(12) 公開特許公報(A) (11) 特許出願公開番号

特開2010-223943

(P2010-223943A)

(43) 公開日 平成22年10月7日(2010.10.7)

(51) Int.Cl. G21G G21G G21K G21K H05H	1/06 1/10 5/02 5/08 3/06	Fl (2006.01) G (2006.01) G (2006.01) G (2006.01) G (2006.01) G (2006.01) G 審査	21G 21G 21K 21K 21K 講求 未	1/06 1/10 5/02 5/08 5/08 請求 請求J	N N R 頁の数 7 O L	テーマコー) 2G085 (全 18 頁)	[、] (参考) 最終頁に続く
(21) 出願番号 (22) 出願日 (31) 優先権主要 (32) 優先日 (33) 優先権主要	張番号 張国	特願2010-8607 (P2010-8607) 平成22年1月18日 (2010.1.18 特願2009-41576 (P2009-4157 平成21年2月24日 (2009.2.24 日本国 (JP)) 8) 76) 4)	(71)出願人 (74)代理人 (72)発明者 (72)発明者	505374783 独立行政法人 茨城県那珂郡 100093230 弁井県 永井県 京城県郡 立行開 東部法人 大島県 那法人 で 次城 の 第 郡 5 で 第 町 7 第 第 第 3 で 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 7 第 の 9 32 30 7 第 本 末 の 7 第 の 9 32 30 7 第 本 末 の 9 32 30 7 第 本 末 家 城 県 第 30 7 第 本 末 家 切 四 里 本 泰 城 県 郡 可 県 第 30 7 第 の 第 30 7 章 本 家 城 県 第 30 7 章 本 家 城 明 三 本 奏 一 第 の 5 二 の 号 二 の 号 二 の 号 二 の 号 の 号 つ 号 の 5 二 の 第 の 5 二 の 5 二 の 5 一 第 の 5 5 3 の 第 の 第 の 5 四 第 の 第 の 第 の 第 の 四 第 の 5 二 の 第 の の 5 の 第 の 二 の 二 の 第 の 第 四 の 二 の 第 の の 二 の 二 の の 二 の の の の の の の の	 日本原子力研 原子村 4 和村 大 村子方研 村子方 中村子力 村子の 市 市	究開発機構 2 発学 4 9 2 番機研 2 番機研 2 番機研 5 7 7 7 8 7 7 8 7 7 7 8 7 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 8 8 8 8 8 8 7 8
						最	終頁に続く

(54) 【発明の名称】放射性同位元素の製造方法及び装置

(57)【要約】

(19) 日本国特許庁(JP)

【課題】濃縮²³⁵Uを使用せず、高強度で半減期の長い放射性廃棄物を多量に発生させ ることなく、効率よく廉価に放射性同位元素の安定供給ができる技術を提供する。 【解決手段】原料ターゲットに加速器からの高速中性子を照射し、1個の中性子の照射に より 1 個の⁴ H e を 放出 す る (n , ⁴ H e) 反 応 を 起 さ せ 、 放 射 性 同 位 元 素 を 生 成 さ せ る ことを特徴とする。

【選択図】なし

【特許請求の範囲】

【請求項1】

原料ターゲットに加速器からの高速中性子を照射し、1個の中性子の照射により1個の ⁴ Heを放出する(n,⁴ He)反応を起させ、放射性同位元素を生成させることを特徴 とする放射性同位元素の製造方法。

(2)

【請求項2】

原料ターゲットのターゲット核として表1の中から選ばれた1種又は複数のターゲット 核を含む原料ターゲットに高速中性子を照射することを特徴とする請求項1に記載の放射 性同位元素の製造方法。

【請求項3】

10

原料ターゲットを加速器の高速中性子発生部に密着させた状態で又は離間させた状態で 中性子を原料ターゲットに照射することを特徴とする請求項1又は2に記載の放射性同位 元素の製造方法。

【 請 求 項 4 】

高速中性子を発生させる加速器と、原料ターゲットを支持するターゲット支持手段を備 え、加速器からの高速中性子を原料ターゲットに照射し、1個の中性子の照射により1個 の⁴ H e を放出する(n,⁴ H e)反応を起させ、放射性同位元素を生成させることを特 徴とする放射性同位元素の製造装置。

【請求項5】

原料ターゲットが、原料ターゲット核として表1の中から選ばれた1種又は複数のター ²⁰ ゲット核を含む原料ターゲットであることを特徴とする請求項4に記載の放射性同位元素 の製造装置。

【請求項6】

原料ターゲットが、加速器の高速中性子発生部に密着させた状態で又は離間させた状態 でセットされていることを特徴とする請求項4又は5に記載の放射性同位元素の製造装置 。

【請求項7】

加速器の高速中性子発生部が冷却手段を備え、かつ該高速中性子発生部が真空室と大気 側の隔壁機能を有し、かつ該高速中性子発生部に原料ターゲットが密着させた状態又は離 間させた状態でセットされていることを特徴とする請求項4ないし6のいずれか一項に記 載の放射性同位元素の製造装置。

【発明の詳細な説明】

【技術分野】

 $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$

本発明は、放射性診断薬等に用いられる放射性同位元素を、核燃料物質²³⁵Uを使用 せず、高強度で半減期の長い広範囲の同位元素(例えばストロンチウム90からセシウム 137)から成る放射性廃棄物を多量に発生することなく効率良く廉価に生成し安定供給 を可能にする製造方法及び装置に関するものである。

【背景技術】

[0002]

現在、医療の分野で放射線や放射性同位元素(ラジオアイソトープ;以下、RIとも称する)は、病気の診断、治療に欠かすことができないものとなっている。RIから放出される放射線は、物質自体はごく微量であっても確実に検出・定量することができ、この性質を利用してシンチグラフィによる検査、診断が行われている。これに用いる医薬品はいわゆる「放射性医薬品」と呼ばれており、放射性医薬品等に用いられるRIには半減期が短く、透過力の大きいガンマ線を出すものが適している。

【 0 0 0 3 】

放射性医薬品等に使用される R I とその使用例を例示すると、例えば、^{99m} T c は脳 ・甲状腺・骨シンチグラフィ、⁶⁷G a は乳ガン・肺ガン・悪性リンパ腫治療、²⁰¹T 1 は副甲状腺・腫瘍・心筋シンチグラフィ、⁶⁰C o はガンマナイフ用線源、³²P は白

30

血病治療、³⁵SはDNA塩基配列・遺伝子染色体配置決定、⁵¹Crは循環血液量・循 環赤血球量測定、⁵⁹Feは血清中総鉄結合能(TIBC)測定、⁸⁹Sr、¹⁵³Sm 、¹⁸⁶Reは疼痛緩和薬、⁹⁰Yは悪性リンパ腫治療、¹⁰³Pdは前立腺ガン治療、 ¹²⁵Iは腫瘍マーカー、¹³¹Iは甲状腺機能亢進症・甲状腺ガン治療、¹³³Xeは 局所肺換気機能検査、等である。

[0004]

これらのRIの内、⁹⁹mTc、⁹⁰Y、¹³¹I、¹³³Xeは、現在、²³⁵Uを 36%~93%程度濃縮した高濃縮²³⁵Uを原料として、それを原子炉で中性子照射し て核分裂反応させ、その核分裂生成物の中から抽出することにより製造されている。この 濃縮²³⁵Uを用いる方法は、特に核不拡散の観点から問題があり国際原子力機関(IA EA)等では²³⁵U濃縮度が20%以下の低濃縮原料を用いる技術に切替えるための働 きかけを世界各国で行っており、それに対応した技術開発が世界中で進められている。し かし、30年に及ぶ働きかけにもかかわらず世界のほとんどのRIは未だ高濃縮²³⁵U を使用して生成されている。一方、²³⁵U濃縮度を20%以下にした低濃縮²³⁵U を使用して生成されている。一方、²³⁵U濃縮度を20%以下にした低濃縮²³⁵U RI製造用の原料に用いると、プルトニウムの生成量が約25倍に増えてしまうという問 題が新たに生じる。このため⁶⁰Co、³²P、³⁵S、⁵¹Cr、⁵⁹Fe、⁸⁹Sr 、¹⁵³Sm、¹⁸⁶Reの様に原子炉の熱中性子(0.025eV)をターゲットに照 射し、生成したRIを抽出する方法も利用されている。また⁶⁷Ga、²⁰¹T1、¹⁰ 引っている。

【 0 0 0 5 】

また、RIの一部はわが国で製造されているが、その多くは海外からの輸入に頼ってい るのが実情である。ところが平成19年にはカナダの原子炉のトラブルで放射性医薬品の 入手が困難となり深刻な問題となった。平成20年8月には世界市場に約26%の^{9 9} M oを供給しているオランダの原子炉が一次冷却系底部構造の一部腐食変形のため運転を停 止、平成21年2月中旬に運転再開となった。しかし平成21年5月には再度カナダの原 子炉で重水の漏れが発覚したため運転が休止しており、復旧は早くて平成22年3月末と 考えられている。この様にRIのほとんどを他国からの輸入で頼っていると、他国の国内 事情や原子炉の老朽化、メンテナンス、トラブル等により、安定した供給体制が維持でき ないことも予想され、RIの安定供給は重要かつ緊急な課題となってきている。とりわけ わが国が大半のRIの輸入先として頼っているカナダにおいては、その供給のための原 子炉が2011年に運転許可期限に達することが予想されるが、それ以降については、世 界的視点・長期的視点に立った現実的な計画は全く存在していない。米国や欧州において も^{9 9} M o 等をはじめとする R I の安定供給が切望されているが、それに対応できる現実 的体制はまだとられておらず、早急にその体制確立が必要となってきている(非特許文献 1)。また、RIの大半を海外からの輸入に依存すると、医療等で使用されるRIの価格 が高騰し、ひいては医療費全体の高騰の一因となってしまう。平成19年度では放射性医 薬品の販売価格は440億円にも達している(非特許文献2:5ページ目)。 $\begin{bmatrix} 0 & 0 & 0 & 6 \end{bmatrix}$

また、原子炉で²³⁵Uを核分裂させた場合、図1(非特許文献3)に示すように所望 ⁴のRI以外に様々な核種が生成され、必要でない生成核廃棄物の保存、管理、処理等が膨大になり且つ非常に煩わしいものとなっていた。 【0007】

このような問題を考慮し、本出願人らは、²³⁵ Uを用いないで、放射性診断薬として 非常によく利用されている放射性テクネチウム^{99 m} T c の親核種である放射性モリブデ ン⁹⁹ M o を効率的に製造する技術を提案した(特許文献 1)。ここで提案した方法は、 M o 化合物を水に溶解した M o 水溶液を、原子炉の炉心に設置した照射キャプセル中で中 性子を照射して⁹⁸ M o (n,)反応によって⁹⁹ M o を生成させ、その M o 水溶液を 連続的あるいはバッチ的に回収することによって効率的に⁹⁹ M o を製造しようというも のである。同様に特許文献 2 には、⁹⁸ M o を用い、熱中性子捕獲反応で放射性モリブデ 10

20

ン⁹⁹Moを生成する技術が提案されている。しかしながら、これら熱中性子捕獲反応を 用いるケースでは、原子炉を用いるためその製造場所が限定され、しかも原子炉の運転形 態に大きく依存するのに加えて製造コストが高価となり、反応断面積が小さいため比放射 能が低く、製造効率にも問題があった。また原子炉のメンテナンスにはその安全性等を考 慮すると例えば定期点検等で半年の運転停止をしなければならないような事態も発生する 。これらの事情から病院等の施設で⁹⁹Moを簡便にかつ安定供給するためには、さらな る技術的工夫が必要であった。

[0008]

10

20

30

一方、加速器を用いて陽子や重イオンビームを原料ターゲットに照射し、RIを生成す ることも行われている。陽子の場合、使用される加速器をコンパクトにすることで病院等 の施設で簡便に使用することができる。しかしながら、このような小型加速器から出射さ れる陽子を用いてRIを生成する場合、軽い核種のRIにしか対応することができず、重 い核種のRIに対応しようとすると加速器の大型化を避けることができないという問題が あった。即ち、陽子を用いてRIを生成する場合、陽子は正の電荷を有しているため、重 い核種(それはたくさんの正の電荷の陽子を持つ原子核であるが)のターゲット核と反応 するには、正の電荷同士の反撥相互作用があるのでこれに打ち勝って、原子核内部にまで 入り込まなければならない。そのためには、入射する陽子のエネルギーが十分高い必要が ある。更に陽子はターゲット物質に入射するとターゲット内で陽子のエネルギーは大きく 減少するため使用できるターゲットの厚さは限定され、結果として十分なRIを生成する 効率が高くない場合が多い。一方、ターゲット中でのエネルギー損失はターゲットの温度 を上昇させる事になり、融点の高くないターゲットでは陽子ビームの使用強度が制限され る場合もある。ところで陽子ビームは加速器により生成され真空パイプ中をターゲットが セットされる近傍場所まで輸送されてくる。しかるにターゲットを大気側にセットする際 には、真空パイプ内の真空を保持して大気側部と遮断する必要がある。遮断に用いる物質 は陽子ビームのエネルギーと強度の減少を抑えるためできるだけ薄い事が要請される。し かし、一方この物質は陽子ビームを絶えず照射され続けると、結果として放射線損傷で破 壊されるので、高強度の陽子ビームを長時間使用することは困難になる。多様なRIを目 的に応じ製造するには、ターゲット物質は大気中にセットできればターゲットの形状、材 質の選択が柔軟に行え、実際上大変便利である。しかし、上記の如く陽子ビームを利用し たRI生成は問題点を抱えている。これらの事情は重イオンビームの場合も似通っている 。陽子よりも正の電荷が多い分より問題は大きい。 【先行技術文献】 【特許文献】 $\begin{bmatrix} 0 & 0 & 0 & 9 \end{bmatrix}$ 【特許文献1】特開2008-102078号公報 【特許文献 2 】特表 2 0 0 2 - 5 0 4 2 3 1 号公報 【非特許文献】 $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ 【非特許文献1】"Accelerating production of medical isotopes" Nature Vol 457, 29 January 2009 【非特許文献 2 】日本学術会議 基礎医学委員会・総合工学委員会合同 放射性・放射能 の利用に伴う課題検討分科会「提言:我が国における放射性同位元素の安定供給体制につ いて」 平成 2 0 年 (2 0 0 8 年) 7 月 2 4 日 【非特許文献 3】Nuclear Physics A462 (1987) 85–108 North-Holland, Amsterdam 【発明の概要】 【発明が解決しようとする課題】

[0011]

本発明は、以上のような従来技術の問題を解消し、濃縮²³⁵Uを使用せず、原子炉施設を利用せず、放射性廃棄物を多量に発生させることなく、効率よく廉価にかつ簡便に放射性同位元素の安定供給を実現できる方法及び装置を提供することを課題とする。

【課題を解決するための手段】

【0012】

前記課題を解決するため、本発明は、以下の技術的手法ないし手段を提供する。

【0013】

〔1〕固体又は液体の原料ターゲットに加速器からの高速中性子を照射し、1個の中性 子の照射により1個の⁴ H e を放出する(n , ⁴ H e)反応を起させ、放射性同位元素を 生成させることを特徴とする放射性同位元素の製造方法。

【0014】

〔2〕上記第1の発明において、原料ターゲットのターゲット核として表1の中から選ばれた1種又は複数のターゲット核を含む原料ターゲットに高速中性子を照射することを ¹⁰ 特徴とする請求項1に記載の放射性同位元素の製造方法。

【0015】

〔3〕上記第1又は第2の発明において、原料ターゲットを加速器の高速中性子発生部 に密着させた状態で又は離間させた状態で中性子を原料ターゲットに照射することを特徴 とする放射性同位元素の製造方法。

[0016]

〔4〕高速中性子を発生させる加速器と、原料ターゲットを支持するターゲット支持手段を備え、加速器からの高速中性子を原料ターゲットに照射し、1個の中性子の照射により1個の⁴Heを放出する(n,⁴He)反応を起させ、放射性同位元素を生成させることを特徴とする放射性同位元素の製造装置。

〔5〕上記第4の発明において、原料ターゲットが、原料ターゲット核として表1の中から選ばれた1種又は複数のターゲット核を含む原料ターゲットであることを特徴とする 放射性同位元素の製造装置。

【0018】

〔6〕上記第4又は第5の発明において、原料ターゲットが、加速器の高速中性子発生 部に密着させた状態で又は離間させた状態でセットされていることを特徴とする放射性同 位元素の製造装置。

【0019】

〔7〕上記第4ないし第6のいずれかの発明において、加速器の高速中性子発生部が冷 30 却手段を備え、かつ該高速中性子発生部が真空室と大気側の隔壁機能を有し、かつ該高速 中性子発生部に原料ターゲットが密着させた状態又は離間させた状態でセットされている ことを特徴とする放射性同位元素の製造装置。

【発明の効果】

【0020】

本発明によれば、原料ターゲットに加速器からの高速中性子を照射し、(n,⁴ H e) 反応を生じさせて R I を製造させるようにしたので、濃縮²³⁵ U を使用せず、原子炉施 設を利用せず、高強度の半減期の長い放射性廃棄物を低減させて効率良く廉価に R I を安 定供給することが可能となる。

【0021】

また、本発明による R I の製造装置は、核燃料物質の規制を受ける必要がなく、小型化できるため、病院等の施設において簡便に利用できる利点がある。

【 0 0 2 2 】

さらに、本発明によれば、中性子を原料ターゲットに照射してRIを生成するため、正 の電荷を持つ陽子ビームをターゲットに照射する場合に比べると中性子は電荷を持たない ので、重いターゲット核種の場合も軽いターゲット核種の場合と同じように小規模加速器 で対応できると共にターゲット内での電磁相互作用によるエネルギー損失そしてそれに伴 うターゲットの発熱に煩わされる事が無く、陽子ビームの場合などに比べ100倍程度以 上の重量のターゲットを一度に照射する事が可能であり、RI生成量を高める事ができる 。又ターゲットを大気中に配置することができるため、ターゲットの配置、材質の選択の 20

自由度が大きくなる利点がある。これは多様な利用者に対して計り知れない利便性を齎す と考えられる。 【図面の簡単な説明】 [0023]【図1】原子炉で²³⁵Uの核分裂で生成される核種の生成量分布を示す図である。 【図2】原料ターゲットと高速中性子との反応断面積評価値を示すグラフである。 【図3】本発明の一実施形態によるRI製造装置を模式的に示す図である。 【図4】生成するRIが気体の場合に使用する試料容器を模式的に示す図である。 【図5】本発明の別の実施形態によるRI製造装置の要部を模式的に示す図である。 【図6】本発明によるRIの製造手順を示すブロック図である。 【図7】加速器からの高速中性子を、ターゲット核¹⁰²Ruを含む原料ターゲットに照 射することにより、 ^{9 9} M o が生成されたことを示す、 ^{9 9} M o のベータ崩壊に伴って放 出される739keVガンマ線の測定データを示す図である。 【発明を実施するための形態】 $\begin{bmatrix} 0 & 0 & 2 & 4 \end{bmatrix}$ 以下、本発明を実施形態に基づき詳細に説明する。 [0025]本発明では、放射性診断薬等に用いる放射性同位元素を、固体又は液体の原料ターゲッ トに加速器からの高速中性子を照射し、1個の中性子の照射により1個の⁴ H e を放出す る(n,⁴ He)反応を起させることにより製造する。本発明において、高速中性子とは 、0.1MeV以上のエネルギーを有する中性子のことを意味する。 $\begin{bmatrix} 0 & 0 & 2 & 6 \end{bmatrix}$ 原料ターゲットに高速中性子を照射すると、(n,⁴ He)反応、(n, 2 n)反応、

(n,p)反応、(n,3n)反応、(n,np)反応、(n,n')反応等の種々の反応が起きるが、本発明が対象とする原料ターゲットではその種類に応じて、(n,⁴ He)反応における反応断面積が非常に大きく、原子炉利用では生成出来ない様々の放射性同位元素が得られることを確認した。そして、本発明によれば、所望の放射性同位元素を、原子炉で核分裂反応を利用する場合のように多量の廃棄物を生成させることなく、低放射能化を図ってしかも安定供給が損なわれる事無く製造することができる。 【0027】

図 2 に、一例として^{4 5} S c をターゲット核とする原料ターゲットに高速中性子を照射 したときの中性子エネルギーと反応断面積の評価値をグラフで示す。図 2 より、原料ター ゲットに高速中性子を照射した場合、中性子エネルギーの値によっては(n,⁴ H e)反 応が優位となり、大きな反応断面積を有することが分かる。

【0028】

本発明では、下記表1のターゲット核を用い、(n,⁴ H e)反応を利用して放射性同 位元素(生成核)を製造する。また、使用するターゲットの例を併せて表1に示す。 【0029】

30

20

【表1】

生成核	ターゲット核	ターゲット例					
²⁴ Na	²⁷ A I	酸化アルミニウム(Al ₂ O ₃)					
³² P	³⁵ C I	塩化ナトリウム (NaCl)					
³⁸ C I	⁴¹ K	炭酸カリウム(K ₂ CO ₃)					
³⁷ Ar	40Ca	炭酸カルシウム(CaCO ₃)					
⁴¹ Ar	⁴⁴Ca	炭酸カルシウム(CaCO ₃)					
⁴² K	45Sc	酸化スカンジウム(ScO)					
⁴⁵Ca	⁴⁸ T i	酸化チタン(TiO ₂)					
47Ca	50T i	酸化チタン(TiO ₂)					
⁴⁸ Sc	⁵¹ V	酸化バナジウム(V ₂ 0 ₅)					
51Cr	⁵⁴Fe	酸化鉄(Fe ₂ O ₃)					
⁵⁶ Mn	59Co	酸化コバルト(Co₃O₄)					
⁵⁵Fe	⁵⁸ N i	酸化ニッケル(NiO)					
⁵⁹ Fe	⁶² N i	酸化ニッケル(NiO)					
⁶⁵ N i	68Zn	酸化亜鉛(ZnO)					
⁶⁹ Zn	⁷² Ge	酸化ゲルマニウム (GeO ₂)					
⁷¹ Zn	⁷⁴ Ge	酸化ゲルマニウム (GeO ₂)					
⁷² Ga	⁷⁵ As	酸化砒素 (As ₂ 0 ₃)					
⁷⁵ Ge	⁷⁸ Se	酸化セレン(SeO₃)					
⁷⁷ Ge	⁸⁰ Se	酸化セレン(SeO₃)					
⁷⁶ As	⁷⁹ Br	臭素酸カリウム(KBrO₃)					
⁷⁸ As	⁸¹ Br	臭素酸カリウム(KBrO ₃)					
⁸⁵ Kr	⁸⁸ Sr	酸化ストロンチウム (SrO)					
⁸⁶ Rb	⁸⁹ Y	酸化イットリウム(Y ₂ O ₃)					
⁸⁹ Sr	92Zr	酸化ジリコニウム (ZrO ₂)					
91Sr	⁹⁴ Zr	酸化ジリコニウム (ZrO ₂)					
⁸⁹ Zr	⁹² Mo	酸化モリブデン(MoO₃)					
95Zr	⁹⁸ Mo	酸化モリブデン(MoO ₃)					
97Zr	¹⁰⁰ Mo	酸化モリブデン(MoO ₃)					
⁹⁹ Mo	¹⁰² Ru	酸化ルテニウム (RuO)					
¹⁰³ Ru	¹⁰⁶ Pd	酸化パラヂウム (PdO)					
¹⁰⁵ Ru	¹⁰⁸ Pd	酸化パラヂウム(PdO)					
106Rh	¹⁰⁹ Ag	酸化銀(Ag ₂ 0)					
¹⁰³ Pd	¹⁰⁶ Cd	酸化カドミウム(CdO)					
109Pd	¹¹² Cd	酸化カドミウム (CdO)					
111Pd	¹¹⁴ Cd	酸化カドミウム (CdO)					
¹¹² Ag	¹¹⁵ ln	酸化インジウム(In ₂ O ₃)					

【0030】

10

20

30

(8)

上記の生成核はターゲットと異なる元素であり全て無担体にできる。 【0031】

本発明では、放射性同位元素を製造するために、原子炉を利用しないで、小型加速器を 用いて高速中性子を発生し、原料ターゲットに照射する。このようにすると、原子炉で核 分裂反応で放射性同位元素を生成する場合に比べ、多量の放射性廃棄物を生成させること なく、低放射能化を図ることができる。

【 0 0 3 2 】

高速中性子を発生させる小型加速器は、例えば市販の小型加速器を用いてもよいし、本 出願人の設備である日本原子力研究開発機構核融合中性子工学用中性子源施設(FNS) のようなD-T中性子源等の施設を使用してもよい。

[0033]

本発明において使用する高速中性子のエネルギーは、(n, ⁴ H e)反応の閾値に1. 2(但し、ターゲット核が⁴ ⁸ T i 、 ⁵ ⁰ T i 、 ⁸ ⁰ S e 、 ⁹ ⁸ M o では6.0)を加え た値[単位: M e V]を下限値とし、下限値以外のエネルギー値における(n, ⁴ H e) 反応の反応断面積が下限値における(n, ⁴ H e)反応の反応断面積と等しくなるエネル ギー値を上限値とする範囲内のエネルギー値を有する高速中性子を照射する。ここで(n , ⁴ H e)反応の閾値とは、中性子エネルギーと反応断面積を表す図2のようなグラフに おいて、反応断面積が0(バーン)の状態から0(バーン)でない値を取りはじめるとき のエネルギー値のことである。

【0034】

例えば重水素(² H)ビームを3重水素(³ H)に照射して、次の反応で高速中性子を ヘリウム(⁴ H e)とともに生成することができる。

² H + ³ H ⁴ H e + n

【 0 0 3 5 】

この反応で生成される中性子エネルギー(En)は次の関係式で与えられる。

[0036]

ここで、高速中性子による R I の生成効率について¹⁰⁰ M o (n, 2 n)反応による ⁹⁹ M o 生成を例に検討してみる。原子炉で核分裂により生成される⁹⁹ M o の量(Y _炉)は下記で与えられる。

[0037]

²³⁵U:濃縮度20%。熱中性子と²³⁵Uとの反応による核分裂断面積は585バーン。この内、⁹⁹Moの生成比は6%(図1参照)。以上より、このUで生成される⁹⁴⁰ ⁹Moの量=0.20×585×0.06=7バーンと与えられる。

[0 0 3 8]

^{1 0 0} M o : 天然存在比 9 . 6 % 。高速中性子による ^{9 9} M o 生成反応断面積は 1 . 5 バーン。以上より、天然 M o で生成される ^{9 9} M o の量(Y _{高速}) = 0 . 0 9 6 × 1 . 5 = 0 . 1 4 バーンと与えられる。

【0039】

即ち、Y_{高速}とY_炉の比=Y_{高速}/Y_炉=0.14/7=0.02 式(1) 高速中性子による⁹⁹Moの生成量は中性子量を除くと原子炉の場合の2%である。 【0040】

ところで中性子量については

20

30

原 子 炉 の 熱 中 性 子 量 🛛 🤢 : 日 本 原 子 力 研 究 開 発 機 構 研 究 用 原 子 炉 施 設 J R R 3 の 場 合 には $h = 10^{14} \text{ (cm}^2 \cdot \text{秒)}$ 式(2) 高速中性子の量 _{高速}:IFMIFの場合には _{高速}=10¹⁴個/(cm²・秒) 式(3) _{高速}/ _炉 = 1 即ち高速中性子量の原子炉の量に対する比は: 式(4) となる。以上、中性子量を考慮すると、高速中性子利用による⁹⁹Mo生成量と原子炉利 用による⁹⁹Mo生成量との比は次に与えられる。 $0 . 0 2 \times 1 = 0 . 0 2$ 式(5) ここで比較的容易に高濃度¹⁰⁰Moが得られることを考えると(例えば100%濃縮 10 とすると)式(5)の比は、式(1)と式(4)より、 $0 . 0 2 \div 9 . 6 \times 1 0 0 = 0 . 2 1$ 式 (6) となる。即ち、本発明によれば、高速中性子を用いても原子炉での生成量と十分比較でき る量の⁹⁹Moを生成できることがわかる。また、上記のことは、本発明の対象とするそ れぞれのターゲットについても同様である。 $\begin{bmatrix} 0 & 0 & 4 & 1 \end{bmatrix}$ また、金属Li(リチウム)に陽子を照射して中性子を発生させる場合、この反応{p + ⁷ L i n + ⁷ B e } で生成される中性子エネルギー(E n) は次の関係式で与えられ $En = \{R \times cos + (1 - R^2 \times sin^2)^{1/2}\}^2 \times \{M_{Re} \times (E_{c})^{1/2}\}^2$ 20 $_{m}$ + Q) / (M $_{Be}$ + M $_{n}$) } $R = [M_n \times M_p \times E_{cm} / \{M_{Be} \times M_{Li} \times (E_{cm} + Q)\}]^{1/2}$ $E_{cm} = M_{Li} \times E_p / (M_{Li} + M_p)$ ここで、E。は陽子のエネルギーであり、M。、M。、MLi、MBeは陽子、中性子 、Li及びBeの静止質量である。又、 はこの反応で生成される中性子と陽子ビーム軸 のなす角度である。Qはこの反応の閾値で、-1.644MeVである。 この式より、例えば16MeVの低エネルギー陽子を用いると陽子ビーム軸方向に約1 4 M e V の高速中性子が得られることが分かる。なお、中性子は主には陽子ビーム方向に 放出されるので、ターゲットはビーム軸方向にセットすることが大切である。 30 $\begin{bmatrix} 0 & 0 & 4 & 2 \end{bmatrix}$ 図3に、本発明の一実施形態に係るRI製造装置を模式的に示す。 図において、1は高電圧電源、2は電源ケーブル、3は加速器ターミナル、4は加速管 5 は重陽子輸送ライン、6 は高速中性子発生部、7 は冷却管、8 冷却系、9 は原料ター ゲット、10はターゲット支持枠あるいは試料容器、11はターゲット支持台、12は放 射線遮蔽が施されたRI収容容器(ターゲット保管庫)である。図3の(a)と(b)は それぞれ、原料ターゲット9を高速中性子発生部6に密着させた状態と離間させた状態を

示す。

る。

[0043]

R Iの生成効率は図3(a)のように、原料ターゲット9を高速中性子発生部6に密着 させた場合が大きくなる。この場合、高速中性子発生部6と冷却管7の先端に例えばCu 等からなる冷却部材を介して原料ターゲット9あるいはそれを収容する試料容器10を密 着させる。この場合、高速中性子発生部6に設けられた冷却部材は、重陽子輸送ライン5 の真空室と原料ターゲット9のある大気側との隔壁機能を有することとなる。また、場合 によっては、図3(b)に示すように、原料ターゲット9を高速中性子発生部6から10 mm程度までの距離離間させてもよく、この距離は限定的なものではない。

[0044]

高電圧電源1は、上記中性子生成反応で多量の中性子を生成するために、重水素ビーム を0.35MeV程度のエネルギーとするための高電圧を出力する。電源ケーブル2は、 高電圧電源1の高電圧を加速器ターミナル3に接する加速管4に印加するためのものであ る。高速中性子発生部6にはCu等の熱伝導性に優れた金属板上に、例えば3重水素を吸

50

蔵させたチタン等の蒸着膜が設けられたものがセットされ、高速中性子発生部6は、上記 中性子生成反応を起し、多量の中性子を生成する役割をする。冷却系8は、重水素ビーム で照射される金属板中の3重水素が熱拡散するのを防ぐべく冷却管7により金属板を冷却 する役割をする。冷却は水冷等により行う。金属板は固定式のものでもよく、回転式のも のでもよい。

(10)

[0045]

本発明の原料ターゲット9として、天然のターゲット元素あるいはターゲット元素の天 然存在比以上に濃縮したものを酸化物粉末等としたもの、あるいはこの粉末としたものを 高密度に圧縮成型し、ペレット化したもの(かさ密度60%以上)を用いることができる (例えば、特開昭55-22102号公報)。また、濃縮したターゲット元素を用いる場 合、その前処理として電磁分離回収法等を施す必要がある。ターゲット元素酸化物等の粉 末としたものを用いる場合には石英管に密封し、さらにアルミニウム系の金属製照射容器 に密封封入する必要がある。ターゲット元素酸化物等の粉末をペレットにしたものを用い る場合には直接金属製照射容器に密封封入する。この金属製照射容器が試料容器10であ る。さらに、ターゲット元素金属もターゲットとして使用できる。ただし、この場合、タ

[0046]

原料ターゲット9としてペレット化したものを用いる場合、その寸法としては例えば直 径10mm、厚み0.5mmのものを用いることができるが、もちろん、これは一例であ ってこれに限定されるものではなく、高速中性子の照射エネルギーや収率等を考慮して適 宜の形状、寸法とすることができる。その場合、あまり原料ターゲット9の厚みが厚すぎ ると、中性子散乱の問題が生じ、生成効率が低下するため、その点を考慮する必要がある 。加速器ターミナル3から中性子は全方位方向に放射され、中性子束(個/cm²・秒) は1/r²で低下する。このため、加速器ターミナル3の中性子発生部6に原料ターゲッ ト9を密着させた構成の場合にRIの生成効率が最大となる。尚、rは中性子源からの距 離である。

[0047]

ターゲット支持枠あるいは試料容器10には、原料ターゲット9が固定されるか、収容 されるようになっている。ターゲット支持台11は、ターゲット支持枠あるいは試料容器 10を固定する役割をする。RI収容容器12は、放射線遮蔽体を備え、生成されたRI はこの中に入れて、実験室から取出し、所要の場所に運搬、移動させる。なお、RI収容 容器12以外の各部材も、必要に応じて放射線遮蔽を行う。

[0048]

上記のような構成の装置によりターゲットに中性子を照射するが、その照射時間は生成 する核種の半減期を考慮して設定することができ、半減期の短いものではその半減期を照 射時間の目途に、また半減期が5日よりも長い場合は、5日程度を照射時間の目途とする と、所望の量のRIが得られる。この場合、加速器からの高速中性子を用いるため、核分 裂を利用しないことから多量の放射性廃棄物が発生せず、また反応断面積の比較的大きな (n,⁴ He)反応を利用しているため、高効率で所望のRIを安定供給することが可能 となる。さらに、装置構成も市販の加速器を利用し非常に小型化できるため、病院等の施 設において、簡便にかつ安定してRIを製造、利用することが可能となる。

また、対象ターゲットの反応閾値が15MeV以上の場合には、次のような構成の装置 を用いる。高電圧電源1は、上記中性子生成反応で多量の中性子を生成するために、例え ば陽子ビームを25MeV程度のエネルギーとするための高電圧を出力する。電源ケーブ ル2は、高電圧電源1の高電圧を加速器ターミナル3に接する加速管4に印加するための ものである。高速中性子発生部6には、Cu等の熱伝導性に優れた金属板上に金属Li薄 膜が設けられたものがセットされ、高速中性子発生部6では、上記中性子生成反応を起し 、多量の中性子を生成する役割をする。冷却系8は、陽子ビームで照射されるCu金属板 表面のLiが熱拡散するのを防ぐべく冷却管7により金属板を冷却する役割をする。冷却 10

30

は水冷等により行う。金属板は固定式のものでもよく、回転式のものでもよい。この場合、高速中性子発生部6から中性子はほとんど陽子ビーム軸に沿って放射され、中性子束(個/cm²・秒)は1/r²で低下する。したがって、原料ターゲット9は、高速中性子発生部6に密着するか、近接(10mm程度までの離間)して配置するのが好ましい。 【0050】

生成されるRIが気体である場合、図4(a)のような試料容器10を用いる。この場合、試料容器10としては、例えばステンレス鋼のような気密性の高い容器が使用される。この試料容器10には真空バルブ10Aが設けられており、生成したRIの排出が可能となっている。固体のターゲット核に高速中性子を照射して気体RIを生成する場合に、このような試料容器10を用いる。

【0051】

気体 R I が生成されると、試料容器 1 0 に水酸化ナトリウム等のアルカリや塩酸等の酸の溶液を入れ、攪拌し、核反応で生成した気体 R I を溶解させる。その後、図4(b)、 (c)のように真空バルブ10Aを集気系13に接続する。ここで試料容器を加熱し、溶 解した気体 R I を真空中に放出し、集気系13に導入する。集気系13では、例えばモレ キュラシーブなどの吸着剤で気体 R I を吸着する。この際、集気系13は必要に応じて液 体窒素等で冷却する。残存した固体ターゲットは再利用することができる。

【0052】

次に、本発明の別の実施形態について述べる。

図 5 は、本発明の別の実施形態に係る R I 製造装置の要部を模式的に示す図で、(a) 20 は重水素ビーム進行方向に垂直な方向から見た模式図で高速中性子発生部と原料ターゲッ トが密着している場合、(b)は高速中性子発生部と原料ターゲットが離間している場合 、(c)は重水素ビーム進行方向から見た模式図である。

[0053]

図中21は重水素ビーム、22は直方体状の真空ビーム管、23は3重水素(トリチウム)を吸着したチタン膜を有する銅板、24は原料ターゲット、25は冷却部材、26は 陽子ビームである。冷却部材25は銅板23と一体になっていてもよく、この場合、銅板 23は内壁と外壁を有し、内壁(真空室側)の銅板23の表面には、3重水素を吸着した チタン膜が設けられ、外壁(大気側)の銅板の表面には、原料ターゲット24が密着配置 されるか、離間配置され、内壁と外壁の間の空間を水等の冷却媒体が通過するようになっ ている。

【0054】

重水素(² H⁺)ビーム21を3重水素(³ H)に照射して生成される高速中性子は、 大量の中性子が重水素ビーム21の入射方向に関係なくほぼ全空間に等方的に放出される 特性を持つ。このため限られた中性子利用時間で生成された中性子を最大限に利用するた め以下のように原料ターゲット24を配置する。原料ターゲット24としては、例えば天 然のターゲット元素あるいは濃縮したターゲット元素の酸化物等のパウダーを圧縮して固 化・焼結させたペレット状のものを使用してもよいし、前述したようなターゲット元素金 属を使用することもできる。

[0055]

3 重水素含有チタン膜を設けた銅板23 に照射される高強度の重水素ビーム21がチタンの温度を上げて3重水素が熱拡散することを防ぐため、3重水素含有チタン膜を設けた銅板23 は冷却管25 により冷却する。与えられた冷却能力の範囲でより高強度の重水素ビーム21を使用するためにはこの重水素ビーム21により与えられる単位面積当りの熱負荷を減少させることが考えられる。そのため、重水素ビーム21の大きさは通常の5mm直径から加速器のビーム輸送の方式を変えて例えば10mm直径にする。この結果、単位面積当りの熱負荷は1/4に減じ従来の重水素ビームの4倍の強度までにすることができ、その結果生成される中性子も4倍の量利用できる。また、高速中性子は全空間に等方的に放出されることから、原料ターゲット24は、重水素ビーム21の前方だけでなく、図5(c)のように側面にもセットする。

【0056】

重水素ビーム21は、直方体である真空ビーム管22により真空が保たれているビーム 輸送系を経て、3重水素含有チタン膜を有する銅板23に照射される。そして²H⁺+³ H⁴He+n反応で生成された高速中性子は、冷却部材25(銅板23)の大気側に配 置された(最近接距離)原料ターゲット24に照射される。一方、3重水素含有チタン膜 を有する銅板23に直角に入射する重水素ビーム21に対し後方に放出される高速中性子 を効率的に利用すべく、高速中性子生成箇所に近接する真空ビーム管(直方体)22の4 面を加工し、原料ターゲット24を図示のように埋め込む。このような構成とすると、高 速中性子は全空間に等方的に放出されるのでRI生成がより高効率で行われることになる

[0057]

また、より高速の中性子を使用する場合は、前述のように、陽子等をLiやBeに照射 する。この場合、ほとんどの中性子束は陽子ビームの方向にそって出射する。したがって 、原料ターゲット24の配置は図5(d)や(e)に示すように高速中性子発生部の前方 となる。図5(d)は原料ターゲット24を高速中性子発生部と密着させた場合、図5(e)は原料ターゲット24を高速中性子発生部と離間配置させた場合である。以上のよう に、本発明によれば、原料ターゲット24を真空中ではなく、大気側に配置させることが できるため、原料ターゲット24の形状、配置の自由度が大きくなる利点がある。

【0058】

次に、本発明によるRIの製造方法について述べる。

本発明による R I の製造方法は、基本的に、ターゲット核を含む原料ターゲットに、加速器からの高速中性子を照射し、 1 個の中性子の照射により 1 個の⁴ H e を放出する(n ,⁴ H e)反応を起させ、 R I を生成させることを特徴とするものである。

【0059】

以下、図6の製造手順のブロック図を参照しながら本発明によるRIの製造方法の一例 を説明する。

 $\begin{bmatrix} 0 & 0 & 6 & 0 \end{bmatrix}$

先ず、例えば天然ターゲット元素を用い、その酸化物等の粉末を圧縮し、成型・焼結し てペレット状の原料ターゲットを作成する(ステップS1)。

[0061]

次に、原料ターゲットを試料容器に入れ、中性子照射位置にセットする(ステップS2)。

[0062]

次に、冷却用銅板上に設けた3重水素が吸蔵されたチタン板に対し、加速器から、例えば0.35MeVの重水素ビームを照射する。これにより例えば14MeVの高速中性子が発生する(ステップS3)

【 0 0 6 3 】

本発明の対象とする原料ターゲットでは、この高速中性子の照射により(n,⁴ H e) 反応が優位に起こり、 R I が生成する(ステップ S 4)。

[0064]

適当な時間の中性子照射を行った後に、照射を停止し、RIが入った試料容器を取出し、所望のRIが得られる(ステップS5)。

【 0 0 6 5 】

以上、製造方法の一例を述べたが、もちろん、本発明の製造方法はこの例に限定される ものではなく、各ステップにおいて、前述した種々の手法を用いて行うことができる。 【0066】

このように、本発明の原料ターゲットに対しては、陽子ビーム、重水素ビームを金属L i(リチウム)あるいは金属Be(ベリリウム)あるいはC(炭素)に照射して発生する 高速中性子を用いても、同様な手法を適用することにより、所望のRIを効率良く、多量 の放射性廃棄物を生成することなく製造することが可能となる。

(12)

20

10

[0067]

また、 生成核が娘核種の短寿命 R I に対して長寿命 R I の場合、カウ・ミルキングシス テムあるいはジェネレータシステムと呼ばれるシステムでミルキングを行うこともできる

(13)

[0068]

本発明者らは、加速器からの中性子ビームを原料ターゲットに照射して R I を生成できることを確認するため以下のような実験を行った。

< 実験目的 >

* ^{9 9} M o が 1 4 M e V の 高速中性子により天然 M o 試料を用いて予測どおりの反応断 面積で生成される事の確認

10

- * 上記反応断面積の絶対値決定に用いる⁹³Nb 試料を用い14MeV中性子で生成される⁹²Nbの放射線を測定し、断面積決定に使用できる事の確認
- * ^{9 9} M o 生 成 反 応 に 付 随 し て 生 成 さ れ る 残 留 放 射 性 同 位 元 素 の 定 量 的 評 価
- *² H + ³ H ⁴ H e + n 反応で生成される14 M e V 中性子が期待される中性子強度 で安定に生成されるかどうかの確認(³ H ターゲットの性能評価)
- * 上記反応を誘起させるための² H (重水素ビーム)が安定に供給される事の確認 (小型加速器が安定に稼動する事の検証)
- * M o ターゲット、 N b ターゲットの中性子照射箇所への設置及び取外しが容易に且つ 柔軟に行えるかどうかの確認
- < 実験場所 > 日本原子力研究開発機構核融合中性子工学用中性子源施設(FNS) 20 < 実験日時 >
 - 中性子照射実験:平成21年1月27日~1月30日(1日当り6時間照射) 生成Mo放射能測定:平成21年1月27日~2月5日
- < 試料 > 天然 M o
- 試料1:直径:約10mm、厚さ:50ミクロン(0.05mm)、重量40.2 14mg
- 試料2:直径:約10mm、厚さ:5ミクロン(0.005mm)、重量3.66 3mg
 - 試料1は6時間照射後測定。
 - 試料2は最終日まで中性子照射後測定。
- < 試料 > ⁹³ N b
 - 試料3:直径10mm、厚さ:0.1mm、重量69.4mg
- < M o ターゲット設置場所 >
- ² Η ビーム軸の延長方向で中性子発生箇所から10cm離れた場所。
- < 中性子照射条件 >
 - * 1 4 M e V 中性子生成反応
 - ² H + ³ H ⁴ H e + n : ² Hビームエネルギー : 0 . 3 5 M e V
 - * 中性子発生量
- 発生箇所で1.8×10¹¹n/cm²・秒[1月27日]~1.5×10¹¹n/
- cm²・秒[1月30日]
- < ^{9 9} M o 生成反応 >
- ¹⁰⁰Mo+n ⁹⁹Mo+2n
- < ^{9 2} N b 生成反応 >
- ⁹³Nb+n ⁹²Nb+2n
- < ⁹⁹Mo及び残留放射能の測定(FNSで測定) >
- *測定条件:中性子照射後ほぼ1時間の冷却時間をおき測定開始
- * 測 定 器 : G e 半 導 体 検 出 器
- * ^{9 9} M o 試料及び ^{9 2} N b 試料配置: G e 検出器から 5 c m 離れた位置にセット
- 【0069】
- < 結果 >

30

* ^{9 9} M o は 当 初 予 測 ど お り の 量 生 成 さ れ て い る 事 を 確 認 * ^{9 3} N b 試料は^{9 9} M o 断面積決定に使用できる事を確認 *⁹⁹Mo生成反応に付随して生成される残留放射性同位元素の定量的評価ができた。 (⁹⁹ Moの量に比し微量である事を確認)。 *² H + ³ H ⁴ H e + n 反応で生成される14 M e V 中性子は期待通りの中性子強度 で安定に生成する事を確認(³ Hターゲットは高い性能を持つと評価できた) *上記反応を誘起させる² H(重水素ビーム)が安定に供給される事が確認できた。 (小型加速器が安定に稼動する事の検証) * M o ターゲット、 N b ターゲットの中性子照射箇所への設置及び取外しが容易に且つ 10 柔軟に行える事を確認した。 $\begin{bmatrix} 0 & 0 & 7 & 0 \end{bmatrix}$ 次に、本発明者らは、加速器からの中性子ビームを原料ターゲットに照射し、1個の中 性子の照射により⁴ Heを放出する(n,⁴ He)反応を起させ、 R I を生成できること 等を確認するため以下のような実験を行った。 < 実験場所 > 日本原子力研究開発機構核融合中性子工学用中性子源施設(FNS) < 試料 > 天然 R u O 直径:約10mm、重量521.4mg < 原料ターゲット設置場所 > ² H ビーム軸の延長方向で中性子発生箇所から10cm離れた場所。 20 < 中性子照射条件 > * 1 4 M e V 中性子生成反応 ² H + ³ H ⁴ H e + n : ² H ビームエネルギー : 0 . 3 5 M e V * 中性子発生量 発生箇所で1.8×10¹¹ n/cm²・秒 < ⁹⁹ M o 及び残留放射能の測定(F N S で測定) > *測定条件:中性子照射を終了して1時間後に測定開始 * 測 定 器 : G e 半 導 体 検 出 器 *⁹⁹Mo試料配置:Ge検出器から5cm離れた位置にセット * ⁹ ⁹ M o の ベータ 崩壊 に 伴 っ て 放 出 さ れ る 7 3 9 k e V ガ ン マ 線 を G e 半 導 体 検 出 器 30 で測定して検出 その測定結果を図7に示す。高速14MeV中性子の照射により⁹⁹Moが生成され ていることが確認された。 本発明の原料ターゲットに対しても、陽子ビーム、重水素ビームあるいは3重水素ビー ムを金属Li(リチウム)あるいは金属Be(ベリリウム)あるいはC(炭素)に照射し て発生する高速中性子を用い、同様な手法を適用することにより、所望の放射性同位元素 を効率良く、多量の放射性廃棄物を生成することなく製造することが可能となる。 【符号の説明】 [0072]40 高電圧電源 1 2 電源ケーブル 3 加速器ターミナル 4 加速管 5 重陽子輸送ライン 6 高速中性子発生部 7 冷却管 冷却系 8 9 原料ターゲット ターゲット支持枠 10

(14)

11 ターゲット支持台あるいは試料容器

- 1 2 R I 収容容器(ターゲット保管庫)
- 21 重水素ビーム
- 2 2 真空輸送ライン
- 2 3 3 重水素含有チタン膜を有する銅板
- 24 原料ターゲット
- 25 冷却管
- 26 陽子ビーム

【図4】 (a)

(b)

-25

(a)

(b)

フロントペー	・ジの続	き									
(51)Int.CI.					FΙ					テー	・マコード(参考)
H 0 5 H	6/00	0	(2006.01)		G 2	1 K	5/08	(C		
					H 0	5 H	3/06				
					H 0	5 H	6/00				
(72)発明者	初川	雄—									
	茨城県那珂郡東海村白方白根2番地4					独立	独立行政法人日本原子力研究開発機構				東海研究開発セン
	ター 原子力科学研究所内										
(72)発明者	原田	秀郎									
	茨城県	即珂	郡東海村白	方白根 2	番地 4	独立	行政法人日	日本原子グ	り研究開発	機構	東海研究開発セン
	ター	原子	力科学研究	所内							
(72)発明者	金 政	な浩									
	茨城県	即珂	郡東海村白	方白根 2	番地 4	独立	行政法人日	日本原子グ	り研究開発	機構	東海研究開発セン
	ター	原子	力科学研究	所内							
(72)発明者	岩本	修									
	茨城県	即初	郡東海村白	方白根 2	番地 4	独立	行政法人日	日本原子グ	り研究開発	機構	東海研究開発セン
	ター	原子	力科学研究	所内							
(72)発明者	岩本	信之									
	茨城県	即初	郡東海村白	方白根 2	番地 4	独立	行政法人日	日本原子グ	り研究開発	機構	東海研究開発セン
	ター	原子	力科学研究	所内							
(72)発明者	瀬川	麻里	子								
	茨城県	即珂	郡東海村白	方白根 2	番地 4	独立	行政法人日	日本原子グ	り研究開発	機構	東海研究開発セン
	ター	原子	力科学研究	所内							
(72)発明者	今野	力									
	茨城県那珂郡東海村白方白根2番地4					独立	独立行政法人日本原子力研究開発機				東海研究開発セン
	ター	原子	力科学研究	所内							
(72)発明者	落合	謙太	郎								
	茨城県那珂郡東海村白方白根2番地4					独立	独立行政法人日本原子力研究開発機構			機構	東海研究開発セン
	ター	原子	力科学研究	所内							

Fターム(参考) 2G085 BA17 BD01 BE06 EA07