(19)

(12)

(11) **EP 1 956 392 B1**

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 07.01.2015 Bulletin 2015/02
- (21) Application number: 06833348.3
- (22) Date of filing: 27.11.2006

- (51) Int Cl.: **G01T 1/29** ^(2006.01)
- (86) International application number: PCT/JP2006/323544
- (87) International publication number: WO 2007/063790 (07.06.2007 Gazette 2007/23)

(54) RADIATION MEASURING DEVICE AND DATA PROCESSING METHOD

STRAHLUNGSMESSUNGSVORRICHTUNG UND DATENVERARBEITUNGSVERFAHREN DISPOSITIF DE MESURE DE RAYONNEMENT ET PROCEDE DE TRAITEMENT DE DONNEES

- (84) Designated Contracting States: DE FR GB
- (30) Priority: 30.11.2005 JP 2005346308
- (43) Date of publication of application: 13.08.2008 Bulletin 2008/33
- (73) Proprietors:
 - National Institute of Radiological Sciences Chiba-shi, Chiba 263-8555 (JP)
 - Hitachi Aloka Medical, Ltd. Mitaka-shi Tokyo 181-8622 (JP)

(72) Inventors:

- SHIRAKAWA, Yoshiyuki Chiba-shi, Chiba 263-8555 (JP)
- KOBAYASHI, Yusuke c/o Hitachi Aloka Medical, Ltd.
- Tokyo 181-8622 (JP) • YAMANO, Toshiya c/o Hitachi Aloka Medical, Ltd. Tokyo 181-8622 (JP)

- (74) Representative: Heim, Hans-Karl et al Weber & Heim Patentanwälte Irmgardstrasse 3 81479 München (DE)
- (56) References cited:

JP-A- 04 132 987	JP-A- 2004 301 798
JP-A- 2004 361 290	JP-A- 2004 361 290
JP-A- 2006 201 086	US-A1- 2005 121 618

- SHIRAKAWAYED-YIMINGAETAL: "Directional measurement of gamma radiation using triple scintillators", SICE 2004 ANNUAL CONFERENCE, IEEE, PISCATAWAY, NJ, USA, vol. 1, 4 August 2004 (2004-08-04), pages 177-180, XP010824479, ISBN: 978-4-907764-22-7
- SHIRAKAWA Y.: 'Zenhokosei gama-sen Kenshutsuki' ISOTOPE NEWS 01 August 2005, pages 13 - 15, XP003013669

1 956 392 B1 Ч

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Technical Field ..

[0001] The present invention relates to a radiation measurement apparatus and a data processing method, and in particular to a technique for identifying an incident direction or the like of radiation.

Background Art

(1) Background of Invention

[0002] The present invention was made as a product of research and development efforts conducted by ALOKA CO., LTD., a Japanese corporation, related to the "direction finding gamma ray detector" project commissioned under the auspices of the Japan Science and Technology Agency, an agency of the Government of Japan.

(2) Related Art

[0003] Monitoring posts are commonly provided as radiation measurement apparatuses, for example, along the periphery of facilities such as nuclear power plants, a nuclear fuel processing facilities, etc., or at measurement points determined by local governments, and continuously execute radiation measurement at the location at which they are installed. With this system, the presence or absence of abnormalities is monitored at all times. At such amonitoringpost, it is usually desirable that the direction of emission of any detected radiation be automatically identified. As a method for identifying the incident direction of radiation, a method is known in which a directional detector is rotated. In a typical directional detector, because a collimator and a shielding member comprising lead or the like are provided, a large and relatively complicated mechanism is required for rotating the detector. It is also desirable to identify the incident direction of radiation measurement apparatuses other than monitoring posts (such as, for example, a floormounted surveymonitor). Reference 1 (JP 2004-191327 A), Reference 2 (JP 2004-361290 A), and Reference 3 (Yoshiyuki SHIRAKAWA, "Development of nondirectional detectors with Nal(TI)", RADIOISOTOPES, Vol. 53, No. 8, pp. 445 - 450, Aug. 2004) all disclose that a peak is identified in each of a plurality of spectra obtained using a plurality of types of scintillators, a ratio of counts for the plurality of peaks is determined, and the incident direction (incoming direction) of the radiation is identified based on the ratio. Japanese Patent Application No. 2005-014578 is related to the present application.

[0004] However, when the method of identifying a peak in a spectrum as noted above is used, there is a problem that the reliability of the calculation is reduced if the peak is unclear or there is a problem with the precision of the peak identification. Although it is possible to wait and not

execute the calculation until after a peak has clearly appeared, such a configuration prevents quick processing. It is desired that it be possible to discriminate among radiation from a plurality of sources simultaneously inci-

5 dent upon the detector. Moreover, it is desired that it be possible to identify the energy, level, and/or energy interval of radiation in addition to identifying its incident direction.

[0005] SHIRAKAWA teaches in "Directional measurement of gamma radiation using triple scintillators" of SICE

10 2004 Annual Conference, IEEE (XP010824479) a method for a ratio measurement of gamma radiation. Therefore, he proposes to use three detectives. Based on the analysis of the results of these three detectives, it is pos-15

sible to predict the direction the gamma rays came from.

Disclosure of Invention

[0006] An object of the present invention is to enable 20 analysis of an incident direction and/or energy of radiation without identifying a spectral peak.

[0007] Another object of the present invention is to enable identification of radiation from a plurality of sources even when the radiations are simultaneously incident.

25 [0008] A further object of the present invention is to realize a display method which allows intuitive recognition of the incident direction and energy of radiation.

[0009] According to one aspect of the present invention, there is provided a radiation measurement appara-30 tus comprising a detecting section which comprises a plurality of detectors provided to have directivity characteristics that differ from each other and which detects radiation with the detectors, a calculating section which calculates, based on a plurality of detection data obtained

35 by the plurality of detectors and for each energy interval among a plurality of energy intervals, actual ratio information representing mutual ratios for a plurality of individual counts corresponding to the plurality of detectors, a generating section which generates, for each energy

40 interval, a response function which provides theoretical ratio information which changes according to an incident direction, and a comparing section which compares a plurality of actual ratio information corresponding to the plurality of energy intervals with a plurality of response

45 functions corresponding to the plurality of energy intervals, and identifies, when a matching relationship is determined between particular actual ratio information and particular theoretical ratio information, at least one of an incident direction and an energy interval for radiation de-50 tected by the detecting section based on the matching relationship.

[0010] According to this configuration, radiation (such as, for example, γ rays and β rays) is detected using a plurality of detectors provided to have directivity characteristics that differ from each other. By suitably defining the relative placement of the plurality of detectors, for example, it is possible to provide the detectors with directivity characteristics that differ from each other. Alternatively,

it is also possible to provide detectors with directivity characteristics that differ from each other by setting primary sensitivity directions of the detectors to differ from each other using, for example, a shielding member. Each detector is desirably constructed using a scintillator member. Inthisconfiguration, the detectors maybe formed of a same material and in a same form, or different materials or different forms may be employed. In either case, it suffices to provide a direction dependency in the sensitivity characteristic of the detectors.

[0011] The calculating section described above calculates a plurality of sets of actual ratio information corresponding to a plurality of energy intervals based on a plurality of sets of detection data. The plurality of energy intervals may have a uniform interval width or may have nonuniform interval widths. For example, for an energy region which requires a detailed identification, a finer energy interval with a smaller interval width may be set (in this case, the energy interval is coarsely set for other regions). However, fundamentally, the individual energy interval which is a precondition for determining the actual ratio information and the individual energy interval which is a precondition for generating the plurality of response functions must be matched or conformed. The actual ratio information determined for each energy interval is calculated by determining mutual ratios for the plurality of individual counts corresponding to the plurality of detectors. For example, as will be described below, it is possible to determine a plurality of count ratios (a plurality of actual count ratios) by normalizing the plurality of individual counts with a sum of the individual counts, and to form actual ratio information as a combination or a sequence of the plurality of count ratios. In either case, it is desirable to calculate information related to a ratio of the counts reflecting a difference in directivity characteristics of the detectors for each energy interval. The individual count for the detector may be, for example, an integrated count, a count percentage, etc. in the energy interval.

[0012] On the other hand, a plurality of response functions are prepared in advance corresponding to the plurality of energy intervals. The response functions are desirably generated in advance based on experiments or simulations, and function as templates with which the actual ratio information is compared. In other words, the response function for each energy interval is a function representing theoretical ratio information which changes according to an incident direction of radiation. The theoretical ratio information is information which is compared with the actual ratio information, and is considered a theoretical value as opposed to an actual value. The generating section is formed as a storage which generates data representing the response functions, a calculating section which processes equations of the response functions, or other means.

[0013] The comparing section described above compares a plurality of items of actual ratio information corresponding to a plurality of energy intervals with a plurality of response functions corresponding to the plurality of energy intervals. More specifically, for each energy interval, the actual ratio information is compared with the theoretical ratio information for each incident direction represented by the response function. In this case, when a matching relationship is determined between particular actual ratio information and particular theoretical ratio information, that is, when an actual value and a theoretical value match, estimation of at least one of the incident

¹⁰ direction and the energy interval based on the matching relationship is enabled. In other words, it is possible to identify an incident direction and/or an energy interval of an incident radiation based on attributes (incident direction corresponding to the theoretical ratio information

¹⁵ and/or energy interval corresponding to the response function representing the theoretical ratio information) of the theoretical ratio information at the time when matching relationship is established. Here, it is preferable that the comparing section identifies both of the incident direction and the energy interval for the radiation detected

by the detecting section.
[0014] As described, according to various aspect of the present invention, because it is not necessary to identify a peak of a spectrum and then apply a calculation
process using the found peak, it is possible to apply the calculation process even when the peak is unclear, and a calculation process which does not depend on the peak identifying precision can be realized. In addition, because there is no need to delay the start of the calculation until
the peak is clearly recognized on the spectrum, rapid

calculations can be realized.

[0015] It is preferable that the actual ratio information for each energy interval includes a plurality of actual count ratios determined by normalizing the plurality of
³⁵ individual counts with a sum of the individual counts, and the theoretical ratio information according to the incident direction includes a plurality of theoretical count ratios to be compared with the plurality of actual count ratios. The plurality of actual count ratios (actual count ratio se⁴⁰ quence) correspond to a sequence representing internal dividing ratios of the counts among the plurality of detectors. The plurality of theoretical count ratios (theoretical count ratio sequence) are a sequence which is contrasted or compared with the actual count ratio sequence.

45 [0016] It is preferable that the calculating section comprises a creating section which creates a plurality of spectra corresponding to the plurality of detectors based on the plurality of detection data, a first calculating section which sets a plurality of energy intervals for each of the 50 plurality of spectra and determines, for each energy interval, a plurality of individual counts corresponding to the plurality of detectors, and a second calculating section which determines, for each energy interval, the plurality of actual count ratios by dividing the plurality of in-55 dividual counts by a total count which is a sum of the individual counts. The generating section may be formed using a multi channel analyzer (MCA) or may be formed using another device (for example, a single channel an-

alyzer (SCA)) which can calculate an integrated count for each energy interval. It is preferable that a plurality of analyzers operate in parallel, but it is also possible to operate a single analyzer in a time division manner. It is also possible to integrate the first calculating section and the second calculating section to form a single calculating section. This is also true for other sections. Each section may be realized using a dedicated hardware or as a software function.

[0017] It is preferable that the response function for each energy interval generated by the generating section is formed as an equation or a table which provides theoretical ratio information for each incident direction. It is preferable that the response function for each energy interval is generated in advance as a result of execution of a simulation in which radiation having a predetermined energy is virtually irradiated from each direction using a virtual model for the detecting section. A designated energy is preferably set as an energy at the center of each energy interval, and, for example, a γ ray having an photoelectric peak on the energy in the virtual model is virtually irradiated. In this case, the irradiation direction is varied continuously or at a predetermined pitch.

[0018] It is preferable that the plurality of detectors comprise n scintillator blocks (where $n \ge 3$) placed around a center axis in the detecting section. By providing three or more scintillator blocks along the circumferential direction, the directivity characteristics of the blocks can be differed, and the incident direction can be discriminated for radiations from all surroundings in the horizontal direction.

[0019] It is preferable that, when radiation from a plurality of sources having energies that differ from each other are incident on the detecting section, the comparing section determines a plurality of matching relationships corresponding to the plurality of radiations, and an incident direction and an energy interval are identified for each determined matching relationship. As described above, because actual ratio information corresponding to each energy interval is individually compared for the plurality of response functions corresponding to the plurality of energy intervals, even when radiation from a plurality of sources having energies which differ from each other are simultaneously incident, the radiations can be distinguished and handled separately. This is also true when radiation from a plurality of sources are incident from the same incident direction. When it is desired to distinguish among radiation from a plurality of sources even when radiation from a plurality of sources having the same energy (energy interval) are incident, another identification method may be further combined to the above-described configuration.

[0020] It is preferable that the radiation measurement apparatus further comprises a creating section which creates a chart by mapping a mark on a predetermined coordinate system based on the incident direction and the energy interval identified by the comparing section, and a displaying section which displays the chart. With the chart, it is possible to simultaneously and intuitively understand the incident direction and energy interval.

- **[0021]** It is preferable that a circumferential direction in the predetermined coordinate system represents the incident direction and a radial direction in the predetermined coordinate system represents the energy interval. It is preferable that the chart creating section changes a display form of the mark according to dosage information. With this configuration, a magnitude of the dosage (or
- ¹⁰ dosage rate) can be intuitively recognized at the same time. It is preferable that the dosage information represents a dosage calculated for an energy interval identified by the comparing section. It is preferable that the change of the display form of the mark includes at lease one of

a size change, a shape change, a color phase change, and a brightness change. The chart displaying technique as described above can be applied in other radiation measurement devices which calculate and display an incident direction and energy (or energy interval) of radia tion. In this case also, the advantages similar to those

described above can be obtained. [0022] According to another aspect of the present invention, there is provided a data processing method in a

radiation measurement apparatus which comprises a detecting section having n detectors (where n ≥ 3) provided to have horizontal directivity characteristics that differ from each other, the method comprising the steps of calculating, based on n detection data obtained using the n detectors and for each energy interval among m energy
intervals (where m ≥ 2), actual ratio information representing mutual ratios for n individual counts corresponding to the n detectors, generating, for each energy inter-

information according to an incident direction, and com paring m actual ratio information corresponding to the m
 energy intervals with m response functions correspond ing to the m energy intervals, and identifying, when a
 matching relationship is determined between particular
 actual ratio information and particular theoretical ratio in-

val, a response function which provides theoretical ratio

40 formation, an incident direction and an energy interval for radiation detected by the detecting section based on the matching relationship.

[0023] It is preferable that the method further comprises the step of creating a chart by mapping a mark rep-

⁴⁵ resenting the identified incident direction and the identified energy interval on a polar coordinate system in which the incident direction is correlated to a circumferential direction and the energy interval is correlated to a radial direction.

50 [0024] As described, with the above-described configuration, it is possible to calculate either or both of an incident direction or an energy level of incident radiation, without identifying a peak on the spectrum. In addition, with the above-described configuration, it is possible to identify among radiation incident from a plurality of sources, even within radiation simultaneously incident. Moreover, with the above-described configuration, it is possible to realize a display method in which either or both of

an incident direction or an energy level of incident radiation can be intuitively recognized.

Brief Description of Drawings

[0025]

Fig. 1 is a block diagram showing a preferred embodiment of a radiation measurement apparatus according to the present invention.

Fig. 2 is a flowchart showing a process content of a data processor shown in Fig. 1.

Fig. 3 is a diagram for explaining setting of a plurality of energy intervals for a spectrum.

Fig. 4 is a conceptual diagram for explaining a process content of a data processor.

Fig. 5 is a diagram showing a first response function. Fig. 6 is a diagram showing a second response function.

Fig. 7 is a diagram showing a third response function. Fig. 8 is a diagram showing a fourth response function.

Fig. 9 is a diagram showing a fifth response function. Fig. 10 is a diagram showing matching of a sequence of actual count ratios and a sequence of theoretical count ratios.

Fig. 11 is a diagram showing a first response function and a first function showing a demonstration result. Fig. 12 is a diagram showing a second response function and a second function showing a demonstration result.

Fig. 13 is a diagram showing a third response function and a third function showing a demonstration result.

Fig. 14 is a diagram showing a fourth response function and a fourth function showing a demonstration result.

Fig. 15 is a diagram showing a fifth response function and a fifth function showing a demonstration result. Fig. 16 is a flowchart showing a process of generating a response function.

Fig. 17 is a diagram showing a first example display. Fig. 18 is a diagram showing a second example display.

Fig. 19 is a diagram showing a third example display.

Best Mode for Carrying Out the Invention

[0026] A preferred embodiment of the present invention will now be described with reference to the drawings. **[0027]** Fig. 1 shows a preferred embodiment of a radiation measurement apparatus according to the present invention. A radiation measurement apparatus according to the present embodiment is formed as a monitoring post which continuously measures an environmental radiation (in particular, γ rays). The present invention may alternatively be applied to other radiation measurement apparatuses, such as survey meters. **[0028]** In Fig. 1, the radiation measurement apparatus comprises a measurement unit 10 and a calculation unit 12. The measurement unit 10 comprises a detecting section 14 and a converting section 16. The detecting section

⁵ 14 comprises in the present embodiment three scintillator blocks (three detectors) 20, 22, and 24. The three scintillator blocks 20, 22, and 24 are placed at uniform intervals around a vertical center axis of the detecting section 14 on a horizontal plane, and each of the scintillator

¹⁰ blocks 20, 22, and 24 has a sector shape with an angle of 120 degrees seen from the top (or from the bottom). The detecting section 14 has an overall shape of a tube shape or a disk shape. A diameter of the detecting section 14 is, for example, 7.62 cm (3 inches) and a height of the

¹⁵ detecting section 14 is, for example, 7.62 cm (3 inches). [0029] Because the detecting section 14 is constructed in the above-described manner, the directivity characteristics of the scintillator blocks 20, 22, and 24 differ from each other. Specifically, when, for example, radiation is

²⁰ incident from a direction indicated by reference numeral 32, the sensitivity of the scintillator block 20 present at a front side is the highest with respect to the radiation, and the sensitivities of the scintillator blocks 22 and 24 present at a rear side are relatively lower because the

scintillator block 20 is in front of the scintillator blocks 22 and 24. In this manner, when the three scintillator blocks 20, 22, and 24 are placed along the circumferential direction, the directivity characteristics of the scintillator blocks 20, 22, and 24 differ from each other because of the structure unique to the detecting section.

[0030] In the present embodiment, the scintillator blocks 20, 22, and 24 are formed of a same material and in a same form. Alternatively, it is also possible to form the scintillator blocks 20, 22, and 24 with materials which

differ from each other or in forms which differ from each other. In either case, the plurality of detectors are formed such that the directivity characteristics of the plurality of detectors differ from each other. For example, it is possible to place the detectors with different primary sensi-

40 tivity directions while providing the directivity to the plurality of detectors using a shielding material. In this case, the plurality of detectors can be placed along the vertical direction.

[0031] Reflective layers 26, 28, and 30 are provided
⁴⁵ among the three scintillator blocks 20, 22, and 24. Diffraction of light among thescintillatorblocks20, 22, and 24 is prevented by the reflective layers 26, 28, and 30. It is also possible to cover the entirety of the scintillator blocks 20, 22, and 24 except for the light emitting region at the lower surface with a reflective material.

[0032] The converting section 16 comprises three optical detectors (photomultiplier tube as a photoelectric converter) 34, 36, and 38 corresponding to the three scintillator blocks. Light receiving surfaces of the optical detectors 34, 36, and 38 are connected to lower surfaces of the corresponding scintillator blocks 20, 22, and 24. Therefore, when radiation is incident on a certain scintillator block and light emission is caused, the light is de-

tected by the optical detector connected to the scintillator block. In the optical detector, the light signal is converted to an electrical signal.

[0033] It is also possible to provide a light guide or the like between the lower surfaces of the scintillator blocks 20, 22, and 24 and the light receiving surfaces of the optical detectors 34, 36, and 38, as necessary. In either case, it is preferable to form the measurement unit 10 such that the light generated in the scintillator block due to incidence of radiation is guided to the optical detector corresponding to the scintillator as effectively as possible.

[0034] Although the detecting section 14 and the converting section 16 in the measurement unit 10 are stored in a case, the case is not shown in Fig. 1. With the measurement unit 10 of the present embodiment, because there is no need to provide a mechanism which rotates the detecting section or a large shielding structure as in the related art, the size of the measurement unit 10 can be reduced and the weight of the measurement unit 10 can be reduced.

[0035] The calculating unit 12 will next be described. In the example configuration of Fig. 1, three signal processors 40, 42, and 44 and three multi channel analyzers (MCA) 46, 48, and 50 are provided corresponding to three radiation detectors (that is, three scintillator blocks 20, 22, and 24) Each of the signal processors 40, 42, and 44 comprises an amplifier which amplifies a signal which is output from the optical detectors 34, 36, and 38, an A/D converter which converts the amplified signal from an analog signal to a digital signal, and other necessary circuits. The MCAs 46, 48, and 50 are circuits which generate three spectra based on signals obtained using three detectors (detection data). In other words, the MCAs 46, 48, and 50 function as spectrum generators. Alternatively, three single channel analyzers (SCA) may be used in place of the MCAs. It is also possible to provide a circuit which determines a count for each energy interval, in place of forming a complete spectrum. From a schematic point of view, such a circuit corresponds to a spectrum generating circuit and a spectrum analyzing circuit.

[0036] The data processor 52 comprises, for example, a microprocessor. Specific processes of the data processor 52 will be described later in detail. The data processor 52 of the present embodiment sets a plurality of energy intervals for a plurality of spectra, applies a predetermined calculation for each energy interval, and compares the calculation result with response functions (to be described later), to identify an incident direction θ and energy (energy interval) E of the incident radiation. Here, the response functions are stored in a storage 54 connected to the data processor 52. As will be described later, the response functions can be determined by executing a predetermined simulation. Reference numeral 60 shows storage of the data representing the response functions to the memory 54.

[0037] When the incident direction θ and energy (energy interval) E of the incident radiation are determined

in the data processor 52 as described above, a display processor 56 executes a predetermined display process for providing these information to the user in an easily understandable manner. As will be described later, in this

- ⁵ case, a predetermined chart is generated and is displayed on a displaying section 57. Alternatively, it is also possible to output the information of the incident direction θ and energy E determined by the data processor 52 to an external device through a network.
- 10 [0038] Next, a process content of the data processor 52 shown in Fig. 1 will be described in detail. Fig. 2 shows a flowchart of the content of the processes in the data processor 52. This flowchart will be described with reference to Figs. 3 - 10.

¹⁵ [0039] S101, S102, and S103 represent three steps corresponding to the three detectors, and in each step a plurality of energy intervals are set for a spectrum generated for each detector, and integrated counts N1_i, N2_i, and N3_i are determined for each energy interval i. Here,

N1, N2, and N3 represent integrated counts for the detectors, and the index i is a positive integer (1, 2, 3, 4, and 5) indicating a number for an energy interval.

[0040] Processes of S101, S102, and S103 will now be described with reference to Fig. 3. Fig. 3 shows, as 25 an example, a spectrum 62 which is based on detection data obtained from a first detector. A plurality of energy intervals 64 - 72 are set for the spectrum 62 as shown in Fig. 3. The energy intervals 64 - 72 may have the same interval width or different interval widths. In the present 30 embodiment, a same interval width is set for all of the energy intervals 64 - 72 and the interval width is 200 keV. This is only exemplary, and, it is possible, for example, to set, if there is an energy region for which a more detailed identification is desired, a fine energy interval in 35 this energy region and a coarse energy interval for the other regions.

[0041] In the present embodiment, an integrating process for counts is executed based on the spectrum for each of the energy intervals 64 - 72. That is, integrated counts are determined. The integrated counts are represented in Fig. 3 with N1₁ - N1₅. Although a peak of the spectrum 62 is present in the energy interval 70, in the method of the present embodiment, the incident radiation can be analyzed without differentiating or identifying such

⁴⁵ a peak. Although Fig. 3 only shows a spectrumprocess for the first detector, similar processes are executed for the spectra for the other detectors.

[0042] In the present embodiment, when the above-described processes of S101, S102, and S103 are executed for the three detectors, a result as shown in Fig. 4 (A) can be obtained. Here, reference numeral 74 represents a result when the spectrum is processed for the first detector, that is, the reference numeral 74 indicates five integrated counts N1₁ - N1₅ corresponding to five energy intervals. Reference numeral 76 indicates five integrated counts N2₁ - N2₅ corresponding to five energy intervals as a result of processing of the spectrum for the second detector. Reference numeral 78 indicates five

integrated counts $N3_1 - N3_5$ corresponding to five energy intervals as a result of processing of the spectrum for the third detector.

[0043] Referring again to Fig. 2, in S104, a total count T_i is determined as a sum of three integrated counts for each energy interval i (for example, $T_1 = N1_1 + N2_1 + N3_1$). In S105, S106, and S107, count ratios corresponding to the integrated counts are determined by dividing the three integrated counts determined for each energy interval by the total count T_i . This process will now be described with reference to Fig. 4.

[0044] Fig. 4(B) shows a result of execution of S104 -S107 as described above. For the energy interval of 0 keV - 200 keV, as shown in Fig. 4(A), when three integrated counts N1₁, N2₁, and N3₁ corresponding to the three detectors are divided (normalized) by the sum T₁ $(= N1_1 + N2_1 + N3_1)$, three count ratios K1₁, K2₁, and K31 are determined as shown in Fig. 4(B). Similarly, for other energy intervals also, a count ratio is determined for each integrated count by normalization calculation. With this process, 15 count ratios (refer to reference numerals 80, 82, and 84) corresponding to three detectors and five energy intervals are determined, as shown in Fig. 4(B). The three count ratios for each energy interval represent a sensitivity difference among the three detectors or a difference in detection efficiency in the three detectors, that is, an internal dividing ratio with respect to the total count in each energy interval.

[0045] Referring again to Fig. 2, in S108, a process is executed to compare the three count ratios R_i for each energy interval i (that is, actual count ratio sequence) with response functions for each energy interval i (more specifically, all theoretical count ratio sequences). This process will now be described with reference to Figs. 4(C) and 4(D).

[0046] As shown in Fig. 4(C), for the energy interval of 0 keV - 200 keV, three count ratios K1₁, K2₁, and K3₁ are determined in the energy interval and an actual count ratio sequence R₁ is defined as a combination of the count ratios. Similarly, actual count ratio sequences R₂ - R₅ are defined for the other energy intervals. As shown in Fig. 4(D), the actual count ratio sequence is compared with the response functions for each energy interval (refer to reference numerals 70-1 - 70-5).

[0047] In the present embodiment, five response functions corresponding to five energy intervals are prepared in advance (refer to reference numeral 72). In the present embodiment, the response function is a function obtained by executing a simulation, which will be described later in more detail, and represents a theoretical count ratio sequence in a range of 0 degree - 360 degrees. In Fig. 4, five response functions are shown with $I_{1-0~360}$, $I_{2-0~360}$, $I_{3-0~360}$, $I_{4-0~360}$, and $I_{5-0~360}$. For example, in the energy interval of 0 keV - 200 keV, the actual count ratio sequence R_1 is compared with the response function $I_{1-0~360}$. This is similar for the other energy intervals.

[0048] Figs. 5 - 9 show first to fifth response functions corresponding to the five energy intervals. Fig. 5 shows

a first response function for the energy interval of 0 keV - 200 keV, Fig. 6 shows a second response function for the energy interval of 200 keV - 400 keV, Fig. 7 shows a third response function for the energy interval of 400 keV- 600 keV, Fig. 8 shows a fourth response function for the energy interval of 600 keV - 800 keV, and Fig. 9 shows a fifth response function for the energy interval of 800 keV - 1000 keV. In each of these figures, the horizontal axis represents an angle (corresponding to an incident

¹⁰ direction) and the vertical axis represents the theoretical count ratio. Here, a line shown with a circular symbol (dotted line) shows a change of the theoretical count ratio for the first detector, a line shown with a triangular symbol (dotted line) shows a change of the theoretical count ratio for the second detector, and a line drawn with guadran-

for the second detector, and a line drawn with quadrangular symbols (dotted line) shows a change of the theoretical count ratio for the third detector.

[0049] The theoretical count ratio is determined by applying a calculation process similar to the above on a result of execution of simulation. In other words, as will be described later, a virtual γ ray having an energy peak at a center of individual energy interval is irradiated to a virtual model of the detecting section. During this process, the irradiation direction (angle) of the γ radiation is

varied. In this manner, three spectra corresponding to the three detectors are obtained for each energy interval and for each irradiation direction. A plurality of energy intervals are set for the spectra, and, for each energy interval, three integrated counts N1, N2, and N3 corresponding to the three detectors are determined, and the integrated counts are normalized with the sum T. With this process, a plurality of theoretical count ratios (N1/T, N2/T, and N3/T) are determined. The five response functions are functions in which these ratios are plotted.

³⁵ [0050] As shown in Figs. 5 - 9, in a response function corresponding to each energy interval, the three theoretical count ratios vary in a manner similar to a sine curve according to the angle. As is clear from mutual comparison among Figs. 5 - 9, when the energy becomes high,
 ⁴⁰ the transmitting power of the radiation is increased, and

the differences among the theoretical count ratios of the three detectors are reduced. In each case, a theoretical count ratio sequence (a group of three theoretical count ratios) which differs for each energy interval and for each

⁴⁵ direction is identified in advance and is used as the response functions.

[0051] In Fig. 2, in the above-described S108, for each energy interval i, a process to compare the actual count ratio sequence Ri with the response function is executed
and a matching determination is executed in S109. More specifically, it is judged as to whether or not the actual count ratio sequence matches the theoretical count ratio sequence. In this case, it is possible to employ, for example, a correlation calculation or the like, and to execute
the matching determination when the correlation value falls within a certain range. Alternatively, it is also possible to set a range for executing the matching determination for each theoretical count ratio and to execute the match-

ing determination based on whether or not the actual count ratio belongs to the range.

[0052] When there is no theoretical count ratio sequence which matches the actual count ratio sequence, it is judged that there is no incidence of radiation of a certain level or higher which is to be measured. In this case, the incidence is judged as an incidence of natural radiation (environmental radiation) When, on the other hand, radiation having the same energy is incident from a plurality of directions, the calculation cannot be appropriately executed, and a problem occurs in the judgment result, it is possible to execute an error process in S115 in Fig. 2, to generate, for example, an alarm. In the radiation measurement apparatus of the present embodiment, as long as the energies differ, even when radiation from a plurality of sources are simultaneously incident from a same direction or different directions, each radiation can be identified and the incident direction and the energy (energy interval) can be determined for each radiation.

[0053] In the configuration shown in Fig. 2, the steps S108 and S109 need not be sequentially executed, and, alternatively, these steps may be executed simultaneously, as shown by S110.

[0054] Fig. 10 shows an example when a matching determination is established. In the example of Fig. 10, R₄ indicates the actual count ratio sequence calculated for the fourth energy interval (600 keV - 800 keV), and comprises three actual count ratios K1₄, K2₄, and K3₄. The actual count ratio sequence R4 is compared with the fourth response function corresponding to the energy interval. In the case of Fig. 10, the theoretical count ratio sequence I_{4-270} corresponding to an angle of 270 degrees matches the actual count ratio sequence R₄. When such a matching relationship is found, the incident direction of the radiation can be identified by reading an angle (270 degrees) as an attribute of the theoretical count ratio sequence I₄₋₂₇₀ in the matching relationship. In addition, by reading an energy interval (600 keV - 800 keV) as an attribute of the response function for which the matching relationship is established, it is possible to identify the energy interval of the incident radiation. When radiation from a plurality of sources having energies which differ from each other are simultaneously incident, a plurality of matching relationships would be established for a plurality of energy intervals. For each of the matching relationships, the incident direction and the energy interval can be identified.

[0055] S111 and S112 in Fig. 2 show identification of the incident direction θ and identification of energy interval E as described above. In S113 and S114, information of the identified incident direction θ and information of the identified energy interval E are output.

[0056] As will be described below, response functions are generated using a simulation of irradiation of γ rays having a photoelectric peak at a center of each energy interval. Because the response functions are generated in such a manner, when a matching relationship is de-

termined between the actual count ratio sequence and the theoretical count ratio sequence, the actual count ratio sequence corresponds to three peaks in three spectra corresponding to the three detectors. However, in the present embodiment, fundamentally, the actual count ratio sequence comparison is executed in all energy intervals, and there is no need to identify a peak in each spectrum. In other words, although the peak may be used as

a consequence, there is no need to identify the peak dur ing the calculation process. Therefore, even when the peak may not be clear on the spectrum, the incident direction and the energy interval can be precisely determined for an incident radiation.

[0057] An example of the results of a simulation of a method according to the present embodiment will next be described with reference to Figs. 11 - 15. Fig. 11 shows a response function (refer to Fig. 5) and a simulation result for the energy interval of 0 keV - 200keV, Fig. 12 shows a response function (refer to Fig. 6) and a simulation result for the energy interval of 200 keV - 400 keV,

Fig. 13 shows a response function (refer to Fig. 7) and a simulation result for the energy interval of 400 keV - 600 keV, Fig. 14 shows a response function (refer to Fig. 8) and a simulation result for the energy interval of 600 keV

25 - 800 keV, and Fig. 15 shows a response function (refer to Fig. 9) and a simulation result for the energy interval of 800 keV - 1000 keV. In each of these figures, a dotted line indicates a change of the theoretical count ratio sequence, that is, a response function (RF). The response 30 functions are identical to those shown in Figs. 5 - 9. A solid line, on the other hand, indicates a simulation result using a virtual radiation source (137 Cs) which radiates γ rays having a photoelectric peak at 662 keV. More specifically, in the simulation, the irradiation direction of the 35 γ radiation is rotated around the detecting section which is a virtual model, and the change of the count ratio sequence (corresponding to the actual count ratio se-

quence) is shown in each figure with a solid line. Here, a circular symbol on each solid line represents a count
ratio corresponding to the first detector, a triangular symbol represents a count ratio corresponding to the second detector, and a quadrangular symbol represents a count ratio corresponding to the third detector. As the count ratios are obtained as a result of the simulation process

45 described, these are simulated, not measured, ratios, but they may be used as if they were actual count ratios. [0058] Because the peak energy of the incident radiation is 662 keV, the radiation falls within the energy interval of 600 keV - 800 keV. Because of this, as shown 50 in Fig. 14, the count ratio sequence (actual count ratio sequence) in the simulation matches the theoretical count ratio for all directions for this energy interval. On the other hand, for the other energy intervals, no matching relationship is established in any direction. In other 55 words, with the method of the present embodiment, when radiation is detected, the energy interval can be properly determined and the direction of emission can be properly determined for the incident radiation.

[0059] The flowchart in Fig. 16 shows a method for generating the above-described response functions. In the present embodiment, the response functions are generated using a known electromagnetic cascade Monte Carlo simulation (EGS).

[0060] In S201, a plurality of energy intervals are defined. In the present embodiment, five energy intervals are set with an interval width of 200 keV as described above, but it is sufficient that the plurality of energy intervals related to the generation of the response functions and the plurality of energy intervals during analysis of the spectrum match, and, thus, the interval widths of the energy intervals need not be set identical to each other.

[0061] At S202, a structure of the radiation detecting section shown in Fig. 1 is geometrically defined as a virtual model, and a simulation is executed in which γ rays having a predetermined energy are irradiated from around the radiation detecting section which is modeled. In this case, for each energy interval, γ radiation having a peak energy at a center of the energy interval is irradiated. In addition, the irradiation direction is varied within a range of 0 degree - 360 degrees. Here, the irradiation direction may be continuously varied, or may be varied with a pitch of $\Delta\theta$. A $\Delta\theta$ of 30 degrees is set for the response functions shown in Figs. 5 - 9. As a result of execution of S202, three spectra corresponding to three detectors are obtained for each energy and for each direction.

[0062] In S203, a plurality of energy intervals are set for the three spectra obtained for each energy and for each direction, and integrated counts are determined on the three spectra for each energy interval. By dividing the three integrated counts by the sum of the integrated counts, three count ratios (theoretical count ratios) are determined. Each of the count ratios forms a part of the count ratio sequence (theoretical count ratio sequence). The theoretical count ratio sequence determined for each energy interval and for each direction is plotted on a coordinate prepared for each energy interval. In S204, an interpolation process is executed for a plurality of points plotted on the coordinate as necessary, so that the response function can be determined. In this process, the response function may be defined as a sequence of numerical values or as an equation. In either case, by executing the processes shown in Fig. 16, the plurality of response functions corresponding to the plurality of energy intervals shown in Figs. 5 - 9 can be generated in advance.

[0063] As descried, by considering various cases in which γ radiation of various energy levels is irradiated from various directions prior to actual measurement, and storing a set of theoretical values (response functions) by measurement of these cases, it is possible, when an actual measurement value is actually obtained, to match the actual measurement value with the set of the theoretical values so that a theoretical value having a matching relationship can be identified and the incident direction and energy interval as attributes of the theoretical

value can be estimated.

[0064] Therefore, as long as the matching relationship can be properly determined, even when radiation emitted from a plurality of sources is.simultaneously incident from

⁵ various directions, it is possible to differentiate among the sources and measure each radiation. However, when radiation from a plurality of sources belonging to the same energy interval are simultaneously incident, it may not be possible to properly compare the actual measurement

¹⁰ value and the theoretical value. In consideration of such a case, it is possible to execute an error processing in order to further improve the reliability of the determination.

[0065] The data processor shown 52 in Fig. 1 also has
a function of calculating a dosage over an entire energy range and a dosage for each energy interval based on the detection data obtained by one or a plurality of the detectors. For example, when a dosage corresponding to the entire energy range is to be calculated, one of the
three spectra may be selected and the dosage may be determined based on the selected spectrum. This is similar for the calculation of the dosage for each energy interval. Alternatively, it is also possible to consider all spectra, apply a weighted addition process or the like, and calculate the dosage.

[0066] Next, an example process of the display processor 56 shown in Fig. 1 will be described. Figs. 17 - 19 show example charts generated by the display processor 56.

30 [0067] The chart shown in each figure is in polar coordinates, with a circumferential direction in the coordinate system corresponding to the incident direction θ of the radiation and the radial direction in the coordinate system corresponding to the energy (energy interval) of the ra 35 diation.

[0068] As shown in Fig. 17, when the incident direction and the energy interval are determined for the incident radiation as a result of the above-described process, a mark M1 is displayed at a position corresponding to the determined incident direction and the determined energy interval on the polar coordinate system. In the exemplified case, the incident direction is 90 degrees and the energy interval is 600 keV - 800 keV. In addition, in the present embodiment, a size of the mark M1 corresponds

to a magnitude of the dosage in the energy interval in which the mark M1 exists. In other words, the mark M1 is represented with a larger diameter when the dosage is higher and with a smaller diameter when the dosage is lower. Therefore, there is an advantage that the incident direction, energy interval, and dosage information

of the incident radiation can be intuitively recognized by looking at the chart shown in Fig. 17.

[0069] In the above-described example, the magnitude of the dosage is represented with the magnitude of the diameter of the mark M1. Alternatively, for example, the magnitude of the dosage may be represented by varying the form, color phase, or brightness of the mark. For example, when the magnitude of dosage and the color

10

color bar near the chart shown in Fig. 17.

[0070] Fig. 18 shows an example of a display when two radiations having different energies are incident from the same direction. As shown by marks M2 and M3, in this example, two radiations are incident from the direction of 120 degrees, with energies of the radiations in two energy intervals including the energy interval of 600 keV - 800 keV and the energy interval of 800 keV - 1000 keV. Alternatively, the interval width of the energy may be more finely set in order to improve the energy resolution on the chart.

[0071] In an example shown in Fig. 19, an example display in a case wherein two radiations having different energies are incident from different directions is shown. ¹⁵ In this example, a mark M4 represents incidence of radiation belonging to the energy interval of 600 keV - 800 keV from an incident direction of 30 degrees and a mark M5 represents incidence of radiation belonging to the energy interval of 800 keV - 1000 keV from an incident ²⁰ direction of 90 degrees.

[0072] In the above-described embodiment, the response functions are generated using a simulation. Alternatively, it is also possible to generate the response 25 functions by collecting experimental data. Also, although the radiation measurement apparatus in the above-described embodiment is a monitoring post, the present invention can be applied to other radiation measurement apparatuses, such as a survey meter. For example, the present invention can be applied to a surveymeterwhich-30 detects β radiation. In the above-described embodiment, the radiation detecting section comprises three scintillator blocks, but, alternatively, the radiation detecting section may comprise four or more scintillator blocks. When two scintillator blocks are provided, that is, when two scin-35 tillator blocks having a semicircle shape seen from the top are installed in the detector, while it is possible to differentiate incident directions in two ranges of 0 degree - 180 degrees and 180 degrees - 360 degrees, the spe-40 cific coming direction cannot be identified as in the abovedescribed embodiment. Therefore, it is desirable to place three or more scintillator blocks. In the above-described embodiment, five energy intervals are set, but alternatively, it is also possible to set six of more energy intervals 45 or four or less energy intervals. However, because it becomes difficult to precisely determine the matching relationship when the number of energy intervals is small, it is generally desirable to set, for example, four or more energy intervals.

[0073] The data processor shown in Fig. 1 may be formed using a microprocessor or the like. Alternatively, it is also possible to realize the data processor as functions of software operating on a CPU. In this case, the MCA 46, 48, and 50 and subsequent structures may be replaced with a computer.

Claims

- 1. A radiation measurement apparatus comprising:
 - a detecting section (14) which comprises a plurality of detectors (34, 36, 38) provided to have directivity characteristics that differ from each other, and which detects radiation with the detectors (34, 36, 38);

a calculating section adapted to calculate, based on a plurality of detection data obtained by the plurality of detectors (34, 36, 38) and for each energy interval (64, 66, 68, 70, 72) among a plurality of energy intervals (64, 66, 68, 70, 72), actual ratio information by determining a plurality of count ratios, which are a plurality of actual count ratios, by normalizing the plurality of individual counts of each detector (34, 36, 38) with a sum of the individual counts in the energy intervals and by form-ing actual ratio information as a combination or a sequence of the plurality of count ratios;

a generating section adapted to generate, for each energy interval (64, 66, 68, 70, 72), a response function which provides theoretical ratio information which changes according to an incident direction; and

a comparing section which compares a plurality of actual ratio information corresponding to the plurality of energy intervals (64, 66, 68, 70, 72) with a plurality of response functions corresponding to the plurality of energy intervals (64, 66, 68, 70, 72), and adapted to identify, when a matching relationship is determined between particular actual ratio information and particular theoretical ratio information, at least one of an incident direction and an energy interval (64, 66, 68, 70, 72) for radiation detected by the detecting section (14) based on the matching relationship.

2. The radiation measurement apparatus according to Claim 1, wherein

the comparing section identifies both of the incident direction and the energy interval (64, 66, 68, 70, 72) for the radiation detected by the detecting section (14).

3. The radiation measurement apparatus according to Claim 1, wherein

the calculating section comprises:

a spectrum creating section which creates a plurality of spectra corresponding to the plurality of detectors (34, 36, 38) based on the plurality of detection data;

a first calculating section which sets a plurality of energy intervals (64, 66, 68, 70, 72) for the

50

15

20

25

35

40

plurality of spectra and determines, for each energy interval (64, 66, 68, 70, 72), a plurality of individual counts corresponding to the plurality of detectors (34, 36, 38); and a second calculating section which determines, for each energy interval (64, 66, 68, 70, 72), the plurality of actual count ratios by dividing the plurality of individual counts by a total count which is a sum of the individual counts.

- 4. The radiation measurement apparatus according to Claim 1, wherein the response function for each energy interval (64, 66, 68, 70, 72) generated by the generating section is formed as an equation or a table which provides theoretical ratio information for each incident direction.
- 5. The radiation measurement apparatus according to Claim 4, wherein

the response function for each energy interval (64, 66, 68, 70, 72) is generated in advance as a result of execution of a simulation in which radiation having a predetermined energy is virtually irradiated from each direction using a virtual model for the detecting section (14).

6. The radiation measurement apparatus according to Claim 1, wherein

the plurality of detectors (34, 36, 38) comprise n scintillator blocks (where $n \ge 3$) placed around a center axis in the detecting section (14).

- 7. The radiation measurement apparatus according to Claim 2, wherein when radiation from a plurality of sources having energies that differ from each other are incident on the detecting section (14), the comparing section determines a plurality of matching relationships corresponding to the plurality of radiations, and an incident direction and an energy interval (64, 66, 68, 70, 72) are identified for each determined matching relationship.
- The radiation measurement apparatus according to ⁴⁵ Claim 2, further comprising:

a creating section which creates a chart by mapping a mark on a predetermined coordinate system based on the incident direction and the energy interval (64, 66, 68, 70, 72) identified by the comparing section, and diaplaving section, and

a displaying section which displays the chart.

 The radiation measurement apparatus according to Claim 8, wherein a circumferential direction in the predetermined co-

a circumferential direction in the predetermined coordinate system represents the incident direction and a radial direction in the predetermined coordinate system represents the energy interval (64, 66, 68, 70, 72).

- The radiation measurement apparatus according to Claim 8, wherein the creating section changes a display form of the mark according to dosage information.
- 10 11. The radiation measurement apparatus according to Claim 10, wherein the dosage information represents a dosage calculated for an energy interval (64, 66, 68, 70, 72) identified by the comparing section.
 - The radiation measurement apparatus according to Claim 10, wherein the change of the display form of the mark includes at least one of a size change, a shape change, a color phase change, and a brightness change.
 - **13.** A data processing method in a radiation measurement apparatus which comprises a detecting section (14) having n detectors (34, 36, 38) (where $n \ge 3$) provided to have horizontal directivity characteristics that differ from each other, the method comprising the steps of:
 - determining, based on n detection data obtained using the n detectors (34, 36, 38) and for each energy interval (64, 66, 68, 70, 72) among m energy intervals (64, 66, 68, 70, 72) (where $m \ge$ 2), a n x m count ratios, which are a plurality of actual count ratios, by normalizing the plurality of individual counts of each detector (34, 36, 38) with a sum of the individual counts in the energy intervals, and calculating m actual ratio information as a combination or a sequence of the plurality of count ratios;

generating, for each energy interval (64, 66, 68, 70, 72), a response function which provides theoretical ratio information which changes according to an incident direction; and

comparing m actual ratio information corresponding to the m energy intervals (64, 66, 68, 70, 72) with m response functions corresponding to the m energy intervals (64, 66, 68, 70, 72), and identifying, when a matching relationship is determined between particular actual ratio information and particular theoretical ratio information, an incident direction and an energy interval (64, 66, 68, 70, 72) for radiation detected by the detecting section (14) based on the matching relationship.

14. The data processing method according to Claim 13, further comprising the step of:

10

15

creating a chart by mapping a mark representing the identified incident direction and the identified energy interval (64, 66, 68, 70, 72) on a polar coordinate system in which the incident direction is correlated to a circumferential direction and the energy interval (64, 66, 68, 70, 72) is correlated to a radial direction.

Patentansprüche

1. Strahlungsmessvorrichtung mit:

einem Detektionsbereich (14), der eine Vielzahl von Detektoren (34, 36, 38) aufweist, welche vorgesehen sind, um Richtungscharakteristika zu haben, die sich voneinander unterscheiden, und welcher Strahlung mit den Detektoren (34, 36, 38) detektiert;

einem Berechnungsbereich, welcher eingerich-20 tet ist, um, basierend auf einer Vielzahl von Detektionsdaten, welche durch die Vielzahl von Detektoren (34, 36, 38) und für jedes Energieintervall (64, 66, 68, 70, 72) innerhalb einer Viel-25 zahl von Energieintervallen (64, 66, 68, 70, 72) erhalten werden, aktuelle Verhältnisinformation durch Bestimmen einer Vielzahl von Zählungsverhältnissen zu berechnen, welche eine Vielzahl von aktuellen Zählungsverhältnissen ist, durch Normierung der Vielzahl von individuellen 30 Zählungen jedes Detektors (34, 36, 38) mit der Summe der individuellen Zählungen in den Energieintervallen und durch Ausbilden von aktuellen Verhältnisinformation als eine Kombinati-35 on oder eine Sequenz von der Vielzahl von Zählungsverhältnissen;

einem Erzeugungsbereich eingerichtet zum Erzeugen für jedes Energieintervall (64, 66, 68, 70, 72) eine Antwortfunktion, welche theoretische Verhältnisinformation bietet, welche sich entsprechend einer Einfallrichtung ändern; und einen Vergleichsbereich, welcher eine Vielzahl von aktuellen Verhältnisinformationen entsprechend der Vielzahl von Energieintervallen (64, 66, 68, 70, 72) mit einer Vielzahl von Antwortfunktionen entsprechend der Vielzahl von Energieintervallen (64, 66, 68, 70, 72) vergleicht und ausgestaltet ist, um, wenn ein zusammenpassendes Verhältnis zwischen einer bestimmten aktuellen Verhältnisinformation und bestimmten theoretischen Verhältnisinformationen bestimmt wird, zumindest einer Einfallrichtung und eines Energieintervalls (64, 66, 68, 70, 72) zur Strahlungsdetektion durch den Detektionsbereich (14) basierend auf der zusammenpassenden Beziehung zu identifizieren.

2. Strahlungsmessvorrichtung nach Anspruch 1,

wobei der Vergleichsbereich beides von der Strahlungsrichtung und dem Energieintervall (64, 66, 68, 70, 72) für die durch den Detektionsbereich (14) detektierte Strahlung identifiziert.

3. Strahlungsmessvorrichtung nach Anspruch 1, wobei der Berechnungsbereich aufweist:

einen Spektrumserzeugungsbereich, welcher eine Vielzahl von Spektren erzeugt korrespondierend zu der Vielzahl von Detektoren (34, 36, 38) basierend auf der Vielzahl von Detektionsdaten;

einen ersten Berechnungsbereich, welcher eine Vielzahl von Energieintervallen (64, 66, 68, 70, 72) für die Vielzahl von Spektren setzt und für jedes Energieintervall (64, 66, 68, 70, 72) eine Vielzahl von individuellen Zählungen bestimmt entsprechend der Vielzahl von Detektoren (34, 36, 38); und

einem zweiten Berechnungsbereich, welcher für jedes Energieintervall (64, 66, 68, 70, 72) die Vielzahl von aktuellen Zählungsverhältnissen durch Dividieren der Vielzahl von individuellen Zählungen durch die gesamten Zählungen, welche eine Summe der individuellen Zählungen ist, bestimmt.

 Strahlungsmessvorrichtung nach Anspruch 1, wobei die Antwortfunktion f
ür jedes Energieintervall

(64, 66, 68, 70, 72), welche durch den Erzeugungsbereich erzeugt wird, als eine Gleichung oder eine Tabelle ausgebildet ist, welche theoretische Verhältnisinformationen für jede Strahlungsrichtung bietet.

- 5. Strahlungsmessvorrichtung nach Anspruch 4, wobei die Antwortfunktion für jedes Energieintervall (64, 66, 68, 70, 72) im Voraus als Ergebnis des Ausführens einer Simulation erzeugt wird, bei der Strahlung mit einer zuvor bestimmten Energie virtuell für jede Richtung unter Verwendung eines virtuellen Modells für den Detektionsbereich (14) ausgestrahlt wird.
- 6. Strahlungsmessvorrichtung nach Anspruch 1, wobei die Vielzahl von Detektoren (34, 36, 38) n-Scintillatorblöcke (wobei n ≥ 3) aufweist, welche um eine zentrale Achse in dem Detektionsbereich (14) angeordnet sind.
- 7. Strahlungsmessvorrichtung nach Anspruch 2, wobei Strahlung von einer Vielzahl von Quellen, welche Energien haben, die sich voneinander unterscheiden, auf den Detektionsbereich (14) einfallen, der Vergleichsbereich eine Vielzahl von zusammenpassenden Beziehungen bestimmt, entsprechend der Vielzahl von Strahlungen und eine Strahlungsrichtung und ein Energieintervall (64,

40

45

50

10

15

35

45

66, 68, 70, 71) für jede bestimmte zusammenpassende Beziehung identifiziert wird.

 Strahlungsmessvorrichtung nach Anspruch 2, des Weiteren aufweisend:

> einen Erzeugungsbereich, welcher ein Diagramm erzeugt durch Abbilden einer Markierung auf einem zuvor bestimmten Koordinatensystem basierend auf der Strahlungsrichtung und dem Energieintervall (64, 66, 68, 70, 72), welche durch den Vergleichsbereich identifiziert sind, und einen Darstellungsbereich, welcher das Diagramm darstellt.

- Strahlungsmessvorrichtung nach Anspruch 8, wobei eine umlaufende Richtung in dem zuvor bestimmten Koordinatensystem die Einfallrichtung repräsentiert und eine radiale Richtung in dem vorbestimmten Koordinatensystem das Energieintervall (64, 66, 68, 70, 72) repräsentiert.
- Strahlungsmessvorrichtung nach Anspruch 8, wobei der Erzeugungsbereich eine Form der Mar-²⁵ kierung entsprechend zu Dosisinformationen ändert.
- Strahlungsmessvorrichtung nach Anspruch 10, wobei die Dosisinformation eine Dosis repräsentiert, ³⁰ welche für ein Energieintervall (64, 66, 68, 70, 72), welcher durch den Vergleichsbereich identifiziert wurde, repräsentiert.
- 12. Strahlungsmessvorrichtung nach Anspruch 10, wobei die Veränderung der dargestellten Form der Markierung zumindest eines von einer Größenänderung, einer Formänderung, einer Farbphasenänderung und einer Helligkeitsänderung aufweist.
- Datenverarbeitungsverfahren in einer Strahlungsmessvorrichtung, welche einen Detektionsbereich (14) aufweist, welcher n-Detektoren (34, 36, 38) (wobei n ≥ 3) aufweist, ausgestaltet um horizontale Richtungscharakteristika aufzuweisen, die sich voneinander unterscheiden, das Verfahren weist die Schritte auf:

Bestimmen basierend auf n-Detektionsdaten, Erhalten unter Verwendung der n-Detektoren ⁵⁰ (34, 36, 38) und für jedes Energieintervall (64, 66, 68, 70, 72) aus m-Energieintervallen (64, 66, 68, 70, 72) (wobei $m \ge 2$) n x m-Zählungsverhältnisse, welche eine Vielzahl von aktuellen Zählungsverhältnissen ist, durch Normierung ⁵⁵ der Vielzahl von individuellen Zählungen für jeden Detektor (34, 36, 38) mit einer Summe der individuellen Zählungen in jedem Energieintervall und Berechnen von m-aktuellen Verhältnisinformationen als eine Kombination oder Sequenz der Vielzahl von Anzahlverhältnissen; Erzeugen einer Antwortfunktion für jedes Energieintervall (64, 66, 68, 70, 72), welche theoretische Verhältnisinformationen bietet, welche sich entsprechend einer Strahlungsrichtung ändern; und

Vergleichen von m-aktuellen Zählungsinformationen, welche m-Energieintervallen (64, 66, 68, 70, 72) entsprechen, mit m-Antwortfunktionen, welche m-Energieintervallen (64, 66, 68, 70, 72) entsprechen und Identifizieren, wenn eine zusammenpassende Beziehung zwischen einer bestimmten aktuellen Verhältnisinformation und einer bestimmten theoretischen aktuellen Verhältnisinformation erkannt wird einer Strahlungsrichtung und eines Energieintervalls (64, 66, 68, 70, 72) für eine Strahlung, welche durch den Detektionsbereich (14) detektiert wird, basierend auf der zusammenpassenden Beziehung.

14. Datenverarbeitungsverfahren nach Anspruch 13, des Weiteren aufweisend die Schritte:

Erzeugen eines Diagramms durch Abbilden einer Markierung, welche die identifizierte Strahlungsrichtung und das identifizierte Strahlungsintervall (64, 66, 68, 70, 72) repräsentiert auf einem polaren Koordinatensystem, in welchem die Strahlungsrichtung mit einer umlaufenden Richtung korreliert ist und das Energieintervall (64, 66, 68, 70, 72) mit einer radialen Richtung korreliert ist.

Revendications

40 **1.** Appareil de mesure de rayonnement comprenant :

une section de détection (14) qui comprend une pluralité de détecteurs (34, 36, 38) prévus pour avoir des caractéristiques de directivité qui diffèrent de l'un à l'autre, et qui détecte un rayonnement à l'aide des détecteurs (34, 36, 38) ; une section de calcul apte à calculer, sur la base d'une pluralité de données de détection obtenues au moyen de la pluralité de détecteurs (34, 36, 38) et pour chaque intervalle d'énergie (64, 66, 68, 70, 72) parmi une pluralité d'intervalles d'énergie (64, 66, 68, 70, 72), des informations de rapport effectif par détermination d'une pluralité de rapports de comptabilisation, qui constituent une pluralité de rapports de comptabilisation effectifs, par normalisation de la pluralité de comptabilisations individuelles de chaque détecteur (34, 36, 38) avec une somme des

10

15

20

25

30

35

comptabilisations individuelles dans les intervalles d'énergie, et par formation des informations de rapport effectif en tant que combinaison ou séquence de la pluralité de rapports de comptabilisation ;

une section de génération apte à générer, pour chaque intervalle d'énergie (64, 66, 68, 70, 72), une fonction de réponse qui fournit des informations de rapport théorique qui changent en fonction d'une direction incidente ; et

une section de comparaison qui compare une pluralité d'informations de rapport effectif correspondant à la pluralité d'intervalles d'énergie (64, 66, 68, 70, 72) à une pluralité de fonctions de réponse correspondant à la pluralité d'intervalles d'énergie (64, 66, 68, 70, 72), et qui est apte à identifier, lorsqu'une relation de compatibilité est établie entre des informations de rapport effectif particulières et des informations de rapport théorique particulières, sur la base de cette relation de compatibilité, au moins l'un(e) parmi : une direction incidente et un intervalle d'énergie (64, 66, 68, 70, 72), pour le rayonnement détecté par la section de détection (14).

2. Appareil de mesure de rayonnement selon la revendication 1, dans lequel :

la section de comparaison identifie à la fois la direction incidente et l'intervalle d'énergie (64, 66, 68, 70, 72), pour le rayonnement détecté par la section de détection (14).

3. Appareil de mesure de rayonnement selon la revendication 1, dans lequel :

la section de calcul comprend :

une section de création de spectre qui crée une pluralité de spectres correspondant à 40 la pluralité de détecteurs (34, 36, 38) sur la base de la pluralité de données de détection ;

une première section de calcul qui règle une pluralité d'intervalles d'énergie (64, 66, 68, 70, 72) pour la pluralité de spectres et détermine, pour chaque intervalle d'énergie (64, 66, 68, 70, 72), une pluralité de comptabilisations individuelles correspondant à la pluralité de détecteurs (34, 36, 38) ; et une deuxième section de calcul qui détermine, pour chaque intervalle d'énergie (64, 66, 68, 70, 72), la pluralité de rapports de comptabilisation effectifs par division de la pluralité de comptabilisations individuelles par une comptabilisation totale qui est une somme des comptabilisations individuelles. 4. Appareil de mesure de rayonnement selon la revendication 1, dans lequel :

> la fonction de réponse pour chaque intervalle d'énergie (64, 66, 68, 70, 72) généré par la section de génération est formée en tant qu'équation ou tableau qui fournit des informations de rapport théorique pour chaque direction incidente.

5. Appareil de mesure de rayonnement selon la revendication 4, dans lequel :

> la fonction de réponse pour chaque intervalle d'énergie (64, 66, 68, 70, 72) est générée en avance en tant que résultat de la mise en oeuvre d'une simulation dans laquelle un rayonnement ayant une énergie prédéterminée rayonne virtuellement en provenant de chaque direction, en utilisant un modèle virtuel pour la section de détection (14).

6. Appareil de mesure de rayonnement selon la revendication 1, dans lequel :

la pluralité de détecteurs (34, 36, 38) comprend n blocs scintillateurs (avec $n \ge 3$) placés autour d'un axe central dans la section de détection (14).

7. Appareil de mesure de rayonnement selon la revendication 2, dans lequel :

> lorsque des rayonnements provenant d'une pluralité de sources ayant des énergies qui diffèrent de l'une à l'autre viennent en incidence sur la section de détection (14), la section de comparaison détermine une pluralité de relations de compatibilité correspondant à la pluralité de rayonnements, et

une direction incidente et un intervalle d'énergie (64, 66, 68, 70, 72) sont identifiés pour chaque relation de compatibilité déterminée.

45 **8.** Appareil de mesure de rayonnement selon la revendication 2, comprenant en outre :

> une section de création qui crée un graphique par mise en correspondance d'une marque sur un système de coordonnées prédéterminé, basé sur la direction incidente, et de l'intervalle d'énergie (64, 66, 68, 70, 72) identifié par la section de comparaison, et

une section d'affichage qui affiche le graphique.

9. Appareil de mesure de rayonnement selon la revendication 8, dans lequel :

50

15

20

30

10. Appareil de mesure de rayonnement selon la revendication 8, dans lequel :

> la section de création modifie une forme d'affi-¹⁰ chage de la marque en fonction d'informations de dosage.

11. Appareil de mesure de rayonnement selon la revendication 10, dans lequel :

> les informations de dosage représentent un dosage calculé pour un intervalle d'énergie (64, 66, 68, 70, 72) identifié par la section de comparaison.

12. Appareil de mesure de rayonnement selon la revendication 10, dans lequel :

> la modification de la forme d'affichage de la marque comprend au moins l'une parmi une modification de taille, une modification de forme, une modification de phase de couleur, et une modification de brillance.

13. Procédé de traitement de données dans un appareil de mesure de rayonnement qui comprend une section de détection (14) comportant n détecteurs (34, 36, 38) (avec n ≥ 3) prévus pour avoir des caractéristiques de directivité horizontale qui diffèrent de l'un ³⁵ à l'autre, le procédé comprenant les étapes qui consistent à :

déterminer, sur la base de n données de détection obtenues en utilisant les n détecteurs (34, 40 36, 38) et pour chaque intervalle d'énergie (64, 66, 68, 70, 72) parmi m intervalles d'énergie (64, 66, 68, 70, 72) (avec $m \ge 2$), n x m rapports de comptabilisation, qui constituent une pluralité de 45 rapports de comptabilisation effectifs, en effectuant une normalisation de la pluralité de comptabilisations individuelles de chaque détecteur (34, 36, 38) avec une somme des comptabilisations individuelles dans les intervalles d'énergie, et en calculant m informations de rapport effectif 50 en tant que combinaison ou séquence de la pluralité de rapports de comptabilisation ; générer, pour chaque intervalle d'énergie (64, 66, 68, 70, 72), une fonction de réponse qui fournit des informations de rapport théorique qui 55 changent en fonction d'une direction incidente ; et

comparer m informations de rapport effectif cor-

28

respondant aux m intervalles d'énergie (64, 66, 68, 70, 72) à m fonctions de réponse correspondant aux m intervalles d'énergie (64, 66, 68, 70, 72), et identifier, lorsqu'une relation de compatibilité est déterminée entre des informations de rapport effectif particulières et des informations de rapport théorique particulières, sur la base de la relation de compatibilité, une direction incidente et un intervalle d'énergie (64, 66, 68, 70, 72) pour le rayonnement détecté par la section de détection (14).

14. Procédé de traitement de données selon la revendication 13, comprenant en outre l'étape consistant à :

> créer un graphique par mise en correspondance d'une marque représentant la direction incidente identifiée et de l'intervalle d'énergie identifié (64, 66, 68, 70, 72) sur un système de coordonnées polaires dans lequel la direction incidente est corrélée à une direction circonférentielle et l'intervalle d'énergie (64, 66, 68, 70, 72) est corrélé à une direction radiale.

Fig. 17

Fig. 18

Fig. 19

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2004191327 A [0003]

• JP 2005014578 A [0003]

• JP 2004361290 A [0003]

Non-patent literature cited in the description

- YOSHIYUKI SHIRAKAWA. Development of nondirectional detectors with Nal(TI). *RADIOISOTOPES*, August 2004, vol. 53 (8), 445-450 [0003]
- Directional measurement of gamma radiation using triple scintillators. SHIRAKAWA. SICE 2004 Annual Conference. IEEE, 2004 [0005]