(12)公開特許公報(A)

(19) 日本国特許庁(JP)

(11)特許出願公開番号 特開2007-39758

(P2007-39758A) (43) 公開日 平成19年2月15日 (2007.2.15)

(51) Int.Cl.			FΙ			テーマコード (参考)
C23C	14/08	(2006.01)	C 2 3 C	14/08	J	4 G O 4 8
C01G	41/02	(2006.01)	C O 1 G	41/02		4 K O 2 9
C23C	14/34	(2006.01)	C 2 3 C	14/34	S	

審査請求 未請求 請求項の数 8 OL (全 9 頁)

(21) 出願番号 (22) 出願日	特願2005-226655 (P2005-226655) 平成17年8月4日 (2005.8.4)	(71) 出願人	(人 505374783 独立行政法人 日本原子力研究開発機 茨城県那珂郡東海村村松4番地49				
		(74)代理人	100089705				
			弁理士 社本	一夫			
		(74)代理人	100140109				
			弁理士 小野	新次郎			
		(74)代理人	100075270				
			弁理士 小林	泰			
		(74)代理人	100080137				
			弁理士 千葉	昭男			
		(74)代理人	100096013				
			弁理士 富田	博行			
		(74)代理人	100092015				
			弁理士 桜井	周矩			
					最終頁に続く		

(54) 【発明の名称】結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製する方法

(57)【要約】

【課題】 結晶性の低い基板の表面に結晶配向した酸化 タングステン薄膜を作製する方法を提供すること。 【解決手段】 結晶性の低い基板の表面に結晶配向した 酸化タングステン薄膜を作製する方法であって、タング ステンを含むスパッタリングターゲットを結晶性の低い 基板の表面にスパッタリングすることを含み、スパッタ リングを行う際の基板温度及び堆積速度を制御すること により、単斜晶(001)面に強く結晶配向した酸化タ ングステン薄膜を作製することを特徴とする前記方法。 スパッタリングを行う際の基板温度は、400 ~70 0 であり、堆積速度は0.2µm/h~1.0µm/ hであることが好ましい。

【選択図】 図1

【特許請求の範囲】

【請求項1】

結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製する方法であって、タングステンを含むスパッタリングターゲットを結晶性の低い基板の表面にスパッタリングすることを含み、スパッタリングを行う際の基板温度及び堆積速度を制御することにより、単斜晶(001)面に強く結晶配向した酸化タングステン薄膜を作製することを特徴とする前記方法。

【請求項2】

前記結晶性の低い基板が、非結晶体又は多結晶体の基板であることを特徴とする、請求項1記載の方法。

【請求項3】

前記結晶性の低い基板が、ガラス、アルミナ、酸化チタン、スパッタリングを行う際の 基板温度に対して耐性のあるプラスチック、鉄、アルミニウム、及びこれらの混合物から なる群から選択される材料から構成される基板であることを特徴とする、請求項1又は2 に記載の方法。

【請求項4】

スパッタリングを行う際の基板温度が、400 ~700 であり、堆積速度が0.2 μm/h~1.0μm/hであることを特徴とする、請求項1~3のいずれか1項に記載 の方法。

【請求項5】

スパッタリングを減圧酸化雰囲気で行うことを特徴とする、請求項1~4のいずれか1 項に記載の方法。

【請求項6】

スパッタリングを、アルゴンと酸素の混合減圧雰囲気で行うことを特徴とする、請求項 1~5のいずれか1項に記載の方法。

【請求項7】

前記スパッタリングターゲットが金属タングステンであることを特徴とする、請求項1 ~ 6 のいずれか 1 項に記載の方法。

【請求項8】

請求項1~7のいずれか1項に記載の方法にしたがって、結晶性の低い基板の表面に成 30 膜された、単斜晶(001)面に強く結晶配向した酸化タングステン薄膜。

【発明の詳細な説明】

【技術分野】

 $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$

本発明は、結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製する方法に関する。

【背景技術】

[0002]

酸化タングステンの薄膜は、近年、コンデンサーチップやフィルター、またはIC等の 電子デバイス用の誘電体材料、光通信用フィルターやアイソレーター等に使用される光学 40 素子用材料、調光ミラーに使用されるエレクトロクロミック材料やガスセンサーに使用さ れるガスクロミック材料、あるいは、光触媒材料として広く利用されており、産業応用上 、非常に注目されている材料である(例えば、非特許文献1及び2を参照のこと)。 【0003】

酸化タングステン薄膜は、その結晶性や配向性を向上させることにより、誘電特性、光 学特性、またはガスクロミック特性の改善につながると考えられており、強く結晶配向し た酸化タングステン薄膜を用いると、感度の高いガスセンサーが実現できると言われてい る(例えば、非特許文献4及び5を参照のこと)。

[0004]

酸化タングステン薄膜は、従来、真空蒸着法、スパッタリング法、分子線エピタキシー 50

法、レーザーアブレーション法、またはゾル・ゲル法等により作製されてきた。そしてこ れまでの研究報告の中では、強く結晶配向した酸化タングステン薄膜は、サファイアやス トロンチウムチタネイト等の単結晶を蒸着基板として用いた場合にしか実現できなかった (例えば、非特許文献6及び7を参照のこと)。酸化タングステン薄膜の作製に用いる単 結晶基板を、大面積・高品質で再現性よく製造する技術は現時点では確立されておらず、 そのような単結晶基板の入手は困難であり高価であった。そのため、単結晶を蒸着基板と した強く結晶配向した酸化タングステン薄膜は、産業上に応用することが困難であった。 一方、結晶性の低い基板は単結晶基板と比較して安価であり、大きさに制限なく入手でき るものの、そのような基板を使用しても、強く結晶配向し、誘電特性や光学特性にすぐれ た、高品質の酸化タングステン薄膜を作製することはできなかった。

【 0 0 0 5 】

したがって、単結晶基板と比較して安価で、その大きさに制限なく入手できる結晶性の 低い基板の表面に、強く結晶配向した酸化タングステン薄膜を作製するための方法に対す る必要性が存在する。

【非特許文献1】ジェイ・エス・イー・エム・スベンソン(J. S. E. M. Svensson)、外 1名 ,「ソーラー・エナジー・マテリアルズ(Solar Energy Materials)」,(オランダ),11 ,1984年 , p . 2 9 - 3 4

【非特許文献 2 】エフ・エー・コットン(F. A. Cotton)、外 1 名 , 「アドバンシズ・イン・オルガニック・ケミストリー (Advances in Organic Chemistry)」, (アメリカ) , 第 5 版 , 1 9 8 8年 , p . 8 2 9 - 8 4 7

【非特許文献 3】エー・ゲオルグ(A. Georg)、外 2 名,「エレクトロキミカ・アクタ(Electrochimica Acta)」,(オランダ),4 6,2 0 0 1 年,p. 2 0 0 1 - 2 0 0 5 【非特許文献 4】エックス・キュー・スー(X. Q. Xu)、外 2 名,「シン・ソリッド・フ ィルムズ(Thin Solid Films)」,(オランダ),4 1 5,2 0 0 2 年,p. 2 9 0 - 2 9 5

【非特許文献 5 】エー・ガルグ(A. Garg)、外 2 名,「ジャーナル・オブ・フィジクス ・ディー:アプライド・フィジクス (Journal of Physics D: Applied Physics)」, (イギリス), 3 3, 2 0 0 0 年, p. 1 0 4 8 - 1 0 5 3

【非特許文献 6 】ワイ・コバヤシ(Y. Kobayashi)、外 2 名 , 「シン・ソリッド・フィル ムズ (Thin Solid Films)」, (オランダ), 1 6 8 , 1 9 8 9 年 , p . 1 3 3 - 1 3 9 【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製する方 法を提供することを課題とする。また、本発明は、結晶性の低い基板の表面に成膜された 、結晶配向した酸化タングステン薄膜を提供することを課題とする。

【課題を解決するための手段】

【 0 0 0 7 】

上記従来技術の課題を解決するため、本発明者らは鋭意研究を行った結果、スパッタリングを行う際の基板温度及び堆積速度を制御することにより、結晶性の低い基板の表面に 40 結晶配向した酸化タングステン薄膜を作製できることを見出し、本発明を完成させた。 【0008】

本発明の第一は、結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製 する方法であって、タングステンを含むスパッタリングターゲットを結晶性の低い基板の 表面にスパッタリングすることを含み、スパッタリングを行う際の基板温度及び堆積速度 を制御することにより、単斜晶(001)面に強く結晶配向した酸化タングステン薄膜を 作製することを特徴とする。

【0009】

本発明の方法では、結晶性の低い基板が非結晶体又は多結晶体の基板であることが好ま しい。結晶性の低い基板は、ガラス、アルミナ、酸化チタン、スパッタリングを行う際の 50

(3)

20

基板温度に対して耐性のあるプラスチック、鉄、アルミニウム、及びこれらの混合物から なる群から選択される材料から構成される基板であることが好ましい。 [0010]本発明の方法では、スパッタリングを行う際の基板温度が400~700 であり、 堆積速度が0.2μm/h~1.0μm/hであることが好ましい。 本発明の方法では、スパッタリングは減圧酸化雰囲気で行うことが好ましい。減圧酸化 雰囲気は、アルゴンと酸素の混合減圧雰囲気であることが好ましい。 [0011]本発明の方法では、スパッタリングターゲットが金属タングステンであることが好まし 10 11. 本発明の第二は、本発明の第一の方法にしたがって作製された、結晶配向した酸化タン グステン薄膜である。 【発明の効果】 [0012] 本発明によれば、結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製 する方法が提供される。また、本発明によれば、結晶性の低い基板の表面に成膜された、 結晶配向した酸化タングステン薄膜が提供される。 【発明を実施するための最良の形態】 [0013] 以下、本発明の結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製す 20 る方法、 及び本発明の方法にしたがって作製された結晶配向した酸化タングステン薄膜の 好適な実施形態について説明する。 [0014]まず、本発明の結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製す る方法の好適な実施形態について説明する。 本 発 明 の 結 晶 性 の 低 い 基 板 の 表 面 に 結 晶 配 向 し た 酸 化 タ ン グ ス テ ン 薄 膜 を 作 製 す る 方 法 は、タングステンを含むスパッタリングターゲットを結晶性の低い基板の表面にスパッタ リングすることを含み、スパッタリングを行う際の基板温度及び堆積速度を制御すること により、単斜晶(001)面に強く結晶配向した酸化タングステン薄膜を作製することを 特徴とする。 30 [0015]本発明において使用する結晶性の低い基板は、非結晶体又は多結晶体の基板であること が好ましい。結晶性の低い基板としては、限定するものではないが、ガラス、アルミナ、 酸化チタン、スパッタリングを行う際の基板温度に対して耐性のあるプラスチック、鉄、 ア ル ミ ニ ウ ム 、 及 び こ れ ら の 混 合 物 か ら な る 群 か ら 選 択 さ れ る 材 料 か ら 構 成 さ れ る 基 板 が 挙げられる。例えば、非晶質の石英ガラス基板を使用することができる。

[0016]

本発明において使用することができるスパッタリングターゲットは、タングステンを含 むスパッタリングターゲットであり、好ましくは、金属タングステンである。スパッタリ ングターゲット中のタングステンの純度は、特に制限はないが、高いほうが好ましい。 [0017]

スパッタリングは減圧酸化雰囲気で行うことが好ましく、減圧酸化雰囲気は、アルゴン と酸素の混合減圧酸化雰囲気であることが好ましい。

本発明の方法においては、スパッタリングを行う際の基板温度及び堆積速度を制御する ことにより、単斜晶(001)面に強く結晶配向した酸化タングステン薄膜を作製する。

[0018]

スパッタリングを行う際の基板温度は、好ましくは、400 ~700 であり、最も 好ましくは、600 である。スパッタリングを行う際の堆積速度は、好ましくは、0. 2 μ m / h ~ 1 . 0 μ m / h であり、より好ましくは、 0 . 3 μ m / h ~ 0 . 9 μ m / h

、最も好ましくは、0.3µm / h ~ 0.8µm / h である。ここで、堆積速度とは、単 位時間あたりに酸化タングステン薄膜が堆積される速度をいう(µm / h)。堆積速度は 、スパッタリングを行う際の投入スパッタリング電力、基板とターゲットとの間の距離、 減圧酸化雰囲気のガス圧等のスパッタリング条件に依存して決定される。0.2µm / h ~ 1.0µm / hの堆積速度を達成するためには、例えば、投入スパッタリング電力が5 0W、基板とターゲットとの間の距離が10cmで、アルゴンと酸素の混合減圧酸化雰囲 気でスパッタリングを行う場合、酸素ガス圧は5mPa ~ 80mPa、アルゴンガス圧は 50mPa ~ 300mPaであればよい。好ましくは、酸素ガス圧は10mPa ~ 50m Pa、アルゴンガス圧は80mPa ~ 230mPaである。

[0019]

スパッタリングをアルゴンと酸素の混合減圧酸化雰囲気で行う場合、0.2µm/h~ 1.0µm/hの堆積速度を達成するためには、厳密には他のスパッタリング条件にも依 存するが、酸素ガスの比率は、全ガス圧(酸素ガス圧とアルゴンガス圧の和)の約10% ~約30%に制御すればよい。したがって、上記の投入スパッタリング電力が50W、基 板とターゲットとの間の距離が10cmである場合に、全ガス圧を100mPaに固定す るときは、酸素ガスの分圧は10mPa~30mPaに制御すればよい。減圧酸化雰囲気 のガス圧(分圧)及び他のスパッタリング条件は、本明細書の開示に基づき当業者が適宜 設定することができる。

[0020]

次に、本発明の方法にしたがって作製された結晶配向した酸化タングステン薄膜の好適 20 な実施形態について説明する。

本発明の酸化タングステン薄膜の結晶性はX線回折法により評価することができる。 【0021】

例えば、非特許文献6において、酸化タングステン薄膜を、サファイアの単結晶R面配 向基板の表面に成膜した場合、(001)面に結晶配向した酸化タングステン薄膜のX線 回折パターンには、単斜晶の(001)面に由来する全幅半値幅約0.2度のピークが観 察され、他の結晶面由来のピークは観察されない。(001)面に由来するピークは、結 晶欠陥が極めて少なく、結晶性が高いことを示し、また、他のピークが観察されないこと は、(001)面に結晶成長方向が揃っていることを示している。したがって、上記のよ うな回折パターンは、サファイアの単結晶R面配向基板の表面に、単斜晶(001)面に 強く結晶配向した酸化タングステンの薄膜が形成されていることを意味している。 【0022】

本発明の酸化タングステン薄膜は、X線回折法により評価すると、X線回折パターンに おいて単斜晶の(001)面に由来するピークが観察され、他の結晶面由来のピークは観 察されないことから、結晶性の低い基板の表面において、単斜晶(001)面に強く結晶 配向していることがわかる。

【 0 0 2 3 】

以下、本発明を、実施例及び図面を参照しながら更に詳細に説明するが、本発明はこれ らに限定されるものではない。

実施例

(実施例1)

スパッタリング法を用いて、結晶性の低い基板の表面に酸化タングステン薄膜を作製した。基板は、寸法9mm×9mm、厚さ1mmの非晶質の石英ガラス基板を使用した。ス パッタリングターゲットは金属タングステンを使用した。この基板とターゲットを10c mの距離を離して配置した。基板とターゲット含む雰囲気を、酸素ガス圧22mPa、ア ルゴンガス圧92mPaの混合減圧酸化雰囲気とした。投入スパッタリング電力は50W 、基板温度は600 として、スパッタリングを1時間行った。スパッタリング後に基板 上に得られた酸化タングステン薄膜の厚さは0.6µmであった(堆積速度0.6µm/ h)。

[0024]

50

10

30

作 製 した 酸 化 タン グ ス テン 薄 膜 の 結 晶 性 を X 線 回 折 法 に よ り 評 価 し た 。 X 線 回 折 パ タ ー ン を 図 1 に 示 す 。

図をみると、回折角度23度に単斜晶の(001)面由来の鋭いピークが観察された。 このピークの全幅半値幅は0.7度であった。一方、他の結晶面由来のピークは観察され なかった。この回折結果から、基板温度を600、堆積速度を0.6µm/hとした場 合には、得られる酸化タングステン薄膜は、サファイアの単結晶R面配向基板の表面に成 膜したときと同様、単斜晶(001)面に強く結晶配向していることが判明した。 (比較例1)

スパッタリングを行う際の基板温度を600 から200 とした以外は、実施例1と 同様の条件にしたがい、結晶性の低い基板の表面に酸化タングステン薄膜を作製した。ス 10 パッタリング後に基板上に得られた酸化タングステン薄膜の厚さは0.6µmであった(堆積速度0.6µm/h)。作製した酸化タングステン薄膜のX線回折パターンを図2に 示す。

【0025】

図をみると、回折角度23度付近に多結晶構造であることを示す幅の広いピークが観察 された。この回折結果から、基板温度を200 とした場合には、得られる酸化タングス テン薄膜は結晶配向しないことが判明した。本発明においては、基板温度の制御が重要な 因子であることを示している。

(比較例2)

スパッタリングを行う際のアルゴンガス圧を92mPaから40mPaとし、酸素ガス 20 圧を39mPaとした以外は、実施例1と同様の条件にしたがい、結晶性の低い基板の表 面に酸化タングステン薄膜を作製した。スパッタリング後に基板上に得られた酸化タング ステン薄膜の厚さは0.1µmであった(堆積速度0.1µm/h)。作製した酸化タン グステン薄膜のX線回折パターンを図3に示す。

【0026】

図をみると、回折角度23度付近に多結晶構造であることを示す幅の広いピークが観察 された。この回折結果から、堆積速度を0.1µm/hとした場合には、得られる酸化タ ングステン薄膜は結晶配向しないことが判明した。本発明においては、堆積速度の制御が 重要な因子であることを示している。

(実施例2~6及び比較例3)

実施例1と同じ基板及びスパッタリングターゲットを用いて、酸素ガスとアルゴンガス の混合減圧酸化雰囲気下で、スパッタリング法により酸化タングステン薄膜を作製した。 基板温度及び堆積速度を種々の値に制御し、得られた薄膜の結晶配向性をX線回折法によ り評価した。成膜時の基板温度及び堆積速度、ならびに結晶配向性を、実施例1及び比較 例1~2の結果とともに表1に示す。

【0027】

【表1】

表1 成膜時の基板温度及び堆積速度と結晶配向性との関係

	基板温度	堆積速度 全圧		酸素ガス比率	結晶配向性	
	[°C]	[µm⁄h]	[mPa]	[%]		
比較例3	600	0.06	170	4 5	×	
比較例2	600	0.1	79	4 9	×	
実施例2	600	0.2	200	2 0	0	
実施例3	600	0.3	125	2 6	0	
実施例4	600	0.5	1.37	29	0	
実施例1	600	0.6	114	19	0	
実施例5	600	0.8	106	13	0	
実施例6	400	0.7	114	19	0	
比較例1	200	0.6	114	19	×	

(7)

[0028]

表1中、「結晶配向性」は、単斜晶(001)結晶配向性の有無(配向性が有る場合は 印、無い場合は×印)を示す。実施例2~6により得られた酸化タングステン薄膜は、 回折角度23度に単斜晶の(001)面由来の鋭いピークが観察された。ピークの全幅半 値幅は0.8度以下であった。この結果により、単斜晶(001)方向に結晶配向してい ることが確認された。比較例3により得られた酸化タングステン薄膜は、回折角度23度 付近に多結晶構造であることを示す幅の広いピークが観察され、結晶配向していないこと が観察された。

【産業上の利用可能性】

【0029】

本発明によれば、結晶性の低い基板の表面に結晶配向した酸化タングステン薄膜を作製 する方法が提供される。本発明にしたがった単斜晶(001)面に強く結晶配向した酸化 タングステン薄膜は、スパッタリングを行う際の基板温度に対して耐性のあるガラスやプ ラスチック、金属等の結晶性の低い、比較的安価な基板の表面に成膜することができるた め、生産コストの低減に有利な大面積薄膜の作製が可能となる。これにより、コンデンサ ーチップやフィルター、またはIC等の電子デバイス用の誘電体材料、光通信用フィルタ ー、アイソレーター等に使用される光学素子用材料、光触媒材料、偏光ミラーに使用され るエレクトロミック材料、ガスセンサーに使用されるガスクロミック材料等としての産業 応用が実現できる。

【図面の簡単な説明】

【 0 0 3 0 】

【図1】図1は、本発明にしたがって作製した酸化タングステン薄膜のX線回折パターンであり、成膜時の基板温度は600、堆積速度は0.6µm/hである。 【図2】図2は、比較例1にしたがって作製した酸化タングステン薄膜のX線回折パター 10

20

ンであり、成膜時の基板温度は200 、堆積速度は0.6µm / h である。 【図3】図3は、比較例2にしたがって作製した酸化タングステン薄膜のX線回折パター ンであり、成膜時の基板温度は600 、堆積速度は0.1µm / h である。

フロントページの続き

(74)代理人	1000937	'13									
	弁理士	神田	藤博								
(74)代理人	100091063										
	弁理士	田中	英夫								
(74)代理人	100102727										
	弁理士	細川	伸哉								
(74)代理人	1001178	813									
	弁理士	深澤	憲広								
(74)代理人	1001235	648									
	弁理士	平山	晃二								
(72)発明者	高野月	券昌									
	群馬県ア	高崎市綿	貫町1	233	番地	日本原	子力研	究所	高崎研	究所内	
(72)発明者	山本	争也									
	群馬県ア	高崎市綿	貫町1	233	番地	日本原	子力研	究所	高崎研	究所内	
(72)発明者	井上 💈	愛知									
	群馬県ア	高崎市綿	貫町1	233	番地	日本原	子力研	究所	高崎研	究所内	
(72)発明者	吉川 〕	E人									
	群馬県ア	高崎市綿	貫町1	233	番地	日本原	子力研	究所	高崎研	究所内	
Fターム(参	考) 4GO4	8 AA02	AB01	AC02	AC08	AD02					
	4K02	9 AA08	AA24	BA43	BB07	BC07	CA06	DC03	EA02	EA05	EA08