(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第6176604号

(P6176604)

(45) 発行日 平成29年8月9日 (2017.8.9)

- (24) 登録日 平成29年7月21日 (2017.7.21)
- (51) Int.Cl.
 FI

 G21G
 1/10
 (2006.01)
 G21G
 1/10

 HO5H
 6/00
 (2006.01)
 HO5H
 6/00

譜求項の数	13	(全	10	百)
	10		τυ.	/

(21) 出願番号 (22) 出願日	特願2013-23128 (P2013-23128) 平成25年2月8日 (2013.2.8)	(73)特許権者	f 301032942 国立研究開発法人量子科学技術研究開発機
(65) 公開番号	特開2014-153196 (P2014-153196A)		構
(43) 公開日	平成26年8月25日 (2014.8.25)		千葉県千葉市稲毛区穴川四丁目9番1号
審査請求日	平成28年1月25日 (2016.1.25)	(74)代理人	110000855
			特許業務法人浅村特許事務所
特許法第30条第2	項適用 集会名:第9回日本加速器	(72)発明者	片桐健
学会年会 開催日:	平成24年8月8日		千葉県千葉市稲毛区穴川四丁目9番1号
			独立行政法人放射線医学総合研究所内
		(72)発明者	永津 弘太郎
			千葉県千葉市稲毛区穴川四丁目9番1号
			独立行政法人放射線医学総合研究所内
		(72)発明者	鈴木 和年
			千葉県千葉市稲毛区穴川四丁目9番1号
			独立行政法人放射線医学総合研究所内
			最終頁に続く

(54) 【発明の名称】11Cまたは10Cを含む気体化合物を生成する方法および装置

- (57)【特許請求の範囲】
- 【請求項1】

¹ Cまたは¹ Cを含む気体化合物を生成する方法において、前記方法は、 真空チェンバー内にホウ素化合物の固体ターゲットを設置するステップと、 前記真空チェンバー内を真空にするステップと、 前記固体ターゲットにプロトンを照射するステップと、

<u>生成された¹¹Cまたは¹⁰Cを含む気体化合物を前記真空チェンバー内の他の気体から分離するステップと</u>を含む方法。

【請求項2】

前記ホウ素化合物は、水素化ホウ素化合物であり、前記¹¹ Cまたは¹⁰ Cを含む気体 10 化合物は、¹¹ CH₄ 分子または¹⁰ CH₄ 分子である、請求項1に記載された方法。 【請求項3】

前記水素化ホウ素化合物は、N a B H₄、L i B H₄、K B H₄からなる群から選択される、請求項2に記載された方法。

【請求項4】

前記分離するステップは、気体分子の蒸気圧の温度依存性を利用する、請求項<u>1から請</u> 求項3までのいずれか一項に記載された方法。

【請求項5】

前記分離するステップは、

前記¹¹Cまたは¹⁰Cを含む気体化合物よりも蒸気圧の低い気体を第1の低温トラッ 20

10

20

30

プに凝縮させるステップと、

前記¹¹Cまたは¹⁰Cを含む気体化合物を第2の低温トラップに凝縮させるステップと、

前記¹¹Cまたは¹⁰Cを含む気体化合物よりも蒸気圧の高い気体を前記真空チェンバーから排出するステップと、

前記第2の低温トラップの温度を上昇させて、前記第2の低温トラップに凝縮された前記¹¹ Cまたは¹⁰ Cを含む気体化合物を気化させて、前記真空チェンバーから取り出す ステップとを含む、請求項4に記載された方法。

【請求項6】

¹¹ Cまたは¹⁰ Cを含む気体化合物を生成する装置であって、前記装置は、 真空チェンバーと、

前記真空チェンバーの中に設置されたホウ素化合物の固体ターゲットと、

前記固体ターゲットにプロトンを照射するプロトン照射手段とを含む、装置。

【請求項7】

前記ホウ素化合物は、水素化ホウ素化合物であり、前記¹¹Cまたは¹⁰Cを含む気体 化合物は、¹¹CH₄分子または¹⁰CH₄分子である、請求項<u>6</u>に記載された装置。

【請求項8】

前記水素化ホウ素化合物は、N a B H ₄、L i B H ₄、K B H ₄からなる群から選択される、請求項7に記載された装置。

【請求項9】

前記装置が、生成された¹¹ Cまたは¹⁰ Cを含む気体化合物を前記真空チェンバー内の他の気体から分離する分離手段をさらに含む、請求項<u>6</u>から請求項<u>8</u>までのいずれか一項に記載された装置。

【請求項10】

前記分離手段は、気体分子の蒸気圧の温度依存性を利用する、請求項<u>9</u>に記載された装置。

【請求項11】

前記分離手段は、

前記¹¹Cまたは¹⁰Cを含む気体化合物よりも蒸気圧の低い気体を凝縮させる第1の 低温トラップと、

前記¹¹Cまたは¹⁰Cを含む気体化合物を凝縮させる第2の低温トラップと、

前記¹¹ Cまたは¹⁰ Cを含む気体化合物よりも蒸気圧の高い気体を前記真空チェンバ ーから排出する排出手段と、

前記第1の低温トラップおよび前記第2の低温トラップの温度を制御する温度制御手段 とを含み、

前記温度制御手段が、前記第2の低温トラップの温度を上昇させることによって、前記 第2の低温トラップに凝縮された前記¹¹Cまたは¹⁰Cを含む気体化合物が気化され、 前記真空チェンバーから取り出される、請求項10に記載された装置。

【請求項12】

水素化ホウ素化合物の固体ターゲットにプロトンを照射し、¹¹CH₄分子または¹⁰40 CH₄分子を生成する方法。

【請求項13】

前記水素化ホウ素化合物は、NaBH₄、LiBH₄、KBH₄からなる群から選択される、請求項12に記載された装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、¹¹Cまたは¹⁰Cを含む気体化合物を生成する方法および装置に関する。

【背景技術】

[0002]

重粒子線治療における照射野検証のために、シンクロトロン加速器で加速した陽電子放 出核イオンである¹ Cイオンビームまたは¹ Cイオンビームを治療に用いる技術の確 立が期待されている。本発明者らは、¹ C H₄ガスをイオン源へ供給し、¹ Cイオン の生成をイオン源で行い、生成された¹ C イオンを加速し照射する方法を提案してきた 。¹ C イオンまたは¹⁰ C イオンを E C R 型や E B I S 型のイオン源にて生成し、後段 のシンクロトロンで加速・治療供給するためには、高純度の¹⁰ C H₄分子または¹¹ C H₄分子を一度の治療の毎に10¹²~10¹³個程度(0.1~1Ci)イオン源に供 給しなければならない。

【0003】

また、従来、PET診断のための放射性核種生成法として、H₂ガスを添加した15気 10 圧のN₂ガスをターゲットとし、¹⁴N(p,)¹¹C反応を利用した¹¹CH₄生成 法が用いられている。この方法では、20分のプロトン照射によりおおよそ10¹³個の ¹¹CH₄分子(~1Ci)を生成することが可能である。この数は要求量を十分満たし ているが、ESIS(Electron String Ion Source)型イオ ン源へ供給する際に不純物が問題となる。不純物のうち最も数多く含まれるのはターゲッ トガスであるN₂分子であり、その数は10²¹個程度にも達し、不純物から¹¹CH₄ 分子を十分に分離することは難しい。しかし、ESIS型イオン源にとって、供給される 不純物の分子数は、¹¹CH₄の数に比べて十分に少なくなければならない。

【0004】

また、特許文献1~3には、放射性同位元素¹¹Cを製造するために、ホウ素の粉末ま ²⁰ たはホウ素を含む化合物を使用すること等が開示されている。しかし、いずれも高純度・ 高効率に¹¹Cまたは¹⁰Cを含む気体化合物を生成するものではない。

【先行技術文献】

【特許文献】

[0005]

【特許文献1】特開2007-170890号公報

【特許文献 2】特開 2 0 0 6 - 2 4 4 8 6 3 号公報

【特許文献3】特開2012-103260号公報

【発明の概要】

【発明が解決しようとする課題】

[0006]

そこで、本発明は、高純度・高効率に¹¹Cまたは¹⁰Cを含む気体化合物を生成する 方法および装置を提供することを目的とする。

【課題を解決するための手段】

【0007】

上記課題を解決するため、本発明は、¹¹ Cまたは¹⁰ Cを含む気体化合物を生成する 方法において、本方法は、真空チェンバー内にホウ素化合物の固体ターゲットを設置する ステップと、真空チェンバー内を真空にするステップと、固体ターゲットにプロトンを照 射するステップとを含む。

[0008]

40

30

本発明の別の実施形態では、ホウ素化合物は、水素化ホウ素化合物であり、¹¹ Cまた は¹⁰ Cを含む気体化合物は、¹¹ C H₄ 分子または¹⁰ C H₄ 分子である。

【0009】

また、本発明の別の実施形態では、水素化ホウ素化合物は、NaBH₄、LiBH₄、 KBH₄からなる群から選択される。

【0010】

また、本発明の別の実施形態では、生成された¹¹Cまたは¹⁰Cを含む気体化合物を 真空チェンバー内の他の気体から分離するステップをさらに含む。 【0011】

また、本発明の別の実施形態では、分離するステップは、気体分子の蒸気圧の温度依存 50

性を利用する。

【0012】

また、本発明の別の実施形態では、分離するステップは、¹¹ Cまたは¹⁰ Cを含む気体化合物よりも蒸気圧の低い気体を第1の低温トラップに凝縮させるステップと、¹¹ C または¹⁰ Cを含む気体化合物を第2の低温トラップに凝縮させるステップと、¹¹ C たは¹⁰ Cを含む気体化合物よりも蒸気圧の高い気体を真空チェンバーから排出するステ ップと、第2の低温トラップの温度を上昇させて、第2の低温トラップに凝縮された¹¹ Cまたは¹⁰ Cを含む気体化合物を気化させて、真空チェンバーから取り出すステップと を含む。

[0013]

10

20

さらに、本発明は、¹¹ Cまたは¹⁰ Cを含む気体化合物を生成する装置であって、本 装置は、真空チェンバーと、真空チェンバーの中に設置されたホウ素化合物の固体ターゲ ットと、固体ターゲットにプロトンを照射するプロトン照射手段とを含む。

【0014】

また、本発明の別の実施形態では、ホウ素化合物は、水素化ホウ素化合物であり、¹¹ Cまたは¹⁰Cを含む気体化合物は、¹¹CH₄分子または¹⁰CH₄分子である。 【0015】

また、本発明の別の実施形態では、水素化ホウ素化合物は、NaBH₄、LiBH₄、 KBH₄からなる群から選択される。

[0016**]**

また、本発明の別の実施形態では、本装置が、生成された¹¹Cまたは¹⁰Cを含む気体化合物を真空チェンバー内の他の気体から分離する分離手段をさらに含む。

[0017]

また、本発明の別の実施形態では、分離手段は、気体分子の蒸気圧の温度依存性を利用 する。

[0018**]**

また、本発明の別の実施形態では、分離手段は、¹¹ Cまたは¹⁰ Cを含む気体化合物 よりも蒸気圧の低い気体を凝縮させる第1の低温トラップと、¹¹ Cまたは¹⁰ Cを含む 気体化合物を凝縮させる第2の低温トラップと、¹¹ Cまたは¹⁰ Cを含む気体化合物よ りも蒸気圧の高い気体を真空チェンバーから排出する排出手段と、第1の低温トラップお よび第2の低温トラップの温度を制御する温度制御手段とを含み、温度制御手段が、第2 の低温トラップの温度を上昇させることによって、第2の低温トラップに凝縮された¹¹ Cまたは¹⁰ Cを含む気体化合物が気化され、真空チェンバーから取り出される。

30

40

【0019】 さこに 本 登 明 け ・ 水 書

さらに、本発明は、水素化ホウ素化合物の固体ターゲットにプロトンを照射し、¹¹C H₄分子または¹⁰CH₄分子を生成する方法を提供する。

[0020]

また、本発明の別の実施形態では、水素化ホウ素化合物は、NaBH₄、LiBH₄、 KBH₄からなる群から選択される。

【図面の簡単な説明】

[0021]

【図1】Thick Target照射による¹¹Cの分布(NaBH₄および元素状ホ ウ素)を示す図である。

【図2】¹¹CH₄生成評価に関する実験装置系を示す図である。

【図3】本発明の一実施形態による¹¹CH₄生成 / 濃縮装置の概略図である。

【図4】蒸気圧曲線を示す図である。

【発明を実施するための形態】

[0022]

まず、本発明では、本発明のターゲット材料の1つとしてNaBH₄が適しているということを突き止めた。以下に、ターゲット材料選定のために行った実験を示す。

(5)

[0023]

本発明では、ターゲットガスが大量に残留することを防ぐため、ターゲット物質として 固体を選択した。ビーム照射によって生成された¹¹ C原子を固体ターゲット中から効率 的に取り出すためには、気体分子として取り出すことが望ましい。とくに、ESISイオ ン源への供給を考慮すると、CH₄ガスが好ましい。このような観点から、水素が豊富に 含まれる水素化ホウ素化合物をターゲットに採用し、照射と同時に¹¹ CH₄が得られる 手法を検討した。

【0024】

この場合、プロトン照射により¹¹ B(p,n)¹¹ C反応を利用して¹¹ Cを生成す る。図1に、水素化ホウ素化合物であるNaBH₄ ターゲットにプロトン照射(18 Me V、10µA、20分)した場合に生成される放射能分布の計算結果を示す。NaBH₄ を用いた場合に生成された¹¹ C(0.7 Ci,4.4×10¹³個)は、元素状ホウ素 を用いた場合(2.7 Ci)に比べると1/4程度の量であるが、目標値である10¹² 個を十分に得られることが確認できる。

[0025]

N a B H₄ ターゲットを利用した¹¹ C H₄ 生成評価に関する基礎的な実験は図 2 に示した装置系で行った。ターゲットボックス 1 内には、結晶粉末状の N a B H₄ を 1 g 封入し(T h i c k t a r g e t)、 1 8 M e V のプロトンビーム 3 を照射した。¹¹ C 原子のメタン化について、ターゲット中に存在する水素原子の寄与を見るためにキャリアガス5 として H₂ ガスではなく H e ガスを用いた。キャリアガスに含まれるターゲットからの揮発性分のうち、二酸化炭素はアスカライト(N a O H) 7 に吸着させた。プロトン照射中は、アスカライト 7 のカラムをドーズキャリプレータ(D o s e C a 1 i b r a t o r)9 内に置くことで、¹¹ C O₂ の放射能をモニタした。中に液体窒素を含むコールドトラップ 1 1 に収集された¹¹ C H₄ の放射能測定は、2 あるいは 3 半減期後にドーズキャリプレータを用いて行った。最終的にキャリアガスは、バッファタンク 1 3 に回収される。

【0026】

表1にNaBH₄をターゲット物質に用いた際の放射能の分布を示す。比較のため、元 素状ホウ素をターゲットとして行った放射能測定結果も記している。元素状ホウ素を用い た場合には、取り出し効率が0.2%、回収された¹¹CH₄の放射能が3mCiであり 、¹¹CH₄としての放射能の収量は非常に低く、殆どの¹¹Cは固体ターゲット中に残 留した。一方で、NaBH₄ターゲットを用いた場合には、全体の放射能の約30%を¹ ¹CH₄として取り出すことが出来た(約70%はターゲット内に残留)。また、¹¹CH₄の数も5×10¹²個(77mCi)に達し、目標値を達成することが出来た。これ らの結果から、¹¹CH₄の生成方法として、NaBH₄をターゲットとすることが有効 であることが確認された。

【表1】

NaBH₄と元素状ホウ素ターゲットについての収量の比較

ターゲット	キャリア		放射能(mCi)/比率			
	ガス	全体	ターゲット	$^{11}\mathrm{CO}_2$	$^{11}CH_4$	収集分子数
			(不揮発分)	(アスカライト	(コールドトラ	(個)
				吸着分)	ップ収集分)	
元素状ホウ素	H_2	1410/	1404/	0.052/	3. 2/	2×10^{11}
		100%	99.8%	0.0%	0.2%	
NaBH ₄	He	264/	185.9/	0.70/	77.3/	5×10^{12}
		100%	70.4%	0.3%	29%	

10

20

このような高い取り出し効率(高効率)が達成されるのは、NaBH₄は豊富に水素原 子を含んでいるためと考えられる。NaBH₄のB原子は、プロトン照射されることで¹ ¹ B(p,n)¹ Cの反応により¹ Cへと変化する。発生した¹ C原子はホットア トムとしてターゲット中を減速しながら運動し、停止寸前において周囲に多く存在する水 素原子と結合することで、¹ CH₄へと変化する。この¹ CH₄は気体であり固体内 部から気化できるため、高い取り出し効率につながると考えられる。この現象は、NaB H₄だけでなく、LiBH₄、KBH₄等、他の水素化ホウ素化合物をターゲットとして 用いた場合においても生じると考えられる。

【0029】

以上の通り、NaBH₄の固体ターゲットを使用することにより高効率に^{1 1} CH₄を ¹⁰ 取り出せることを示したが、ホウ素と水素を含有する任意の水素化ホウ素化合物、例えば 、LiBH₄、KBH₄をターゲットとして使用して^{1 1} CH₄を取り出すことも有効で ある。さらに、ホウ素と酸素を含有する任意の酸化ホウ素化合物の固体ターゲットを使用 して^{1 1} CO₂を取り出すことも有効である。同様に、他の任意のホウ素化合物をターゲ ットして使用することも可能である。

[0030]

【0031】 【表2】

また、表2に¹¹CH₄として得られた放射能のビーム電流依存性を示す。ビーム電流の増加と共に、単位電流当りの放射能(A/I_B)の値が低下していることが分かる。この原因の一つとして、過熱によるNaBH₄の変形や分解が挙げられる。このダメージを防ぐ為には、ビーム電流の低密度化や冷却の強化が有効である。

20

¹¹CH₄として得られた放射能のビーム電流依存性(NaBH₄ターゲットの場合)

ビーム電流I _B (μA)	1	5	18
¹¹ CH ₄ 放射能 A(mCi)	13.6	48.3	77. 3
A/I_{B} (mCi/ μ A)	13.6	9. 7	4. 29

【0032】

次に、上記の水素化ホウ素化合物を用いた¹¹ CH₄の生成プロセスを利用して、¹¹ CH₄生成 / 濃縮装置を発明した。図3は、本発明装置の概略図である。本発明装置は、 真空チェンバー21と、真空チェンバーの中に設置されたホウ素化合物の固体ターゲット 22と、固体ターゲットにプロトンを照射するプロトン照射手段とを含む。

【0033】

真空チェンバー21の内部体積は、1000cc程度にされており、真空ポンプにより 10⁻⁴ Pa程度にまで真空引きにされる。表3は、300Kにおいて、P=1.33× 10⁻⁴ Paにまで真空引きした1000ccの真空チェンバー内に残留する空気由来の ガスの粒子数を示す。表3に示されている通り、真空チェンバー内に残留するガスの粒子 数は、窒素分子が10¹³個程度、酸素分子が10¹²個程度、アルゴン分子が10¹¹ 個程度、二酸化炭素分子が10¹⁰個程度である。 【0034】

40

P=1.33×10⁻⁴Paにまで真空引きした1000ccの真空チェンバー内に残留する 空気由来のガスの粒子数(300K)

ガス	N_2	O_2	Ar	CO_2
空気中体積比率(%)	78.1	20. 9	0.93	0.03
粒子数 (1000cc、 1.33×10 ⁻⁴ Pa)	2. 8×10^{13}	7. 4×10^{12}	3. 3×10^{11}	1.1×10 ¹⁰

[0035]

固体ターゲット22であるNaBH』粉末は、真空チェンバー21内のターゲット台3 2の上に設置されている。このターゲット台32は、熱伝導率の低いロッド36を介して 真空チェンバー本体の底面に設置されている。これは、ターゲット台32で発生する熱の 真空チェンバー21の壁面への熱伝導を低減するためである。また、ターゲット台32は 、外部から供給される冷却水により冷却される。これによって、NaBHュ粉末を冷却し 、熱による分解(400~500 で生じる)を防止する。また、NaBH₄粉末の温度 は、温度センサーで監視することが可能である。

[0036]

本発明装置は、プロトンビームの入射口(真空窓)23を含み、ターゲット台32上の 20 N a B H ₄ 粉末はここから入射したプロトンビーム28によって照射される。10 µ A 程 度、20MeV程度のプロトンビームを20分程度の照射することにより、10¹²~1 0¹³個程度の¹¹CH₄分子が発生し、NaBH₄粉末から気化する。さらに、H₂ガ スおよびB。H。等のNaBH』の分解生成ガスも発生する。真空チェンバー21の内部 は、熱運動する10¹³個程度の残留ガス分子と10¹²~10¹³個程度の¹¹CH ガス分子等とで満たされる。

[0037]

したがって、本発明によれば、真空チェンバー内のガス中の¹¹CH₄の比率が、従来 のキャリアガスを使用する生成方法と比べて極めて高い。したがって、¹¹CH』をさら に濃縮することが、比較的容易であり、後段のイオン源に供給可能な高純度の¹¹CH。 の生成が実現される。

[0038]

放射性核種生成に関する当技術分野では、発生した放射性ガスを輸送する必要があるた めに、キャリアガスを流さなければならないということが常識であった。したがって、本 発明のように真空条件下で放射性核種を生成するという技術思想は存在しなかった。本発 明は、この従来常識に反して、真空条件下で、固体ターゲットから放射性核種を発生させ る。これによって、より高純度の¹¹CH₄の生成を実現している。

【0039】

本発明装置は、真空チェンバー内に満たされた¹¹CH」を真空チェンバー内の他の気 体から分離する分離手段をさらに含むことが可能である。本実施形態においては、気体分 子の蒸気圧の温度依存性を利用して分離するが、当業者にとって既知の他の任意の分離手 段を利用することも可能である。

[0040]

図4に、真空チェンバー内に存在するガスの蒸気圧曲線を示す。各々の曲線にて、圧力 を一定に保ちつつ温度を低下させたとき、曲線の右側は気体、左側は固体となる。本実施 形態では、この基本性質を利用して不純物分子の分離を行う。

[0041]

本実施形態において、分離手段は、¹¹CH』よりも蒸気圧の低い気体を凝縮させる第 1の低温トラップ24、25と、¹¹CH₄を凝縮させる第2の低温トラップ26と、¹ ¹ CH₄よりも蒸気圧の高い気体を真空チェンバーから排出する排出手段と、第1の低温

10

30

トラップ24、25および第2の低温トラップ26の温度を制御する温度制御手段33と を含む。

【0042】

第2の低温トラップ26は、¹¹ CH₄を凝縮させるために20~50K程度に冷却される。また、第1の低温トラップ24、25は、¹¹ CH₄よりも蒸気圧の低い気体を凝縮させるために50~150K程度に冷却される。また、第1の低温トラップ24、25の別の役割は、輻射シールドであり、ターゲット台32で発生する熱の輻射熱が第2の低温トラップ26に流入することを防ぐことによって、第2の低温トラップ26を効率よく冷却する。また、ターゲット台32で発生する熱の輻射熱が第2の低温トラップ26に直接流入することを防ぐために、真空チェンバー21の形状は屈曲されている。

これら第1の低温トラップ24、25、第2の低温トラップ26の冷却には、クライオ クーラー(冷凍機)や各種液化ガスを用いることが可能である。本実施形態では、第1の 低温トラップ24、25および第2の低温トラップ26の温度は、クライオクーラー33 によって温度制御される。第1の低温トラップ24、25は、第2の低温トラップ26よ りも高い温度に設定され、¹¹ CH₄分子よりも蒸気圧の低い気体(CO₂、またはNa BH₄の分解生成物であるB₂ H₆等)を凝縮および吸着させるようになっている。第2 の低温トラップ26は、第1の低温トラップ24、25で吸着されなかった¹¹ CH₄ が 凝縮および吸着されるように温度設定される。¹¹ CH₄ よりも蒸気圧の高い分子(N₂ 、Ar、O₂、NaBH₄の分解生成物であるH₂)は、第1の低温トラップ24、25 および第2の低温トラップ26のいずれにも吸着されることなく、排出手段によって排出 口27を介して真空チェンバー21から排出される。本実施形態では、排出手段としてタ ーボ分子ポンプが使用されるが、任意の排出手段が使用可能である。

【0044】

第1の低温トラップ24、25および第2の低温トラップ26は、温度設定のために、 温度センサーとヒーターが備わっている。ヒーターは、温度センサーからの情報を用いて 正確に温度制御される。第1の低温トラップ24、25および第2の低温トラップ26の 温度制御により、不純物ガスの混じった混合ガスから高純度の¹¹CH₄を分離すること が可能である。

【0045】

+分に分離が完了した後、バルブ29、30が閉じられ、第2の低温トラップ26の周囲が、真空チェンバー21内の空間35として隔離される。その後、第2の低温トラップ26はヒーターにより加熱され、吸着された¹¹CH₄を再度気化させる。この状態でバルブ11を開き、空間35の外へ¹¹CH₄を取り出す。取り出された¹¹CH₄は、フランジ34を介して、イオン源等の装置に輸送される。

【0046】

このような構成とすることにより、本発明装置は、従来のキャリアガスを使用する¹¹ CH₄ガス生成装置よりも短時間で高純度の¹¹CH₄ガスの生成が可能である。¹¹C は、半減期が約20分と短いので、生成時間が短いということも、¹¹CH₄ガスを高純 度・高効率に得るという効果に寄与している。

【0047】

上記実施形態では、NaBH₄を固体ターゲットとした場合について記載してきたが、 本発明装置は、同様の原理により、他の任意のホウ素化合物、例えば、LiBH₄、KB H₄、B₂O₃、BNなどをターゲットとすることも可能である。

【0048】

以上の説明では、固体 N a B H₄をターゲットとして、¹ ¹ C H₄を生成することにつ いて記載してきたが、天然の B は、約 2 0 %の^{1 0} B と約 8 0 %の^{1 1} B とで構成されて いるので、本発明により同時に^{1 0} C H₄も生成されている。したがって、本発明により 、^{1 1} C H₄に加えて、^{1 0} C H₄も高純度・高効率に生成されることに留意されたい。 【符号の説明】 10

30

[0049]1 ターゲットボックス プロトンビーム 3 キャリアガス 5 7 アスカライト 9 ドーズキャリブレータ コールドトラップ 1 1 13 バッファタンク 2 1 真空チェンバー ターゲット 22 23 入射口 24 第1の低温トラップ 第1の低温トラップ 25 26 第2の低温トラップ 27 排出口 28 プロトンビーム 29 バルブ バルブ 3 0 3 1 バルブ ターゲット台 32 33 温度制御手段 フランジ 34 35 空間

36 ロッド

【図2】

気体

100

温度 T (K)

200

150

固体

50

10 10-2 10⁻³ 10⁻⁴ 10

フロントページの続き

- (72)発明者 北條 悟 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内
- (72)発明者 後藤 彰
 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内
 (72)発明者 野田 耕司
- 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内 (72)発明者 峯岸 克行
- 千葉県鎌ヶ谷市くぬぎ山4丁目10番20号
- (72)発明者 本間 壽廣 東京都練馬区関町北3丁目44番19号

審查官 藤本 加代子

(56)参考文献 特開2007-170890(JP,A) 特開平06-273594(JP,A) 米国特許出願公開第2002/0172317(US,A1) 特開昭60-001388(JP,A) 特開昭53-112398(JP,A) 特開2010-223943(JP,A)

(58)調査した分野(Int.Cl., DB名)

```
G 2 1 G
       1/00-7/00
G 2 1 K
        1/00-3/00
      5/00-7/00
G 2 1 K
H 0 5 H
       3/00-15/00
G 0 1 T
       1/161-1/166
B 0 1 B
       1/00-1/08
     1/00-8/00
B 0 1 D
       5/10
A 6 1 N
JSTPlus(JDreamIII)
```