(43) 国際公開日 平成22年9月30日 (2010.9.30)

(19) 日本国特許庁(JP)

再公表特許(A1)

(11) 国際公開番号 **W02010/109586**

	発行日	平成24年9月20日	(2012.9.)	20)
--	-----	------------	-----------	-----

(51) Int.Cl.			FI			テーマコード(参考)
A61N	5/10	(2006.01)	A 6 1 N	5/10	Н	26088
G01T	1/161	(2006.01)	A 6 1 N	5/10	М	4C082
			GO1T	1/161	С	

GO1T 1/161

А

		審査諸	青求 有	予備審查	査請 求	未請求	(全 23	;頁)
出願番号	特願2011-505698 (P2011-505698)	(71) 出願人	301032	942				
(21) 国際出願番号	PCT/JP2009/055702		独立行	政法人放	牧射線 图	医学総合研	开究所	
(22) 国際出願日	平成21年3月23日 (2009.3.23)		千葉県	千葉市和	毛区7	ミリ四丁日	19番1	号
(81)指定国	AP (BW, GH, GM, KE, LS, MW, MZ, NA, SD,	(74)代理人	100080	458				
SL, SZ, TZ, UG, ZM, ZW	, EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),		弁理士	高矢	諭			
EP (AT, BE, BG, CH, CY,	CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU	(74)代理人	100076	129				
, IE, IS, IT, LT, LU, LV	, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, S		弁理士	松山	圭佑			
K, TR), OA (BF, BJ, CF,	CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN	(74)代理人	100089	015				
, TD, TG) , AE, AG, AL, A	M, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW,		弁理士	牧野	剛博			
BY, BZ, CA, CH, CN, CO,	CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG	(72)発明者	山谷	泰賀				
, ES, F1, GB, GD, GE, GH	H, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, K		千葉県	千葉市和	毛区7	ミリ四丁日	19番1	号
E, KG, KM, KN, KP, KR, K	KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,		独立行	政法人放	牧射線 B	医学総合研	刑究所内	J
ME, MG, MK, MN, MW, MX,	MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL	(72)発明者	稲庭	拓				
, PT, R0, RS, RU, SC, SE	0, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, T		千葉県	千葉市和	毛区7	ミリ四丁日	19番1	号
N, TR, TT, TZ, UA, UG, U	JS, UZ, VC, VN, ZA, ZM, ZW		独立行	政法人放	対線 日	医学総合研	肝究所内	ſ
						最終	冬頁に続	く

[23]

(54) 【発明の名称】 遮蔽型放射線治療・画像化複合装置

(57)【要約】

核破砕片を遮蔽する構造物(遮蔽体と称する)を、ビ ーム照射のオンオフに合わせて動作させ、ビーム照射中 は、核破砕片の検出器への入射を低減する。これにより 、照射直後あるいは照射中にも消滅放射線を計測し、照 射野を3次元的に画像化できる。

【特許請求の範囲】

【請求項1】

放射線照射によって患部から生じる二次的な放射線を測定し得るように検出器が配設され、該検出器の視野へ照射される放射線に同期して照射後あるいは照射中に照射野の画像 化を行う画像化装置を含む放射線治療・画像化複合装置であって、

(2)

放射線を被検体の該画像化装置の視野に位置する部位に向けて照射する放射線治療装置 と、

前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片の飛翔空間に設けた、該核破砕片の検出器への入射を緩和する遮蔽手段と、

を備えたことを特徴とする遮蔽型放射線治療・画像化複合装置。

【請求項2】

被検体から生じる一対の消滅放射線を同時計数測定し得るように被検体の周りに検出器群が配設され、該検出器群の視野へ照射される放射線に同期して照射後あるいは照射中に 被検体の断層撮影を行うPET装置を含む放射線治療・画像化複合装置であって、

放射線を被検体の該PET装置の視野に位置する部位に向けて照射する放射線治療装置と、

前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片の飛翔空間に設けた、該核破砕片の検出器への入射を緩和する遮蔽手段と、

を備えたことを特徴とする遮蔽型放射線治療・画像化複合装置。

【請求項3】

検出器群が被検体軸周りにリング状に配設され、遮蔽手段が前記飛翔空間を出入り可能 で核破砕片の通過を緩和する遮蔽体と該遮蔽体の該出入りを制御する制御手段とで構成さ れ、放射線照射時に遮蔽体が前記飛翔空間にあり、破砕片の検出器への入力を緩和するこ とを特徴とする請求項2に記載の遮蔽型放射線治療・画像化複合装置。

【 請 求 項 4 】

前記遮蔽体が回転運動を行うことを特徴とする請求項3に記載の遮蔽型放射線治療・画像化複合装置。

【請求項5】

前記遮蔽体が往復運動を行うことを特徴とする請求項3に記載の遮蔽型放射線治療・画像化複合装置。

【請求項6】

放射線照射後、速やかに前記遮蔽体が退避することを特徴とする請求項3に記載の遮蔽 型放射線治療・画像化複合装置。

【請求項7】

照射ポートの位置に応じて前記遮蔽体を回動することを特徴とする請求項3に記載の遮 蔽型放射線治療・画像化複合装置。

【請求項8】

前記遮蔽体およびその駆動部がベッドと一体化されていることを特徴とする請求項3に記載の遮蔽型放射線治療・画像化複合装置。

【請求項9】

前記遮蔽体の材質もしくは厚みを核破砕片の散乱角度に応じて変えることを特徴とする請求項3に記載の遮蔽型放射線治療・画像化複合装置。

【請求項10】

放射線照射によって患部から生じる放射線を測定し得るように検出器が配設され、該検 出器の視野へ照射される放射線に同期して照射後あるいは照射中に照射野の画像化を行う 画像化装置を含む放射線治療・画像化複合装置の制御プログラムであって、

前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片の検出器への入射を 緩和するように、該核破砕片の飛翔空間に設けた遮蔽手段を制御することを特徴とする検 出器回動型放射線治療・画像化複合装置の制御プログラム。

【請求項11】

20

30

40

被検体から生じる一対の消滅放射線を同時計数測定し得るように被検体の周りに検出器 群が配設され、該検出器群の視野へ照射される放射線に同期して照射後あるいは照射中に 被検体の断層撮影を行うPET装置を含む検出器回動型放射線治療・画像化複合装置の制 御プログラムであって、

前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片の検出器への入射を 緩和するように、該核破砕片の飛翔空間に設けた遮蔽手段を制御することを特徴とする検 出器回動型放射線治療・画像化複合装置の制御プログラム。

【発明の詳細な説明】

【技術分野】

[0001]

10

20

本発明は、 X線や粒子線を患部に照射して行う放射線治療において、放射線(ビームと もいう)照射によって照射野から生じる消滅放射線を検出するためのモニタリングに際し て、ビーム照射によって生じる核破砕片の検出器への入射を低減して、照射直後あるいは 照射中にも消滅放射線を計測し、照射野を 3次元的に画像化できる放射線治療・画像化複 合装置に関する。

【背景技術】

[0002]

癌の早期診断に有効と注目されている陽電子放射断層撮像法(PET)は、極微量の陽 電子放出核種で標識した化合物を投与し、体内から放出される消滅放射線を検出すること で、糖代謝等、代謝機能を画像化し、病気の有無や程度を調べる検査法であり、これを実 施するためのPET装置が実用化されている。

 $\begin{bmatrix} 0 & 0 & 0 & 3 \end{bmatrix}$

PETの原理は次のとおりである。陽電子崩壊によって陽電子放出核種から放出された 陽電子が周囲の電子と対消滅し、それによって生じる一対の511keVの消滅放射線を 、対の放射線検出器で同時計数の原理によって測定する。これにより、核種の存在位置を 、対の検出器同士を結ぶ1本の線分(同時計数線)上に特定することができる。患者の頭 から足の方向に向かう軸を体軸と定義すると、体軸と垂直に交わる平面上の核種の分布は 、その平面上において様々な方向から測定された同時計数線のデータから、2次元画像再 構成によって求められる。

【0004】

よって、初期のPET装置は、視野とする平面上に、視野を囲むように密に検出器をリ ング状に配置したシングルリング型検出器から構成されていた。その後、多数のシングル リング型検出器を体軸方向に密に配置したマルチリング型検出器の登場によって、2次元 の視野が3次元化された。更に1990年代に入ると、検出器リング間においても同時計 数測定を行うことによって、感度を大幅に高めた3DモードのPET装置の開発が盛んに 行われ、現代に至っている。

一方、PET診断等で発見された癌に対する治療の役割も重要である。外科手術や薬物 治療とは異なる方法として、X線やガンマ線などの放射線を患部に照射する放射線治療が ある。特に、重粒子線や陽子線を癌の部位に絞って照射する粒子線治療は、優れた治療効 果と鋭い患部集中照射特性を併せ持つ方法として、大きな注目を集めている。粒子線の照 射方法としては、患部に形状を合わせるようにして照射するビームを広げる従来のボーラ ス照射に加えて、ペンシルビームを患部形状などに合わせて走査させるスポットスキャニ ング照射が研究されている。いずれも、別途撮影したX線CT画像などに基づいて綿密に 計算された治療計画に従って、照射ビームの方向や線量を精密に制御して行う。 【0006】

治療計画に正確に従った治療を実現するためには、患者の位置決めの精度が鍵となる。 照射野の位置決めはX線画像に基づいて行われることが多いが、一般にX線画像では腫瘍 と正常組織のコントラストが十分ではなく、腫瘍そのものを認識した位置合わせは困難で ある。このような患者セットアップ時の照射野位置ずれに加え、治療計画作成時から腫瘍 30

の大きさが変化したり、呼吸などによって腫瘍位置が変動したりする問題も指摘されてい る。しかし現状は、治療計画通りの照射が行われたかどうかを正確に確認することは難し く、もし実際の照射野が治療計画からずれてしまったとしても、それを検知することは容 易ではない。

(4)

【0007】

上記の問題を解決するために、PETの方法を用いて、照射野をリアルタイムに画像化 する方法が注目されている。これは、PET薬剤を投与するのではなく、粒子線ビーム照 射やX線照射において、入射核破砕反応、標的核破砕反応や光核反応を通して生じる消滅 放射線をPETの原理を用いて画像化する方法である。消滅放射線の発生位置が、照射ビ ームの線量分布と強い相関性を持つため、治療モニターが可能であるとされる(W. Engha rdt、他、"Charged hadron tumour therapymonitoring by means of PET、" Nucl. Instrum. Methods A 525、 pp. 284 - 288、2004。S. Janek、他、"Development of dose delivery verification by PET imaging of photonuclear reactions following hig h energy photon therapy,"Phys. Med. Biol.誌、vol. 51 (2006) pp. 5769-5783)。 さらに重粒子線治療においては、¹²Cなど通常の安定核の代わりに、¹¹Cなど陽電子放出 核を直接照射することによって、消滅放射線の発生位置と線量分布のミスマッチをなくす と共にPET画像のS/N比を高めることが可能になる。

[0008]

照射野をリアルタイムに画像化するPET(以下、ビームオンラインPETと称する) のための装置要件は、以下の4点に集約される。

1.検出器が治療ビームを遮らないこと。

2.検出器が核破砕片(入射粒子と標的核との衝突で生じる荷電粒子や中性子)によって性能低下しないこと。

3. PET画像の高精度化および患者拘束時間の短縮化のために、短寿命RIを効率よ く計測できるよう、照射直後もしくは照射中からもPET計測が可能であること。 4. 照射野を 3 次元的に画像化できること。

[0009]

前記要件2については、核破砕片が検出器に入射すると、検出器を構成するシンチレー 夕自身が放射化してしまい、計測対象である消滅放射線を数え落としたり、位置情報に誤 差を与えたりする恐れがある。なお、核破砕片としては、重粒子線照射では荷電粒子と中 性子の両者が発生するが、陽子線照射では中性子が支配的になると考えられる。いずれも 、核破砕片は治療ビームに対し前方指向性を持って生成されるが、広い角度を伴うことが 報告されている(N. Matsufuji, et al., "Spatial fragmentation distribution from a therapeutic pencil-like carbon beam in water," Physics in Medicine and Biology 50 (2005) 3393-3403、S. Yonai, et al., "Measurement of neutron ambient dose equi valent in passive carbon-ion and proton radiotherapies," Medical Physics 35 (200 8) 4782-4792)。

[0010]

前記要件 3 については、放射線照射によって生成される核種の半減期は数十秒から 2 0 分程度と非常に短いことに加え、血流などの影響によって生体内で核種が移動してしまう ことから、照射中の即時 P E T 計測が求められる。

【 0 0 1 1 】

ドイツのGSI研究所及び国立がんセンター東病院では、平面型の2つのPET検出器 を治療装置のベッドを挟むように設置する対向ガンマカメラ型PET装置を用いて、ビー ムオンラインPETを試行している(P.Crespo、他、"On the detector arrange ment for in-beam PET for hadron therapy monitoring," Phys. Med. Bi ol.誌、vol.51(2006)pp.2143 - 2163、T.Nishio、他、"Dose-volume delivery gu ided proton therapy using beam ON-LINE PET system、"Med.Phys.誌、vol.33(200 6)pp.4190 - 4197)。この対向ガンマカメラ型装置は、ビーム経路から遠ざけて検出器 を配置できるため、要件1、2および3を満足する。しかし、計測できる同時計数線の方 10

50

向が大きく偏り画像再構成に必要な情報が欠損するため、検出器面に対して垂直方向の分 解能が著しく低下してしまい、要件 4 を満たすことはできない。 【 0 0 1 2 】

治療ビームの照射装置自体が患者の周囲を回転する回転型治療ガントリ上に、対向ガンマカメラ型 P E T を搭載する方法も提案されているが(特開 2 0 0 8 - 2 2 9 9 4、特開 2 0 0 8 - 1 7 3 2 9 9)、多方向から連続的にビーム照射するような希少例を除いて、対向ガンマカメラ型 P E T を回転できるのはビーム照射後となってしまい、要件 3 を満たすことはできない。

[0013]

10 治療ビームを通す隙間を有し、且つPET装置を回転させることなく3次元の画像化が 可能な方法として、出願人は、図1に示すように、患者8の体軸方向に2分割したマルチ リング型検出器22、24を離して配置し、物理的に開放された視野領域(開放視野とも 称する)を有する開放型PET装置を提案している(Taiga Yamaya,Taku Inaniwa , Shinichi Minohara, Eiji Yoshida, Naoko Inadama, Fumihiko Nishikido Lam and Hideo Murayama, "Aproposal of Shibuya, Chih Fung , Kengo an open PET geometry, "Phy. Med. Biol., 53, pp. 757-773, 2008.)。 開放視野は、分割された双方の検出器リング22、24間の同時計数線から、画像が再構 成される。図において、10はベッド、12はベッドの架台、26はガントリカバー、3 0 は照射ポートである。この開放型 P E T 装置は、要件 1 、 3 および 4 を満足するが、開 20 放視野の幅が十分でなければ、照射ポート30から開放視野に入射した治療ビーム32に よって生じる核破砕片34が開放視野両端の検出器に入射してしまう。よって、治療強度 が極端に強い場合、検出器が放射化してしまい、要件2を満たさなくなる恐れがある。 【発明の開示】

(0014**)**

本発明は、前記従来の問題点を解決するべくなされたもので、ビーム照射に伴って生じ る核破砕片の検出器への入射を低減して、照射直後あるいは照射中にも消滅放射線を計測 し、照射野を3次元的に画像化できるようにすることを課題とする。

【0015】

図 2 は、核破砕片 3 4 が検出器に入射する状況を図示したものである。 W c は、核破砕 片 3 4 の検出器への入射粒子数が許容値を超える範囲(以下、危険領域と称する)を示す ³⁰ 。検出器リング 2 0 の中心から見た見込み角を cとすると、 W c との関係は、

 $c = 2 \sin^{-1} (W c / (2 R))$

で表される。ここで、 R は検出器リング 2 0 の半径である。 図 2 は、体軸に垂直な平面を 図示しているが、体軸方向(Z 軸方向と称する)にも、 同様に見込み角 cをもって核破 砕片が散乱する。

[0016]

そこで本発明は、核破砕片を遮蔽する構造物(遮蔽体と称する)を、ビーム照射のオン オフに合わせて動作させ、ビーム照射中は、核破砕片の検出器への入射を低減するように する。

【0017】

ここで、遮蔽体の要件は以下の通りである。

1.照射中の画像化用計測を実現するために、遮蔽体がカバーする範囲は最小限に留め、少なくとも遮蔽されていない検出器で画像化用計測できるようにする。

2.さらに、遮蔽体の材質や厚みは、検出器の放射化を許容値以下に抑える一方で、 多少でも計測対象である消滅放射線が透過できるよう、最適化することが望ましい。

3.また、遮蔽体の材質や厚みは均一でもよいが、核破砕片の前方散乱性を考慮し、 散乱角が大きくなるに従って、遮蔽効果を低減させるような設計が好ましい。

4.遮蔽体の移動を高速化し、またメカニズムを簡略化するためには、遮蔽体が軽量 であることが重要である。上記で述べた遮蔽体のサイズや材質の最適化は、遮蔽体の軽量 化にもつながる。

50

【0018】

本発明は、上記の知見に基づいてなされたもので、放射線照射によって患部から生じる 放射線を測定し得るように検出器が配設され、該検出器の視野へ照射される放射線に同期 して照射後あるいは照射中に照射野の画像化を行う画像化装置を含む放射線治療・画像化 複合装置であって、放射線を被検体の該画像化装置の視野に位置する部位に向けて照射す る放射線治療装置と、前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片 の飛翔空間に設けた、該核破砕片の検出器への入射を緩和する遮蔽手段とを備えることに より前記課題を解決したものである。

(6)

[0019]

また、本発明は、被検体から生じる一対の消滅放射線を同時計数測定し得るように被検 ¹⁰ 体の周りに検出器群が配設され、該検出器群の視野へ照射される放射線に同期して照射後 あるいは照射中に被検体の断層撮影を行うPET装置を含む放射線治療・画像化複合装置 であって、放射線を被検体の該PET装置の視野に位置する部位に向けて照射する放射線 治療装置と、前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片の飛翔空 間に設けた、該核破砕片の検出器への入射を緩和する遮蔽手段と、を備えることにより前 記課題を解決したものである。

[0020]

ここで、検出器群を被検体軸周りにリング状に配設し、遮蔽手段を前記飛翔空間を出入 り可能で核破砕片の通過を緩和する遮蔽体と該遮蔽体の該出入りを制御する制御手段とで 構成し、放射線照射時に遮蔽体が前記飛翔空間にあり、破砕片の検出器への入力を緩和す 20 るようにすることができる。

また、前記遮蔽体が回転運動を行うようにすることができる。

[0022]

また、前記遮蔽体が往復運動を行うようにすることができる。

【0023】

また、放射線照射後、速やかに前記遮蔽体が退避するようにすることができる。

また、照射ポートの位置に応じて前記遮蔽体を回動するようにすることができる。

[0025]

また、前記遮蔽体およびその駆動部をベッドと一体化することができる。

【 0 0 2 6 】

また、前記遮蔽体の材質もしくは厚みを核破砕片の散乱角度に応じて変えるようにする ことができる。

【0027】

また、本発明は、放射線照射によって患部から生じる放射線を測定し得るように検出器 が配設され、該検出器の視野へ照射される放射線に同期して照射後あるいは照射中に照射 野の画像化を行う画像化装置を含む放射線治療・画像化複合装置の制御プログラムであっ て、前記放射線照射により被検体から照射方向前方へ飛翔する核破砕片の検出器への入射 を緩和するように、該核破砕片の飛翔空間に設けた遮蔽手段を制御することを特徴とする 検出器回動型放射線治療・画像化複合装置の制御プログラムを提供するものである。 【0028】

また、本発明は、被検体から生じる一対の消滅放射線を同時計数測定し得るように被検 体の周りに検出器群が配設され、該検出器群の視野へ照射される放射線に同期して照射後 あるいは照射中に被検体の断層撮影を行うPET装置を含む検出器回動型放射線治療・画 像化複合装置の制御プログラムであって、前記放射線照射により被検体から照射方向前方 へ飛翔する核破砕片の検出器への入射を緩和するように、該核破砕片の飛翔空間に設けた 遮蔽手段を制御することを特徴とする検出器回動型放射線治療・画像化複合装置の制御プ ログラムを提供するものである。

【0029】

30

本願発明によれば、X線や粒子線を患部に照射して行う放射線治療において、放射線照 射によって照射野から生じる消滅放射線を検出するためのモニタリングに際して、ビーム 照射に伴って生じる核破砕片の検出器への入射を低減して、照射直後あるいは照射中にも 消滅放射線を計測し、照射野を3次元的に画像化できる。 【図面の簡単な説明】 [0030]【図1】出願人が提案した開放型PET装置を示す正面図及び側面図 【図2】従来の問題点を示す側面図 【図3】本発明の第1実施形態を示す側面図及び正面図 10 【図4】第1実施形態でビーム照射と遮蔽体の出し入れを同期させる構成を示すブロック 义 【図5】本発明によるビーム照射に同期した遮蔽体動作の代表的な手順を示すフローチャ - h 【図 6 】第 1 実施形態でビーム照射のオンオフと遮蔽体動作を同期させる様子を示すタイ ムチャート 【図7】本発明の第2実施形態を示す側面図 【図8】第2実施形態でビーム照射と遮蔽体の出し入れを同期させる構成を示すブロック 义 【図9】第2 実施形態の一例の手順を示すフローチャート 20 【図10】第2実施形態の他の例の手順を示すフローチャート 【 図 1 1 】 第 2 実 施 形 態 で ビーム 照 射 の オン オ フ と 遮 蔽 体 動 作 を 同 期 さ せ る 様 子 を 示 す タ イムチャート 【図12】本発明の第3実施形態を示す側面図 【図13】第3実施形態でビーム照射のオンオフと遮蔽体動作を同期させる様子を示すタ イムチャート 【図14】 PET検出器リングを斜めに配置した例を示す平面図 【図15】水平・垂直の2つの照射ポートに対応した例を示す側面図及び正面図 【図16】同じく動作を示す図 【図 1 7 】水平・垂直の 2 つの照射ポートに対応したもう一つの例を示す側面図及び正面 30 汊 【図18】同じく動作を示す図 【 図 1 9 】 回 転 照 射 ガン ト リ に 対 応 し た 例 を 示 す 側 面 図 及 び 正 面 図 【図 2 0 】 同じく動作を示す図 【 図 2 1 】 遮 蔽 体 を ベ ッ ド に 内 蔵 し た 例 を 示 す 側 面 図 及 び 正 面 図 【図22】同じく動作を示す図 【図 2 3 】円弧型のエンドシールドを遮蔽体として設置した例を示す側面図及び正面図 【図24】同じく動作を示す図 【図25】遮蔽体回転型の一例を示す側面図及び正面図 【図26】同じく他の例を示す側面図及び正面図 40 【発明を実施するための最良の形態】 [0031]以下、図面を参照して本発明の実施形態を詳細に説明する。 [0032]本発明の第1実施形態は、図3に示す如く、照射直後に遮蔽体40を退避させて、全て の検出器で高感度にPET計測ができるようにした遮蔽体退避型の典型例である。遮蔽体 40の形状や、格納方法については、後述する実施例に例示するとおり、様々なパターン が在りえる。また、図3では垂直照射1門の例を図示しているが、水平・垂直の2門照射 や、照射ポートが回転する回転ガントリの照射システムにも適用できる。 [0033]図4は、ビーム照射と遮蔽体40の出し入れを同期させる仕組みを図示したものである 50

(7)

。治療ビーム32の照射タイミングは、加速器制御システム52によって制御される。遮 蔽体制御システム60は、加速器制御システム52から受け取る照射情報に従って、遮蔽 体40を出し入れする制御を行う。遮蔽体制御システム60は、現在の遮蔽体40の位置 情報を加速器制御システム52に送る機能も持つ。図において、54はシンクロトロンで ある。

(8)

【0034】

検出器、例えばPET検出器で検出された消滅放射線のシングルイベントデータは、同時計数回路44にて同時計数線を特定するコインシデンスデータに変換され、データ収集システム46に順次保存される。そして、一定時間の計測データを蓄積した後、画像再構成システム48にて画像再構成演算を行い、表示・保存システム50に照射野の画像を表示したり保存したりする。計測データを蓄積する時間幅を時間フレームと呼ぶ。基本的に、PET計測データの処理系は、加速器制御システム52や遮蔽体制御システム60と関わることなく、計測データの処理や収集を続けていてよいが、コインシデンスデータに遮蔽体位置信号を含めるなどして、画像再構成の際に、データの取捨選択や感度補正が正しくできるようにする必要がある。

【0035】

図5は、ビーム照射に同期した遮蔽体動作の代表的な手順を示したものである。遮蔽体 制御システム60は、照射準備命令を取得する(ステップ100)と、遮蔽体40を既定 の遮蔽位置に移動させ(ステップ102)、加速器制御システム52は、遮蔽体設置完了 の情報を取得する(ステップ104)と、照射を開始する(ステップ106)。遮蔽体制 御システム60は、照射終了の情報を取得する(ステップ108)と、直ちに遮蔽体40 の退避を行う(ステップ110)。照射を分割して行う場合は、一連の照射が終了して治 療が終了するまで(ステップ112)、上記で述べた遮蔽体設置 照射 遮蔽体退避を繰 り返す。

[0036]

図6は、照射のオンオフと遮蔽体動作を同調させる様子を示す。照射オンの間は遮蔽体が既定位置に設置されていなくてはならない。 PET計測自体は、照射や遮蔽体の動作とは独立して、常に計測を続けていてよいが、照射中、すなわち遮蔽体が一部検出器を覆っている場合は、その検出器の感度が大幅に低下してしまうため、照射中の計測データは同時計数線が限定される部分データとなる。よって、照射終了後は、できるだけ即時に遮蔽体を退避させて、同時計数線の欠損がない完全データを多く取得することが望ましい。 【0037】

PET計測は、常にコインシデンスデータを収集しつづけ、後から指定した時間フレーム分のデータを取り出して画像再構成する。あるいは、先に時間フレームを指定し、指定した時間フレーム分のみ、PET計測するようにしてもよい。同時計数線の欠損や消滅放射線の計測カウント数低下によって画像が劣化する場合は、時間フレームを長く設定して、計測データのSN比を高めればよい。なお、照射中に照射野からは、消滅放射線のほかに、即発性のガンマ線が放出されることが知られており、PET計測にとってはノイズ成分となる偶発同時計数を高めてしまう。この対策法としては、照射中にもマイクロ秒オーダーのオン / オフ周期性があることに着眼して、オン状態における計測データは除外し、オフ状態における計測データのみを画像再構成に利用する方法が提案されている(P. Crespo, et al., "Suppression of random coincidences during in-beam PET measurements at ion beam radiotherapy facilities," IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST 2005)。あるいは、照射中の画像化は行わずに、照射直後の画像化のみに限定することも可能である。

[0038]

粒子線の照射方法としては、患部に形状を合わせるようにビームを広げて照射する従来 のボーラス照射に加えて、ペンシルビームを患部形状などに合わせて走査させるスポット スキャニング照射が研究されているが、本発明は、どちらの照射方式にも対応できる。シ ンクロトロンは、ビーム照射のオンオフが周期的に繰り返される間欠運転が基本となる。 10

よって、遮蔽体の出し入れは、照射周期に合わせてもよいし、一連の照射が終了した段階 で遮蔽体を格納してもよい。後者は、スポットスキャニング照射において計画されている 、周期的な照射ではなく、シンクロトロンから連続的にビームを取り出すケースにも対応 する。

(9)

【0039】

図7に、遮蔽体を退避させるのではなく、検出器リングに沿って円弧状の遮蔽体40を 回転させた第二実施形態(遮蔽体回転型)を示す。これは、ビーム照射のオンオフが周期 的に繰り返される周期照射に限定した方法であり、ビーム照射と遮蔽体回転を同期させる ことによって、検出器への核破砕片の入射を低減することができる。短い照射周期に遮蔽 体の出し入れを合わせて行う場合、遮蔽体回転型のほうが、遮蔽体退避型よりも、機械的 な負担を小さく出来る。

[0040]

具体的には、一対の遮蔽体が患者の体軸である Z 軸に対して対向するように配置され、 照射ポート30とは独立して、 Z 軸を中心にして回転する機構を持つ。検出器リングは開 放空間を隔てて Z 方向に2本存在するため、一対の遮蔽体40も2組存在し、同じ回転周 期・位相で回転する。 Z 軸から見て、各々の遮蔽体40の見込み角を s とすると、遮蔽 体で覆われていない検出器に対する見込み角 dは、 d = 180°- s で表される。 【0041】

図8は、ビーム照射と遮蔽体40の回転を同期させる仕組みを図示したものである。治療ビーム32の照射周期は、加速器制御システム52によって制御される。遮蔽体制御システム60は、加速器制御システム52から受け取る同期信号に遮蔽体回転が同調するように、モーター制御装置62に回転制御信号を送る。遮蔽体40の位置や回転速度に関する情報は、回転センサー64から遮蔽体制御システム60に逐一送信される。PET計測のデータの流れは、図4と同様である。

【0042】

図9は、遮蔽体回転に同期したビーム照射の代表的な手順を示したものである。遮蔽体 制御システム60は、照射準備命令を取得する(ステップ100)と、シンクロトロンの 運転周期と遮蔽体回転が同調するように調整を行う(ステップ202)。そして、照射と 遮蔽体回転の同期が成立する(ステップ204)と、危険領域に位置する検出器の全てが 遮蔽体40に覆われている時のみに照射を行う回転同期照射(ステップ206)を繰り返 す。

【0043】

図9は、照射・回転同期が安定して成立しているという前提において、回転同期照射は 加速器制御システム52が制御するフローを示したが、例えば遮蔽体回転が安定しない場 合などは、図10に示すように、遮蔽体制御システム60が、遮蔽体位置を確認して照射 タイミング情報を加速器制御システム52に送り(ステップ208)、照射(ステップ2 10)するようにしてもよい。

[0044]

図11は、ビーム照射と遮蔽体回転を同期させて、検出器に核破砕片が入射するのを低減する様子を図示したものである。危険領域に位置する検出器の全てが遮蔽体に覆われている時のみ治療ビーム照射を行うようにする。治療ビームは、ti秒の照射のあとts秒休止する、T=ti+ts秒周期で運転されているとする。遮蔽体40は、2T秒で一回転するとする。このとき、遮蔽体サイズに関わるパラメータである dの条件について、以下に述べる。まず、 dの下限値は、遮蔽体軌道半径をR'、PET視野半径をrとすると、

d 2 sin⁻¹ (r / R ')

となる。一方、 dの上限値は、

d ts / T x 180° - 0

となる。 sは、 s = 1 8 0 ° - dである。なお、遮蔽体回転型では、照射のオンオフに寄らず、常に遮蔽体が検出器を覆うため、取得できる同時計数線は常に限定されてしまう。画像再構成には、さまざまな角度からの同時計数線が必要であるため、画像化でき

10

20

る時間フレームの最小値は、遮蔽体の180度回転に相当するT秒の照射クロックとなる

(10)

【0045】

放射線医学総合研究所の重粒子線がん治療装置(HIMAC)では、T=3.3秒周期 で治療ビーム制御を行っている。ここでは、HIMACへの適用を前提として、本発明の 説明を行う。遮蔽体軌道半径R'=50cm、PET視野半径r=20cmとすると、 dの下限値は d 47.2°である。次に、照射時間tiおよび危険領域幅Wcを変化 させた場合の、 dの上限値を表1に示す。ts=3.3-tiである。なお、上限値が 下限値を下回る場合は、装置として成立しない(表中、不可と表示)。現実的には、PE T装置感度を高めるために、最大の d(すなわち最小の s)を採用することが望まし い。

[0046]

【表1】

	Wc=20cm	Wc=30cm	Wc=40cm	Wc=50cm	Wc=60cm
ti=0.5秒	129. 7°	117.8°	105.6°	92. 7°	79. 0°
ti=1.0秒	102. 4°	90. 5°	78. 3°	65. 5°	51. 7°
ti=1.5秒	75. 1°	63. 3°	51. 0°	不可	不可
ti=2.0秒	47.8°	不可	不可	不可	不可

20

10

[0047**]**

本例は、照射ポートが1つの場合であったが、本発明は、例えば垂直方向と水平方向な ど、複数の照射ポートを持つ場合にも対応できる。通常、複数照射ポートから同時に治療 ビーム照射を行うことはない。よって、ビーム照射を行うポートの移動に合わせて、遮蔽 体回転の位相またはビーム照射の位相を相対的に変化させればよい。回転型照射ガントリ の場合でも、同様である。

[0048]

図12に、遮蔽体回転型において、対ではなく単独の遮蔽体を回転させる第3実施形態 30 を示す。開放空間を隔てたZ軸方向に2本の検出器リングにおいて、それぞれの遮蔽体4 0は、同じ回転周期・位相で制御される。同じく、 sは遮蔽体40の見込み角であるが 、遮蔽体40で覆われていない検出器に対する見込み角は、 d+180°である。 【0049】

図13は、ビーム照射と遮蔽体回転を同期させて、検出器に核破砕片が入射するのを低減する様子を図示したものである。同じく、治療ビームは、ti秒の照射のあとts秒休止する、T = t i + t s 秒周期で運転されているとし、危険領域に位置する検出器の全てが遮蔽体に覆われている時のみ治療ビーム照射を行うようにするが、遮蔽体はT秒で一回転する必要がある。まず、 s の上限値は、遮蔽体軌道半径をR'、 P E T 視野半径をr とすると、

s 2 cos⁻¹ (r / R ')

となる。一方、 sの下限値は、

s ti/T×360°+ c

となる。

【 0 0 5 0 】

同じく、HIMACへの適用を前提として、 sの検討を行う。遮蔽体軌道半径R'= 50cm、PET視野半径r=20cmとすると、 sの上限は s 132.8°であ る。次に、照射時間tiおよび危険領域幅Wcを変化させた場合の、 sの下限値を表2 に示す。ts=3.3-tiである。なお、上限値が下限値を下回る場合は、装置として 成立しない(表中、不可と表示)。現実的には、PET装置感度を高めるために、最小の

sを採用することが望ましい。表1のケースと比較して、ビーム照射周期Tが同じ場合、遮蔽体の回転速度が2倍になるため、より短い照射時間tiが求められる。

【0051】

【表2】

	Wc=20cm	Wc=30cm	Wc=40cm	Wc=50cm	Wc=60cm
ti=0.5秒	77.6°	89. 5°	101. 7°	114. 5°	128. 3°
ti=1.0秒	132. 2°	不可	不可	不可	不可
ti=1.5秒	不可	不可	不可	不可	不可
ti=2.0秒	不可	不可	不可	不可	不可

【0052】

なお、本発明(遮蔽体退避型および遮蔽体回転型)は、開放型PET装置以外にも適用 することができる。図14は、通常のPET装置を斜めに配置した先行例である(P.C respo、他、"On the detector arrangement for in-beam PET for hadron therapy monitoring,"Phys. Med. Biol.誌、vol.51(2006)pp.2143 - 2163) 。ビーム照射経路は確保されているが、図に示すように核破砕片34が検出器に入射して しまう。これに対して、少なくとも照射中は、核破砕片が入射する位置に遮蔽体を設置す れば、検出器への核破砕片入射を低減できる。遮蔽体は、ビームのオンオフに合わせて、 退避するようにしてもよいし、ビームオンオフが周期的に繰り返される場合は、遮蔽体を 検出器リング内で回転させるようにしてもよい。

【0053】

また、画像化装置は必ずしもPET装置である必要はなく、ガンマカメラによるSPE CT装置などでもよい。その場合、消滅放射線の他、即発性のガンマ線も信号として計測 することが可能になると考えられる。

【実施例】

【0054】

以下、具体的な実施例について述べる。図15および図16は、水平・垂直の2つの照 射ポート30、31に対応した、遮蔽体退避型の一例である。遮蔽体40は、核破砕片3 4の散乱角に応じて厚みが変わるようにしてある。各々の検出器リングに、それぞれ一つ ずつ回転方向レール70上に乗った遮蔽体40が内蔵されている。図は、垂直照射時の遮 蔽体位置を表しているが、水平照射時は、遮蔽体が90°回転する構造になっている。一 方、遮蔽体40は、回転方向レール70ごと、Z方向にもスライドする機構になっており 、照射オン オフに合わせて、遮蔽体40の格納を行う。図において、72はレールガイ ド、74はモータ、76はワイヤ、78はプーリ、80は治療室の床面に設置されるレー ル、82は台車である。なお、照射ポートが1箇所のみに固定されている場合は、遮蔽体 の回転機構は不要である。

【0055】

図17 および図18は、同じく水平・垂直の2つの照射ポート30、31に対応した、 遮蔽体退避型のもう一つの例であるが、各々の検出器リングに、それぞれ2つずつ遮蔽体 40を内蔵することで、遮蔽体40の回転機構を省いて簡略化した構成となっている。図 において、84はZ軸方向レールである。この構成においても、照射ポートが1箇所のみ に固定されている場合は、遮蔽体は各々の検出器リングにおいて1つずつでよい。 【0056】

図19、図20は、回転照射ガントリに対応した構成であり、各々の検出器リングにそれぞれ一つ遮蔽体40が内蔵されている。遮蔽体40は、回転レール70上で360°回転でき、また回転レール70内でZ方向にもスライドする。照射ポート30の移動に合わせて、対向側に遮蔽体40を移動すると共に、照射のオン オフに合わせて、遮蔽体40

を退避する。図において86はベルトである。 【0057】

図21、図22は、遮蔽体40をガントリに内蔵する代わりに、ベッド10に内蔵した 構成である。遮蔽体を照射野近傍に設置できるため、遮蔽体を小型化、軽量化できるメリ ットがある。遮蔽体40は、垂直照射用と、水平照射用に別れており、それぞれZ方向に スライドする機構を持つ。この構成においても、照射ポートが1箇所のみに固定されてい る場合は、遮蔽体の数を省いてよい。

【0058】

図23、図24は、遮蔽体をZ軸に平行に配置するのではなく、円弧型のエンドシール ド41を遮蔽体として設置した構成を示す。図23は、垂直照射における遮蔽体41の位 置を示している。遮蔽体41は、矢印Bの方向に回動できるようになっており、水平照射 の場合は、照射ポート31に対向する位置41Aに移動する。この例では、検出器の前面 に、複雑な機械装置を設置する必要がないため、消滅放射線の検出感度が高まるほか、患 者ポートを広く設計することも可能になる。レール87上を重力方向に沿って退避するた め、照射後に迅速に遮蔽体を除去できる。図において、88はおもり、90はフックであ る。

[0059]

図25、図26は、遮蔽体回転型で、それぞれ各々の検出器リングにおいて、遮蔽体40が1つ(図25)又は2つ(図26)の例の構成を示す。図25の例では、遮蔽体40に対向する位置に円弧状のおもり88が設けられている。図において、92はボールベアリングである。

20

10

【産業上の利用の可能性】

[0060]

X線や粒子線を患部に照射して行う放射線治療において、放射線照射によって照射野から生じる消滅放射線を検出するためのモニタリングに際して、ビーム照射に伴って生じる 核破砕片の検出器への入射を低減して、照射直後あるいは照射中にも消滅放射線を計測し 、照射野を3次元的に画像化できる。

【図3】

【図5】

【図7】

【図8】

【図9】

【図12】

【図13】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図25】

【図26】

	INTERNATIONAL SEARCH REPORT		cation No.		
			PCT/JP2	009/055702	
A. CLASSIFIC A61N5/10(ATION OF SUBJECT MATTER 2006.01)i				
According to Inte	ernational Patent Classification (IPC) or to both nationa	al classification and II	°C		
B. FIELDS SE	ARCHED				
Minimum docun A61N5/10,	nentation searched (classification system followed by cl G21F1/08	assification symbols)			
Documentation s Jitsuyo Kokai J	searched other than minimum documentation to the exta Shinan Koho 1922-1996 Ji itsuyo Shinan Koho 1971-2009 To	ent that such documer tsuyo Shinan T roku Jitsuyo S	nts are included in f Toroku Koho Shinan Koho	he fields searched 1996-2009 1994-2009	
Electronic data t JSTPlus	oase consulted during the international search (name of s (JDreamII), JMEDPlus (JDreamII	data base and, where)	practicable, search	terms used)	
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relev	ant passages	Relevant to claim No.	
Y A	WO 2008/129666 Al (National Radiological Sciences), 30 October, 2008 (30.10.08), Par. Nos. [0041] to [0086]; 1 (Family: none)	Institute o: Fig. 25	E	1-5,7-11 6	
Y	JP 2006-329915 A (Akita Univ 07 December, 2006 (07.12.06) Par. No. [0005] (Family: none)	versity et a ,	1.),	1-5,7-11	
A	JP 2008-173299 A (President Cancer Center et al.), 31 July, 2008 (31.07.08), Full text; all drawings (Family: none)	of National		1-11	
× Further do	cuments are listed in the continuation of Box C.	See patent far	nily annex.		
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date or prior date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to involve an invent date. "T" later document published after the international filing date or prior date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an invent state with the document is taken alone. 			national filing date or priority ion but cited to understand vention aimed invention cannot be red to involve an inventive		
 abcurnent of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art "O" document published prior to the international filing date but later than the priority date claimed "Y" document member of the same patent family 					
Date of the actual completion of the international search 30 April, 2009 (30.04.09)Date of mailing of the international search report 19 May, 2009 (19.05.09)					
Name and mailin Japanes	ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No. Form PCT/ISA/21	0 (second sheet) (April 2007)	Telephone No.			

INTERNATIONAL SEARCH REPORT	international app	dication No.			
		2009/055702			
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where appropriate, of the rel-	evant passages	Relevant to claim No.			
A JP 2008-022994 A (Japan Atomic Energy 2 07 February, 2008 (07.02.08), Full text; all drawings (Family: none)	Agency),	1-11			
<pre>(Family: none) A JP 09-189769 A (Mitsubishi Electric Co. 22 July, 1997 (22.07.97), Full text; all drawings (Family: none)</pre>	rp.),	1-11			

Form PCT/ISA/210 (continuation of second sheet) (April 2007)

国際調査報告 国際出願番号 PCT/JP2009/05570					
A. 発明の届 Int.Cl. A	属する分野の分類(国際特許分類(IPC)) 51N5/10(2006.01)i				
B. 調査を行	すった分野				
調査を行った最 Int.Cl. Ad	表小限資料(国際特許分類(IPC)) 61N5/10, G21F1/08				
最小限資料以外 日本国実用 日本国公開 日本国実用 日本国実用 日本国登録	トの資料で調査を行った分野に含まれるもの 新案公報 1922-1996年 実用新案公報 1971-2009年 新案登録公報 1996-2009年 実用新案公報 1994-2009年				
国際調査で使用 JSTPlus (JD	目した電子データベース(データベースの名称、 breamII), JMEDPlus(JDreamII)	調査に使用した用語)			
C. 関連する	と認められる文献				
引用文献の カテゴリー *	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求項の番号		
Y A	W0 2008/129666 A1 (独立行政法人放射線医学総合研究所)1-5, 7-112008.10.30,段落[0041]-[0086],図 25 (ファミリーなし)6				
Y	JP 2006-329915 A (国立大学法人秋田大学、外2) 2006.12.07,段 1-5,7-11 落[0005] (ファミリーなし)				
А	JP 2008-173299 A(国立がんセンタ 文、全図(ファミリーなし)	一総長、外1)2008.07.31, 全	1-11		
☑ C欄の続き	きにも文献が列挙されている。	🎦 パテントファミリーに関する別	紙を参照。		
 * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術木準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 					
国際調査を完了した日 国際調査報告の発送日 30.04.2009 19.05.2009					
国際調査機関の 日本国 日本国 東京都	D名称及びあて先 国特許庁(ISA/JP) ^郎 便番号100-8915 郡千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 武山 敦史 電話番号 03-3581-1101 5	31 3619		
泉泉御千秋田区葭が殿二」日4番3万 电胎留安 03-3581-1101 内禄 3340					

様式PCT/ISA/210 (第2ページ) (2007年4月)

	国際調査報告	国際出願番号 PCT/JP20	09/055702
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求項の番号
A	JP 2008-022994 A (独立行政法人 日本) 2008.02.07,全文、全図(ファミリーな	原子力研究開発機構) し)	1-11
Α	JP 09-189769 A(三菱電機株式会社)199 ァミリーなし)	7.07.22, 全文、全図(フ	1-11

フロントページの続き

(72)発明者 錦戸 文彦
 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内
 (72)発明者 村山 秀雄

千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内

F ターム(参考) 2G088 EE01 JJ02 JJ29 JJ35 KK15 KK35 LL11

4C082 AC02 AC04 AC05 AC07 AE02 AG22 AJ06 AJ13 AJ14 AP01

AP12 AT03

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に 係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法 第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。