うこともできる。この場合には、単一の不等間隔溝凹面回折格子を用いる場合よりもその設計が容易となることは明らかである。各不等間隔溝凹面回折格子においては、各々の対応する波長範囲においてのみ上記の関係が成立するように設計されればよい。

[0023]

G₁~G_nを切り替えて使用する場合には、その光学的位置関係(、、r、r、r') を共通とすることにより、切換作業が特に容易、かつ信頼性が高くなる。このため、、、r、r、r'はG₁~G_nの全てにおいて共通とすることが望ましい。しかしながら、実際にはこれも困難である。これは、特に軟X線領域での反射率は入射角が90°に近い狭い範囲でのみ高く、かつ波長が短い(エネルギーが高い)場合においては反射率の低下が著しいためである。不等間隔溝凹面回折格子の回折効率は、その格子面を構成する材料の反射率に大きく依存する。すなわち、回折効率もこの反射率と同様の傾向を示す。 【0024】

また、分光装置から得られる出力(出力光の強度)は、実際には単なる回折効率(反射率)の大小だけで決まらない。上記の例では、光源20を点光源とし、単純化のために回 折格子中心における回折のみについて記載したが、実際には光源20から発した光は回折 格子の格子面のほぼ全面に照射され、回折される。特に不等間隔溝凹面回折格子の場合に は、この光が像面30で集光するように設定される。このため、像面30上で得られる光 の強度は、光源20からこの不等間隔溝凹面回折格子を見た見込角が大きい場合に高くな る。図1の構成において、見込角は、 =0°で最大、 =90°で零となり、cos に比例する。以上より、高強度の出力光を得るための指数としては、反射率と見込角の積 を採用することができる。

図2は、不等間隔溝凹面回折格子の表面を構成する材料として使用される金の反射率と 見込角の積(スループットと定義)のエネルギー依存性を、3種類の反射角度(図1中の に対応:86.00°、87.07°、88.65°)について計算した結果である。 この結果より、 が小さい(90°から離れた)場合には、低エネルギー(長波長)で高 いスループットが得られるものの、高エネルギー(短波長)側でのスループットの低下が 著しい。一方、 が90°に近い場合には、スループットのエネルギー依存性は小さくな るものの、全体的にスループットは低い。ただし、高エネルギー側だけに限れば、 が小 さい場合よりもスループットは大きく向上する。

【0026】

この結果より、複数の不等間隔溝凹面回折格子G₁~G_nを切り替えて使用する場合に は、低エネルギー用の不等間隔溝凹面回折格子G₁において を小さく、高エネルギー用 ⁵⁰

20

の不等間隔溝凹面回折格子G_nにおいて を90°に近くすることが、スループットを高 くするためには有効である。すなわち、G₁~G_nに対応する を ₁~ _nとすると、 を一定とするよりも、 _{1 2}・・・ _n<90°となるように を変えた構成 が好ましい。

【 0 0 2 7 】

このように、不等間隔溝凹面回折格子毎に が異なるため、図1における光源20、像面 30を固定した場合には、不等間隔溝凹面回折格子毎に設置位置を変えることが必要とな る。前記の 1~ nの大小関係より、G1において回折格子中心を×=0の位置(原点 〇)に設定した場合には、G2以降で回折格子中心を順次×>0の方向に移動させること が有効である。すなわち、Gkに対応する入射角 kとなる回折格子中心の×座標を k とすると、 1 2 ・・・ k ・・・ nであることから 1 2 ・・・ k ・・・ nとなり、光源20、像面30が固定であっても、最適な入射角に設 定されたG1~Gnによって広い波長範囲に渡り高出力、高分解能で単色光を取り出すこ

 $\begin{bmatrix} 0 & 0 & 2 & 8 \end{bmatrix}$

以下に、本発明の実施の形態となる分光装置の具体的構成について説明する。ここでは 3種類(n=3)の不等間隔溝凹面回折格子G₁~G₃が使用され、G₁の対応エネルギ 一範囲は50~200eV(波長₁₁=24.7nm、₁₂=6.2nm)、G₂の 対応エネルギー範囲は155~350eV(₂₁=8.0nm、₂₂=3.54nm)、G₃のエネルギー範囲は300~2200eV(₃₁=4.133nm、₃₂= 0.564nm)とする。G₁~G₃について各々の波長範囲で上記の回折条件が満たさ れるように設計された仕様を表1に示す。ここで、前記の通り、G₁~G₃をそれぞれの 波長域で高出力、高分解能とするために、回折格子の法線方向から計ったG₁~G₃の入 射角₁~₃は、₁<₂<₃としている。また、PO=239.69mm、OQ =233.50mmとしている。₁~₃に対応して、については、₁<₂< 3とされ、例えば表1に示されたように設定される。

【表1】

回折格子	低エネルギー	中エネルギー	高エネルギー
	(G ₁ :低E)	(G ₂ :中E)	(G ₃ :高E)
エネルギー領域 (eV)	50~200	$155{\sim}350$	300~2200
波長領域 (nm)	24.7 \sim 6.20	8.00~3.54	4.133~0.564
R (mm)	3960	5606	13800
r (mm)	237.27	237	236.76
α (°)	86.00 (α ₁)	87.07 (α ₂)	88.65 (α ₃)
$1/\sigma$ (mm ⁻¹)	1200	1200	2400
$n_{20} (mm^{-1})$	-3.396×10^{-3}	-3.523×10^{-3}	-3.816×10^{-3}
n_{30} (mm ⁻²)	1.353×10^{-5}	1.373×10^{-5}	1.535×10^{-5}
$n_{40} (mm^{-3})$	-5.102×10^{-8}	-7.353×10^{-8}	-8.707×10^{-8}
Δ (mm)	0 (Δ ₁)	4.44 (Δ ₂)	10.97 (Δ_3)

40

[0030]

G₁~G₃における光源20、入射光100、回折光200、像面30の状況を図3に 示す。図4は、図3における光源20の位置が一致するように ₁~ ₃を考慮して重ね 合わせた構成を示す図である。この時、G₁の回折光子中心が最も低い位置に設定され、 G₃の回折格子中心が最も高い位置に設定される(₁ < ₂ < ₃)。こうすることで 、比較的簡便にG₁~G₃から1つの回折格子を適宜選択でき、広い波長帯域をカバーす る分光装置を構成できるようになる。すなわち、本発明の実施の形態に係る分光装置にお

(7)

30

10

いて、 G₁ ~ G₃を切り替える際に ₁ ~ ₃によって G₁ ~ G₃に対応する入射角を切 り替えることができるように配置される。 【 0 0 3 1 】

前記の通り、図4の構成を用いた場合においても、回折光200の焦点が完全に1点に 収束することは実際にはない。図5は、図4と同一の方向から見たこの焦点の分布を算出 した結果である。y = -233.5mmが像面である。しかしながら、この結果より、G 1~G3を用いた図4の構成により、50~2200eVのエネルギー(波長24.7n m~0.564nm)の広い範囲において、焦点は結像特性に係わるy軸方向(分散方向)で5mm程度に収まっていることが確認できる。×軸方向は市販の二次元検出器の受光 面の長さ程度(約25mm)である。したがって、広いエネルギー帯域をカバーするため に複数の不等間隔溝凹面回折格子を用いたとしても、高い結像特性を持つ分光装置を得る ことができる。

【0032】

上記の例では、(1)式における係数 n 2 0 のみが考慮され、焦点の位置の分布について示された。(1)式における係数のうち、 n 2 0 は焦点位置に関連するパラメータであり、上記の構成によって焦点位置を略一定に保つことができることが示された。これに対して、 n 3 0、 n 4 0 は、収差に関連するパラメータである。一方、上記の不等間隔溝で 面回折格子における不等間隔溝を形成するに際しては、例えば非球面ホログラフィック露 光法が用いられる。この場合には、光の干渉を利用して格子溝が形成されるため、 n 2 0 、 n 3 0、 n 4 0 を独立に設定することは不可能である。このため、実際には n 2 0 が所 定の値となるように設定され、この条件下において可能な限り n 3 0、 n 4 0 が適切とな るように設定される。従って、実際には収差の影響も含めた評価が重要となる。

【0033】

以降では、実際に非球面ホログラフィック露光法を用いて上記のG₁~G₃を製造した 場合の結果について説明する。非球面ホログラフィック露光法は、例えば特公平6-64 207号公報に記載されている。この製造方法においては、2つの点光源から発せられる 単色の球面波が球面鏡で反射されて基板上に塗布されたフォトレジスト上で干渉し、干渉 縞を形成する。この干渉縞のパターンが所望の格子定数、溝パターン(不等間隔溝)とな るように、光源や球面鏡の構成、配置を調整する。露光後、フォトレジストを現像してパ ターニングし、基板をエッチングすることによって、基板表面に所望の溝形状を形成する 。エッチング加工後の基板自体に溝が刻線された回折格子はマスタ回折格子と呼ばれ、こ れと同じ溝間隔、溝形状を持つレプリカ回折格子が製造される。

【0034】

図 6 、 7 は、非球面ホログラフィック露光法を行なう際の 2 種類の構成を示す図であり 、 C 、 D は点光源、 M₁ 、 M₂ は球面鏡(曲率半径がそれぞれ R₁ 、 R₂)、 G はここで 干渉縞がパターニングされる対象(フォトレジストが表面に塗布された、不等間隔溝凹面 回折格子となる基板)である。

【0035】

光源 C、 D の発する単色光の波長を441.6 n m とし、図 6、 7 におけるパラメータ を表 2 の通りとして、 G₁ ~ G₃を製造した。 G₁を製造するに際しては、図 6 の構成、 G₂、 G₃を製造するに際しては、図 7 の構成を用いた。 【 0 0 3 6 】 10

【表 2】

回折格子	低エネルギー (G ₁ : 低E)	中エネルギー (G ₂ : 中E)	高エネルギー (G ₃ : 高E)
λ_{0} (nm)	441.6	441.6	441.6
γ (°)	-8.412	-57.722	-62
δ (°)	22.559	-18.394	10.189
R 1 (mm)	599.13	—	—
R ₂ (mm)	_	599.13	400
p $_{\rm C}$ (mm)	347.839	1890.99	2056.959
$p_{\rm D}$ (mm)	583.948	599.13	830.025
$q_{\rm C}$ (mm)	425		
$q_{\rm D}$ (mm)	—	599.13	301.284
$\eta_{\rm C}$ (°)	-33.508	—	—
η _D (°)	_	49.162	41.25

【0037】

図 8 は、G 2 の結像特性を 5 種類の中心波長(3 . 5 0 n m、4 . 6 3 n m、5 . 7 5 n m、6 . 8 8 n m、8 . 0 0 n m)について調べた結果を示す。回折格子面の大きさは y 軸方向に 5 0 m m、z 軸方向に 3 0 m m とした。図 8 において、上側は上記の各中心波 長 に対応して、 _ * = ± / 1 0 0 (分解能 / = 1 0 0 に対応)の範囲内の波 長の回折光のスポットダイアグラムであり、下側は強度分布である。この結果より、収差 によって各波長のスペクトル像は z 軸方向に 6 0 m m 程度広がる。ただし、市販されている C C D のような二次元検出器で実用的に受光、検出できるのは 1 0 m m 程度である。この点を踏まえ、検出範囲を ± 5 m m (高さ 1 0 m m)に制限したとすると、得られる分解 / は、2 8 5 (= 3 . 5 0 n m)、1 4 6 3 (= 4 . 6 3 n m)、1 1 8 2 (5 . 7 5 n m)、9 8 2 (= 6 . 8 8 n m)、1 1 3 2 (= 8 . 0 0 n m)となる

[0038]

なお、 = 3 . 5 0 n m における分解能(/ = 2 8 5) は充分に高く、実用的で あるが、他の波長に比して悪いのは、図 5 においてG 2 (2 2 : 3 . 5 4 n m) の結像 位置が結像面(y = - 2 3 3 . 5 m m) からわずかに外れていることに起因する。一方、 当該波長域ではG 2 と対応波長が一部重複するG 3 を使用することもできる。その場合、 G 3 を使用する方がG 2 より高分解能となる。しかしながら、図 2 に示したように、G 3 のスループットはG 2 より小さくなる。したがって、スループットが必要な場合にはG 2 を、分解能が必要な場合にはG 3 を、それぞれ用途に応じて適宜切り替えて使い分ければ よい。このように、G 1 ~ G n の対応波長範囲を部分的に重複させることにより、目的に 応じて不等間隔溝凹面回折格子を選択する構成とすることもできる。 【0039】

以上の結果より、実際に製造される不等間隔溝凹面回折格子において残留する収差を考慮した場合においても、上記の分光装置によって、広い波長範囲にわたり高出力、高分解 能で単色光を取り出すことが可能となることがわかる。

[0040]

次に、実際にG₁~G₃を切り替えて使用する分光装置の構成について説明する。この 分光装置においては、複数の不等間隔溝凹面回折格子の中から一つの不等間隔溝回折格子 を選択し、入射光が照射され、回折光(出射光)が取り出される位置に設置する切換手段 が用いられる。この際、各不等間隔溝回折格子の格子面の中心を通る法線(図1における 10

20

×軸)は共通とされる。ただし、各不等間隔溝回折格子の格子面の中心の×軸方向の高さ は異なる。この高さは、長波長に対応する不等間隔溝凹面回折格子ほど低く、短波長に対 応する不等間隔溝凹面回折格子ほど高く設定される。

(0 0 4 1 **)**

図9は、第1の例として、G₁~G₃をy軸方向に並進移動させることによって切換を 行う分光装置500の構成を示す図である。図9における上側はG₁が選択された場合の 構成を示し、下側はG₂が選択された場合の構成を示す。光源20は図中の左側の図示さ れない箇所、像面30は図中の右側の図示されない箇所に存在するものとする。また、座 標軸(×、y、z)は右手系とする。

【0042】

この分光装置500においては、不等間隔溝凹面回折格子G₁~G₃が、移動台(切換 手段)510上に水平方向(図1における y 軸方向)に配列して設置される。入射光10 0は光源20から回折格子へ向かい、回折光200は回折格子から像面30へ向かう。移 動台510が水平方向(図1における y 軸方向)に移動することによって、G₁~G₃が 切り替えられる。この設定においては、最も右側の位置が、使用される不等間隔溝凹面回 折格子の位置とされる。使用する不等間隔溝凹面回折格子がこの位置に移動される際、G ₁~G₃の回折格子中心における格子面の法線が共通となるように設定される。ただし、 回折格子中心のこの法線方向(×軸方向)における位置はG₁~G₃で異なり、G₁で ₁(=0)、G₂で₂(2>1)、G₃で₃(3>2)とされる。上述した ように、G₁~G₃の切り替えに伴って₁~3が変化し、結果的に入射角が切り替わ る。

【0043】

図9の構成においては、G₁~G₃を図1におけるy軸方向に配列、移動したが、図1 0に示されるように、これと直角な方向(z軸方向)にG₁~G₃を並進移動させること もできる(第1の例の変形例)。ここでは、図1における出射側(右側)から入射側(左 側)を見た構成が示されており、入射光、回折光は示されていないが、これらの光は紙面 の向こう側から手前側に向かう。図10においては、上側にG₁が選択された場合、下側 にG₂が選択された場合の構成を示している。

[0044]

この構成の場合には、G₁~G₃のうち選択されたもの以外は光路周辺に存在しないた ³⁰め、G₁~G₃の並進移動に必要となる治具の影響や、隣接する不等間隔溝凹面回折格子からの迷光を抑制することがより容易となる。そのため、移動台 5 1 0 の移動機構も小型 で単純にすることができる。

[0045]

図11は、第2の例として、G1~G3を鉛直方向(×軸方向)に移動させることによって切換を行う分光装置600の構成を示す図である。この分光装置600においては、 不等間隔溝凹面回折格子G1~G3が、これらの側面において移動台(切換手段)610 に鉛直方向に配列して設置される。図11における左側はG1が選択された場合の構成を 示し、右側はG2が選択された場合の構成を示す。入射光100は光源20から回折格子 へ向かい、回折光200は回折格子から像面30へ向かう。移動台610が×軸方向に移 動することによって、G1~G3が切り替えられる。この際、G1~G3の回折格子中心 における格子面の法線が共通となるように設定され、回折格子中心の法線方向における位 置は、G1で1(=0)、G2で2(2>1)、G3で3(3>2)とさ れる。上述したように、G1~G3の切り替えに伴って1~3が変化し、結果的に入 射角が切り替わる。

[0046]

入射光100及び回折光200が、選択された不等間隔溝凹面回折格子(図11中左側ではG₁、右側ではG₂)の直上に存在する不等間隔溝凹面回折格子によって遮られる可能性を低減する構成とするためには、入射角 が最も小さな(90°から離れている)G₁を最上段に、入射角 が最も大きな(90°に近い)G₃を最下段とすることが好まし

20

30

40

い。この場合、 G₃の上面とG₂の下面との間隔 D₂₃は、 G₂の上面とG₁の下面との 間隔 D₁₂よりも小さくすることができ、結果的に移動台 6 1 0 を小型化できる。 【 0 0 4 7 】

また、図11の構成において、×軸方向の並進移動の誤差は入射光100の入射角の誤 差に直結するため、G₁~G₃を切り替える際には、選択されたG₁~G₃をストッパで 正確に所定の位置に固定する必要がある。その例として、図11においてはG₁~G₃の 右端部に段差が設けられており、この段差における低い部分をストッパで係止させること によって、G₁~G₃の各々をが考慮された所定の位置に固定できるようにしている。 【0048】

使用する不等間隔溝凹面回折格子の数が上記よりも多い場合に同様の構成を用いる場合 10 には、各回折格子の格子面の中心を通る法線が共通となり、全ての回折面は一様に上方向 を向くように移動台610を用いて積層して固定する。この際、移動台610はこの法線 方向に移動するように設定する。また、この積層構造において、対応波長範囲は上方向に 向かって長くなるように設定し、かつ隣接する2つの回折格子間の上下方向に沿った間隔 が、上方向に向かって長くなるようにすれば、より多くの回折格子を積層したとしても移 動台610を小型化できる。

【0049】

図12は、第3の例として、G₁~G₃を回転中心Rを中心に回転させて切換を行う分 光装置700の構成を示す図である。この分光装置700においては、G₁~G₃が、回 転中心Rを通り図1におけるz軸に平行な回転軸を中心にした回転をする回転台(切換手 段)710の円周上の異なる位置に配列して設置される。図12における上側はG₁が選 択された場合の構成を示し、下側はG₂が選択された場合の構成を示す。入射光100は 光源20から回折格子へ向かい、回折光200は回折格子から像面30へ向かう。回転台 710が回転することによって、G₁~G₃が切り替えられる。この際、G₁~G₃の回 折格子中心における格子面の法線が共通となるように設定され、回折格子中心のこの法線 方向における位置は、G₁で₁(=0)、G₂で₂(2>1)、G₃で₃(3>2)とされ、G₁~G₃の切り替えに付随して対応する入射角に切り替わる。 【0050】

図12の構成に対して、図13の構成は、回転軸を図1におけるy軸に平行な構成とし、その周囲にG₁~G₃を配列した構成である(第3の例の変形例)。この場合、G₁~G₃は図13において回転中心Rの回りにy軸方向を回転軸として回転移動する。図12の構成の場合においては、回転の角度の設定に誤差が存在する場合、その誤差が入射光100の入射角の誤差に直結するのに対し、図13の構成の場合には、その誤差が入射角に対して与える影響は極めて小さくなる。また、円周上に配列された不等間隔溝凹面回折格子の数が多い場合には、図12の構成においては、光路(入射光や回折光)が、選択された回折格子と隣接する回折格子の影響を受ける場合もあるが、図13の構成においては、図10の構成と同様にこの影響も低減される。

[0051]

第1の例の変形例(図10)、第3の例の変形例(図13)においては、切換手段は、 入射光100と回折光200を含む平面内と垂直な方向にG₁~G₃を移動させることに よってそのうちの一つが選択される。この際、第1の例の変形例においてはこの移動は並 進移動であり、第3の例の変形例においてはこの移動は回転移動となる。これらの構成に おいては、前記の通り、選択された不等間隔溝凹面回折格子と隣接する不等間隔溝凹面回 折格子の光路に与える影響を低減することができる。

[0052]

一方、入射光100と回折光200を含む平面内でG₁~G₃を移動させる第1の例(図9)、第3の例(図12)においては、光路に垂直な方向における分光装置のサイズを 小さくすることができる。

【0053】

上記の例では、3種類の不等間隔溝凹面回折格子を用いた場合につき説明したが、この 50

(11)

数は任意である。また、上記においては不等間隔溝凹面回折格子が用いられたが、平面形 状の不等間隔溝回折格子を用いた場合(表1におけるR= の場合)についても、同様の 効果を奏することは明らかである。

【0054】

また、切換手段として、水平方向(y 軸方向または z 軸方向)の移動機構、鉛直方向(× 軸方向)の移動機構、 y 軸または z 軸に平行な回転中心 R を回転軸とする回転機構を用 いたものについて説明したが、これらを適宜組み合わせる、あるいはこれらと異なる機構 を用いた場合であっても、上記と同様の位置関係を各々の不等間隔溝回折格子において実 現できる限りにおいて、切換手段の構成は任意である。

[0055]

10

20

図2に示したように、上記の分光装置は、不等間隔回折格子が用いられる限りにおいて、波長によらず有効である。しかしながら、入射角 が90°に近い領域で用いられる軟 X線領域(0.5~25nmの波長)用の分光装置として特に有効である。 【0056】

また、軟X線領域で使用する不等間隔溝回折格子の格子面(回折格子表面)を構成する材料は目的に応じて任意である。例えば、高い反射率を示す金、プラチナ、ニッケル等の単層の蒸着膜が有効である。また、特定の波長範囲において特に高い反射率をもつ多層膜構造を用いることもできる。その場合、0.56nmより短波長側(2200eVより高エネルギー側)をカバーできる分光装置も得ることができる。

【符号の説明】

- [0057]
- 10 不等間隔溝凹面回折格子
- 11 格子面
- 20 光源
- 30 像面
- 100 入射光
- 200 回折光

500、600、700 分光装置

- 5 1 0 、 6 1 0 移動台(切換手段)
- 7 1 0 回転台(切換手段)

【図3】

【図4】

【図5】

【図6】

【図10】

【図11】

【図12】

【図13】

フロントページの続き

(51) Int.CI.	FI テーマコード(参考) G21K 1/06 C						
(74)代理人	100162363						
	弁理士 前島 幸彦						
(72)発明者	今園 孝志						
	京都府木津川市梅美台8丁目1番7号 独立行政法人日本原子力研究開発機構 関西光科学研究所						
	内						
(72)発明者	小池 雅人						
	京都府木津川市梅美台8丁目1番7号 独立行政法人日本原子力研究開発機構 関西光科学研究所						
	内						
(72)発明者	寺内正己						
	宮城県仙台市青葉区片平 2 丁目 1 番 1 号 国立大学法人 東北大学 多元物質科学研究所内						
(72)発明者	高橋 秀之						
	東京都昭島市武蔵野三丁目1番2号 日本電子株式会社内						
(72)発明者	笹井 浩行						
	京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内						

Fターム(参考) 2G020 AA06 CC05 CC08 CC63 CD04

2H249 AA07 AA34 AA41 AA50 AA58 AA64 AA66 AA69 CA01 CA05 CA09 CA24