(19) 日本国特許庁(JP)

再公表特許(A1)

(11)国際公開番号 WO2010/013345

発行日 平成24年1月5日 (2012.1.5)

(43) 国際公開日 平成22年2月4日(2010.2.4)

(51) Int.Cl.			FΙ			テーマコード (参考)
G01T	1/161	(2006.01)	GO1T	1/161	А	2G088
A61N	5/10	(2006.01)	A 6 1 N	5/10	Q	4C082

審査請求 未請求 予備審査請求 未請求 (全 23 頁)

出願番号	特願2010-522574 (P2010-522574)	 (71)出願人	301032942
(21) 国際出願番号	PCT/JP2008/063861	() · · · · · · ·	独立行政法人放射線医学総合研究所
(22) 国際出願日	平成20年8月1日 (2008.8.1)		千葉県千葉市稲毛区穴川四丁目9番1号
(81)指定国	AP (BW, GH, GM, KE, LS, MW, MZ, NA, SD,	(74)代理人	100080458
$\mathrm{SL},\mathrm{SZ},\mathrm{TZ},\mathrm{UG},\mathrm{ZM},\mathrm{ZW})$,	EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),		弁理士 高矢 諭
EP (AT, BE, BG, CH, CY, C	Z, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU	(74)代理人	100076129
, IE, IS, IT, LT, LU, LV,	MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, T		弁理士 松山 圭佑
R), OA (BF, BJ, CF, CG, C	CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD	(74)代理人	100089015
, TG), AE, AG, AL, AM, AO	, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY,		弁理士 牧野 剛博
BZ, CA, CH, CN, CO, CR, C	CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES	(72)発明者	山谷泰賀
, FI, GB, GD, GE, GH, GM,	GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, K		千葉県千葉市稲毛区穴川四丁目9番1号
G, KM, KN, KP, KR, KZ, LA	LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,		独立行政法人放射線医学総合研究所内
MG, MK, MN, MW, MX, MY, M	Z, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT	(72)発明者	村山秀雄
, RO, RS, RU, SC, SD, SE,	SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, T		千葉県千葉市稲毛区穴川四丁目9番1号
R, TT, TZ, UA, UG, US, UZ	Z, VC, VN, ZA, ZM, ZW		独立行政法人放射線医学総合研究所内
			最終頁に続く

(54) 【発明の名称】検出器シフト型放射線治療・PET複合装置

(57)【要約】

X線、ガンマ線や粒子線を患部に照射して行う放射線 がん治療において、放射線照射によって生じる消滅放射 線を検出するためのビームモニタリングに際して、シフ ト可能な、マルチリングでなる複数の検出器リングを含 む開放型PET装置と、前記検出器リングの間から放射 線ビームを照射可能な放射線照射装置とを備えた検出器 シフト型放射線治療・PET複合装置により、前記検出 器リングの位置を変えて、検出器リングの間から放射線 ビームを照射した後、放射線計測を行なう。

【特許請求の範囲】

【請求項1】

複数の検出器リングが体軸方向に互いに対向するように配列されその貫通内部で放射線 計測する開放型 PET装置と、

(2)

互いに隣接する前記検出器リング間の空間から放射線照射し該空間の前記内部に照射野 を形成可能な放射線照射装置とを備え、

前記空間を形成する二つの空間形成検出器リングの少なくとも一方が可動検出器リング で、該可動検出器リングは、放射線照射中は照射野から離れた照射による損傷を避ける待 避位置にあり、照射後に待避位置より照射野側で移動しながら放射線計測することを特徴 とする検出器シフト型放射線治療・PET複合装置。

【請求項2】

前記可動検出器リングの前記待避位置は、放射線照射中に照射による損傷を避ける照射 野寄りの限界位置である安全限界位置から所定距離安全側にあり、放射線照射停止時間か ら逆算して照射中に待避位置から照射野方向に移動開始し、照射終了後に安全限界位置を 超えることを特徴とする請求項1に記載の検出器シフト型放射線治療・PET複合装置。 【請求項3】

照射野を多層域に分割し、層間を順次移動し層毎にスポットビームを走査照射する照射 方法において、照射の層移動を追跡するようにして検出器リングを移動させながら放射線 計測を行うことを特徴とする請求項1又は2に記載の検出器シフト型放射線治療・PET 複合装置。

【請求項4】

ー連の照射が終了した後に、照射から一定の時間差を置いて、照射の層移動を追跡する ようにして検出器リングを移動させながら放射線計測を行うことを特徴とする請求項3に 記載の検出器シフト型放射線治療・PET複合装置。

【請求項5】

放射線照射が層移動する間に一旦照射を止め前記放射線計測を行うことを特徴とする請 求項3又は4に記載の検出器シフト型放射線治療・PET複合装置。

【請求項6】

前記可動検出器リングの移動方向が体軸方向であることを特徴とする請求項1乃至5の いずれかに記載の検出器シフト型放射線治療・PET複合装置。

【請求項7】

前記可動検出器リングの移動方向が、体軸方向に垂直な面に沿う方向であるであること を特徴とする請求項1乃至5のいずれかに記載の検出器シフト型放射線治療・PET複合 装置。

【請求項8】

前記可動検出器リングの移動方向が放射線の照射軸方向であることを特徴とする請求項 7に記載の検出器シフト型放射線治療・PET複合装置。

【請求項9】

前記放射線を呼吸サイクルと同期して照射する呼吸同期照射において、放射線照射の合間に合わせて前記放射線計測を行うことを特徴とする請求項1乃至8のいずれかに記載の 検出器シフト型放射線治療・PET複合装置。

【請求項10】

ー呼吸サイクル内の安定域で前記放射線照射を行い、放射線照射を行えない不安定域で 放射線計測を行うことを特徴とする請求項9に記載の検出器シフト型放射線治療・PET 複合装置。

【請求項11】

放射線の照射位置を設定する照射位置設定手段と、前記放射線の照射位置に照射ビーム を照射させる放射線照射手段と、可動検出器リング位置を設定する位置設定手段と、可動 検出器リングを位置設定手段が設定した設定位置に移動させる移動手段と、を備え、 放射線照射手段の照射タイミング情報を基に位置設定手段が可動検出器リングの位置を

20

10

(3)

設 定 す る こ と を 特 徴 と す る 請 求 項 1 及 至 1 0 の い ず れ か に 記 載 の 検 出 器 シ フ ト 型 放 射 線 治 療・PET複合装置。

【発明の詳細な説明】

【技術分野】

[0001]

本 発 明 は 、 X 線 や 粒 子 線 を 患 部 に 照 射 し て 行 う 放 射 線 が ん 治 療 に お い て 、 放 射 線 (ビー ムともいう)照射によって生じる消滅放射線を検出するためのモニタリングに際して、特 に、ビーム照射中は照射野から検出器を遠ざけるにもかかわらず、短寿命の核種から生じ る放射線を効率よく計測することが可能な検出器シフト型放射線治療・PET複合装置に 関する。

【背景技術】

[0002]

癌の早期診断に有効と注目されている陽電子放射断層撮像法(PET)は、極微量の陽 電子放出核種で標識した化合物を投与し、体内から放出される消滅放射線を検出すること で、糖代謝等、代謝機能を画像化し、病気の有無や程度を調べる検査法であり、これを実 施するためのPET装置が実用化されている。

 $\begin{bmatrix} 0 & 0 & 0 & 3 \end{bmatrix}$

PETの原理は次のとおりである。陽電子崩壊によって陽電子放出核種から放出された 陽 電 子 が 周 囲 の 電 子 と 対 消 滅 し 、 そ れ に よ っ て 生 じ る 一 対 の 5 1 1 k e V の 消 滅 放 射 線 を 、対の放射線検出器で同時計数の原理によって測定する。これにより、核種の存在位置を 対の検出器同士を結ぶ1本の線分(同時計数線)上に特定することができる。患者の頭 から足の方向に向かう軸を体軸と定義すると、体軸と垂直に交わる平面上の核種の分布は 、その平面上において様々な方向から測定された同時計数線のデータから、2次元画像再 構成によって求められる。

[0004]

よって、初期のPET装置は、視野とする平面上に、視野を囲むように密に検出器をリ ング状に配置したシングルリング型検出器から構成されていた。その後、多数のシングル リング型検出器を体軸方向に密に配置したマルチリング型検出器の登場によって、2次元 の 視 野 が 3 次 元 化 さ れ た 。 更 に 1 9 9 0 年 代 に 入 る と 、 検 出 器 リ ン グ 間 に お い て も 同 時 計 数測定を行うことによって、感度を大幅に高めた3DモードのPET装置の開発が盛んに 行われ、現代に至っている。

[0005]

一方、PET診断等で発見された癌に対する治療の役割も重要である。外科手術や薬物 治 療 と は 異 な る 方 法 と し て 、 X 線 や ガ ン マ 線 な ど の 放 射 線 を 患 部 に 照 射 す る 放 射 線 治 療 が ある。特に、重粒子線や陽子線を癌の部位に絞って照射する粒子線治療は、優れた治療効 果と鋭い患部集中照射特性を併せ持つ方法として、大きな注目を集めている。粒子線の照 射方法としては、患部に形状を合わせるようにして照射するビームを広げる従来のボーラ ス照射に加えて、ペンシルビームを患部形状などに合わせて走査させるスポットスキャニ ング照射が研究されている。いずれも、別途撮影したX線CT画像などに基づいて綿密に 計算された治療計画に従って、照射ビームの方向や線量を精密に制御して行う。

[0006]

治療計画に正確に従った治療を実現するためには、患者の位置決めの精度が鍵となる。 照 射 野 の 位 置 決 め は X 線 画 像 に 基 づ い て 行 わ れ る こ と が 多 い が 、 一 般 に X 線 画 像 で は 腫 瘍 と 正常組織のコントラストが十分ではなく、腫瘍そのものを認識した位置あわせは困難であ る。このような患者セットアップ時の照射野位置ずれに加え、治療計画作成時から腫瘍の 大きさが変化したり、呼吸などによって腫瘍位置が変動したりする問題も指摘されている 。しかし現状は、治療計画通りの照射が行われたかどうかを正確に確認することは難しく もし実際の照射野が治療計画からずれてしまったとしても、それを検知することは容易 ではない。

[0007]

50

10

20

30

上記の問題を解決するために、PETの方法を用いて、照射野をリアルタイムに画像化 する方法が注目されている。これは、PET薬剤を投与するのではなく、粒子線ビーム照 射やX線照射において、入射核破砕反応、標的核破砕反応や光核反応を通して生じる消滅 放射線をPETの原理を用いて画像化する方法である。消滅放射線の発生位置が、照射ビ ームの線量分布と強い相関性を持つため、治療モニターが可能であるとされる(W. Engha rdt、他、"Charged hadron tumour therapymonitoring by means of PET、" Nucl. Instrum. Methods A 525、 pp. 284 - 288、2004。S. Janek、他、"Development of dose delivery verification by PET imaging of photonuclear reactions following hig h energy photon therapy, "Phys. Med. Biol.誌、vol. 51 (2006) pp. 5769-5783)。

(4)

通常のPET装置ではリング状に検出器を配置するが、治療装置に併せて設置するため には、治療ビームを遮ることのないように、検出器を配置する必要がある。これまでに、 平面型の2つのPET検出器を治療装置のベッドを挟むように設置する対向ガンマカメラ 型PET装置が検討されてきたが、検出器の隙間により、画像再構成に必要な情報が欠落 するために分解能が不均一になってしまうことに加え、装置感度が低下するという決定的 な問題点を有していた(P.Crespo、他、"On the detector arrangement for i n-beam PET for hadron therapy monitoring, "Phys.Med.Biol.誌、vol . 51 (2006) pp. 2143 - 2163) 。

 $\begin{bmatrix} 0 & 0 & 0 & 9 \end{bmatrix}$

20 PET装置の感度を高めるためには、図1(a)に例示する如く、検出器をトンネル状 に密に配置してマルチリング型検出器10を構成し、立体角(図において感度最大エリア の 中 心 か ら 検 出 器 リ ン グ の 体 軸 方 向 両 端 を 結 ぶ 2 本 の 線 の な す 角 度) を 広 く す る 必 要 が あ るが、長いトンネル状の患者ポートは、検査中の患者6の心理的ストレスを高めると共に 、患者への手当ての障害にもなる。これに対して、出願人は、図1(b)に例示する如く 、 患 者 6 の 体 軸 方 向 に 複 数 に 分 割 した マ ル チ リ ン グ 型 検 出 器 1 1 、 1 2 を 離 し て 配 置 し 、 物理的に開放された視野領域(開放視野とも称する)を有する開放型PET装置を提案し ている。開放領域は、図2に示す如く、残存するマルチリング型検出器11、12間の同 時計数線から、画像が再構成される。図において、8はベッドである。

[0010]

30 これまでに、図1(b)や図2に示すように、検出器を均等幅に2分割した開放型PE T装置の設計が行なわれている(Taiga Yamaya,Taku Inaniwa,Shinichi Mino hara, Eiji Yoshida, Naoko Inadama, Fumihiko Nishikido, Kengo Shibuya , Chih Fung Lam and Hideo Murayama, "Aproposal of an open PET geometry, "Phy. Med. Biol., 53, pp. 757-773, 2008.)。開放型PET装置は 、検出器に干渉することなくビーム照射を行うことができるため、放射線治療のビームモ ニタリングに適している。

 $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$

ここで、図3に示す如く、それぞれの検出器11、12の体軸方向寸法(幅とも称する)をWとして、それらの間の開放領域の体軸方向寸法(隙間とも称する)をGとすると、 体 軸 方 向 視 野 は 2 W + G と な る 。 図 3 (c) に 示 す 如 く 、 開 放 領 域 隙 間 G が W を 越 え る と 画像化できる領域が体軸方向に断続してしまうため、体軸方向に連続した視野を得るた めの開放領域隙間Gの上限は、図3(b)に示す如く、Wとなる。しかし、開放領域の中 央に感度が集中し、開放領域の周辺で感度が極端に低下してしまう。開放領域の両端にお ける極端な感度低下を抑制するためには、図3(a)に示すように、GをWより小さく設 定する必要があるが、開放領域隙間及び体軸方向視野が減少してしまう(上記文献参照)

[0012]

このように、出願人が先に提案した開放型PET装置では、開放領域の中央に感度が集 中し、開放領域の周辺で感度が極端に低下してしまう問題があるため、この局所的な感度 低下を抑制するためには、Gに対して相対的にWを拡大する必要があった。また、開放領域 10

40

隙間及び体軸方向視野の最大値は、それぞれW及び3Wに制限されるため、開放領域隙間 や体軸方向視野を更に拡大するためにも、W自体を拡大する必要があった。しかし、いず れにおいても、1つのマルチリング型検出器を構成する検出器数の増加により、装置が高 価格化、大型化、複雑化してしまうという問題点を有していた。

(5)

【0013】

開放型ではない従来のPET装置においては、限られた視野の検出器リングで、より広 い視野を計測する目的で、ベッドに対しPET装置自体を相対的に移動させながら放射線 計測を行う方法が用いられている(特開2007-206090号公報、Kitamura K, Ta kahashi S, Tanaka A et al: 3D continuous emission and spiral transmission scanni ng for high-throughput whole-body PET. Conf. Rec. IEEE NSS & MIC. M3-2, 2004)が、開放型PET装置の問題点を解決するものでは無かった。

【0014】

開放型PET装置は、検出器に干渉することなく検出器リング間の隙間からビーム照射 を行うことができるため、放射線治療のビームモニタリングに適している。しかし、ビー ム 照 射 中 は 、 検 出 器 の 回 路 系 が ビ ー ム 自 体 か ら の 影 響 を 受 け る な ど し て 検 出 器 の 性 能 が 低 下したり故障したりする恐れがある。よって、ビーム照射中は、検出器を照射野から数十 cmの安全距離以上離しておく必要がある。しかし、先に述べた通り、開放領域隙間Gを拡 大するためには、検出器の体軸方向寸法₩自体を拡張する必要があるが、装置を大型化す ることは高価格化及び設置場所の限定につながり望ましくない。立体角が減少して放射線 検出感度が低下したりする点も問題である。加えて、ビーム照射中はPETの計測にとっ てノイズ成分となる即発性のガンマ線が多く発生することが知られており、ビーム照射中 のPET計測データは画像化に適さない条件となる場合が多い。よって、照射と計測時間 帯 が 重 な ら な い よ う に し て 画 像 再 構 成 に 有 効 な 高 S / N 比 の 計 測 デ ー タ を 得 る 技 術 が 求 め られる。放射線照射装置とPET装置を離して同一レール上に並べておき、放射線照射後 ベッドを放射線照射装置からPET装置に移動させ計測することも考えられるが、ベッド を移動するのに時間を要し、放射線照射によって生成される核種の半減期は数十秒から2 0分程度と非常に短いことに加え、血流などの影響によって生体内で核種が移動してしま うことから照射野に近づくのが間に合わない。そこで、他の方法により、できるだけ早く 照射野に近づきPETの計測を行う技術の提供が求められる。

【発明の開示】

【0015】

本発明は、前記従来の問題点を解決するべくなされたもので、放射線照射の影響による 検出器の性能低下や故障を防ぐと共に、短寿命核種の分布を照射野周部まで画像化するこ とを課題とする。

[0016]

本発明は、複数の検出器リングが体軸方向に互いに対向するように配列されその貫通内 部で放射線計測する開放型 P E T 装置と、互いに隣接する前記検出器リング間の空間から 放射線照射し該空間の前記内部に照射野を形成可能な放射線照射装置とを備え、前記空間 を形成する二つの空間形成検出器リングの少なくとも一方が可動検出器リングで、該可動 検出器リングは、放射線照射中は照射野から離れた照射による損傷を避ける待避位置にあ り、照射後に待避位置より照射野側で移動しながら放射線計測することで、ビーム影響に よる検出器の性能低下や故障を防ぐと共に、照射野に接近して放射線計測することで照射 野周辺の短寿命核種の分布を画像化する点に特徴がある。

【0017】 図4に、二つの検出器リングと放射線照射装置の基本的な構成を示す。図4に於いて体 軸方向に移動可能な二つの可動検出器リング11と12が対向して設けられており、二つ の検出器リングの内径内を貫通する円筒空間洞部で放射線計測を行う。放射線照射装置2 4は、その二つの検出器リング11と12(空間形成検出器リング)に挟まれて形成され る空間から、その空間部且つ体軸周辺部に設定される照射野へ放射線照射を行う。図4(A)は二つの検出器リング11と12が共に待避位置(放射線照射の影響により損傷を受 10

けないだけ照射野から離れた位置を意味し、斜線部の外側)にある状態を示す。図4(B)は放射線照射終了後に二つの検出器リング11と12が共に図4(A)の待避位置から 照射野方向に移動し、最も照射野に近づいた状態を示す。

【0018】

図4における二つの空間形成検出器リングと放射線照射装置の作動順を図5(A)に示 すフローチャートで説明する。各検出器リングは待避位置と照射野近傍の間を往復移動す る。すなわち、放射線照射時にあらかじめ検出器リングを待避位置へ移動させておく(S 1)が、この位置では開放領域の周辺で感度が極端に低下してしまったり、立体角が減少 して、照射野を正確に画像化することはできない。そこで放射線照射(S2)が終了する と直ちに検出器リングを待避位置から照射野方向に移動(S3)することで開放領域周辺 での感度低下を補って放射線計測を行い(S4)、待避位置に復帰する(S5)。ここで 、ステップS4でのPETの計測すなわち画像再構成に有効なデータを得る放射線計測を PET計測と呼ぶ。以下同様である。

【0019】

その間の各部の作動タイミングを図5(B)に示すタイムチャートで説明する。同タイムチャートは、放射線照射のONとOFF、検出器移動の方向(+:照射野方向の往路、-:照射野と反対方向の復路、0:停止)、PET計測のONとOFFと検出器リング位置を示す。放射線照射が終了すると、待避位置にあった検出器リングが直ちに照射野方向に往路を移動始めると共にPET計測が可能となる。そして、あらかじめ設定された最も照射野に近い位置(P4)まで到達すると移動方向を反転して待避位置方向に復路を移動し、待避位置に到達してPET計測を終了する。次の放射線照射の開始がある場合は上記パターンを繰り返し、その繰り返しを照射計画が終了するまで行う。

[0020]

以下、検出器リングの構成及び移動パターンについて詳細に説明する。

図6に、検出器リングの構成及び移動方向について、代表的なパターンを例示する。図 6(a)は、2分割した検出器リング11、12の両者を可動とし、その間を開放領域と する構成である。図6(b)は、2分割した検出器リング(21、22)、(23、24)を左右に配置し、外側の2つの検出器リング21、24を固定とし、可動とした中央の 2つの検出器リング22、23で挟まれる空間を開放領域とする構成である。図6(c) は、3分割した検出器リング(31、32、33)、(34、35、36)を左右に配置 し、外側の4つの検出器リング31、32、35、36を固定とし、内側の2つの検出器 リング33、34を可動とする構成である。中央の可動検出器リング33、34に挟まれ る空間が開放領域となる。

[0022]

いずれの場合にも、可動検出器リングの移動方向については、図6に示すように、両者 を近づけるように移動する方法(隙間を縮小)、一定距離を保ってシフトする方法(平行)、同じ方向に移動しつつ間隙を拡大又は縮小する方法等が考えられ、それぞれ片道また は往復の移動をさせたり、片側のみを移動させたりすることができる。

【 0 0 2 3 】

図7は、可動検出器リングの数や分割数を増やした構成例である。

【0024】

PET計測は、連続的に移動しながら計測する方法と、移動・静止して計測する方法が ある。更に、移動速度を変化させたり、移動・静止のステップを細かく繰り返しながら計 測したり、ステップ幅を変化させて計測することもできる。

【0025】

本発明は、ビーム照射中は照射野から検出器を遠ざけるが、ビーム照射終了直後から検 出器をできるだけ早く照射野に近づいて立体角を広げてPET計測を行い、さらに近づき ながらもPET計測を行ない、より多くのPET計測データを収集することで、短寿命の 核種から生じる放射線を効率よく高S/N比で計測することができる。 10

[0026]また、開放領域の局所的な感度低下が抑制されることで、開放空間の中央だけでなく周 辺も含めて、開放空間全体の画質を高めることができる。 【図面の簡単な説明】 [0027]【図1】(a)従来の一般的なPET装置、及び、(b)出願人が先に提案した開放型P E T 装 置 の 構 成 を 示 す 斜 視 図 及 び 断 面 図 【図2】開放型PET装置における画面再構成の原理を示す断面図 【図3】開放型PET装置の開放領域隙間と感度の関係を示す断面図及びグラフ 10 【図4】空間形成リングと照射野の関係を示す図 【図5】可動検出器リングの作動を示すフローチャート及びタイムチャート 【図6】本発明で用いる開放型PET装置の構成例を示す図 【図7】図6以外の他の構成例を示す図 【図 8 】本 発 明 の 構 成 例 に お け る (a) 接 近 シ フ ト 、 (b) 平 行 シ フ ト 及 び (c) 片 側 シ フトの状態を示す図 【図9】接近シフトにおける(a)感度分布と(b)開放領域隙間の縮小・拡大パターン の例を示す図 【図10】図9以外の接近シフトにおける(a)感度分布と(b)開放領域隙間の縮小・ 拡大パターンの例を示す図 20 【図11】平行シフトにおける(a)感度分布と(b)平行シフトのパターンの例を示す 义 【図12】片側シフトにおける(a)感度分布と(b)検出器中心の体軸上位置の座標の 例を示す図 【図13】同じく(a)感度分布と(b)検出器中心の体軸上位置の座標の他の例を示す 汊 【図14】本発明の第1実施形態を示す図 【図15】第1実施形態の作動を示す図 【図16】本発明の第2実施形態を示す図 【図17】本発明の第3実施形態を示す図 30 【図18】 第2、 第3 実 施 形 態 の 照 射 野 と 検 出 器 の 移 動 パ タ ー ン の 一 例 を 示 す 図 【図 1 9 】 第 2 、 第 3 実 施 形 態 の 照 射 野 と 検 出 器 の 移 動 パ ターン の 他 の 例 を 示 す 図 【図 2 0 】呼吸同期制御の一例を示すタイムチャート 【図 2 1】呼吸同期制御の他の例を示すタイムチャート 【図22】呼吸同期制御の作動を示すフローチャート 【図23】本発明の第4実施形態の作動を示すタイムチャート 【図24】本発明の第5実施形態を示す図 【 図 2 5 】 第 5 実 施 形 態 の 作 動 を 示 す フ ロ ー チ ャ ー ト 【図26】第5実施形態の作動を示すタイムチャート 【発明を実施するための最良の形態】 40 [0028]以下図面を参照して、本発明の実施形態を詳細に説明する。 [0029]検出器リングの構成と検出感度分布について説明する。 $\begin{bmatrix} 0 & 0 & 3 & 0 \end{bmatrix}$ 市販のPET装置を基にして、直径827mmの円周上に576個の検出素子(シンチ レータ)が 並 ん だ 3 2 本 の 検 出 素 子 リ ン グ (幅 4 . 8 m m) か ら 構 成 さ れ る 検 出 器 リ ン グ 11、12を、図8に示す如く、左右に離して配置した計算機シミュレーションを行なっ た。検出器リング幅Wは153.6mmである。 [0031]

移動方向は、図8(a)に示すように開放領域隙間Gを縮小・拡大する場合(接近シフ

50

(7)

トと称する)と、図8(b)に示すように開放領域隙間Gを一定に保ったまま左右の検出 器リングをSだけシフトする場合(平行シフトと称する)と、図8(c)に示すように片 側だけシフトする場合(片側シフトと称する)をテストした。 【0032】

(8)

図9は、接近シフトを試行した結果である。図9(a)は、AからEまでの5通りの移動方法による感度分布の結果であり、図9(b)は開放領域隙間Gの時間変化を図示したものである。AはG=153mmのまま検出器リングを移動させない従来の場合であり、感度分布に極端な低下が見られる。B及びCは、Gを153mmからそれぞれ77mm及び0mmまで一定速度で縮小させた後、再び153mmまで一定速度で拡大した場合であり、従来の場合で見られた感度低下が抑制されることが分かる。Eは、Cにおいて移動速度を2倍にすると共に、G=0mmにおける静止を追加した場合であり、検出器リングの装置中央での滞在時間を増やすことによって、感度特性が更に改善されることを示している。なおDは、Cにおいて移動速度に2次曲線状の緩急をつけた例であり、Eと同様に感度特性が改善されると共に、検出器リングを折り返す際の機械的な負担を低減することも期待できる。

[0033]

図10は、同じく接近シフトを試行した結果であるが、開放領域隙間Gの初期値を307mmとしている。図10(a)は、AからDまでの4通りの移動方法による感度分布の結果であり、図10(b)は開放領域隙間Gの時間変化を図示したものである。AはG=307mmのまま検出器リングを移動させない従来の場合であり、2箇所にまとまった不感領域が生じている。BからDは、Gを307mmからそれぞれ153mm、77mm及び0mmまで一定速度で縮小させた後、再び307mmまで一定速度で拡大した場合であり、従来の場合で見られた感度低下が抑制されることが分かる。いずれの場合においても、接近シフトでは感度分布の中央のピーク値は変わらない点が特徴的である。

図11は、開放領域隙間G=307mmに固定して、平行シフトを試行した結果である。図11(a)は、AからEまでの5通りの移動方法による感度分布の結果であり、図1 1(b)は平行シフトのパターンを図示したものである。一定の移動速度にて、往復で検 出器リングをシフトさせている。Aは検出器リングを移動させない従来の場合であり、感 度分布の極端な低下及び感度ゼロの領域が見られる。BからDは、それぞれ77mm、1 53mm、230mmだけシフトさせた場合であり、シフト量を増やすほど感度分布のピ ーク値が分散され、感度分布の一様性が高まることが分かる。Eは307mmまでシフト させた場合であるが、Dと比べ、むしろ感度のピークが新たに発生してしまうことがわか る。

【0035】

図12は、片側シフトを試行した結果である。図12(a)は、AからCまでの3通り の移動方法による感度分布の結果であり、図12(b)は左右の検出器リング(検出器1 及び検出器2)の検出器中心の体軸上位置の座標を図示したものである。いずれの場合も 検出器1は固定、検出器2のみ可動とし、時刻0における隙間はG=153mmである。 AからCは、それぞれ隙間を0mm、77mm、115mmまで縮めた場合であり、シフ トさせた側(図の右側)の検出器2の感度ピークを分散させることで、開放領域の局所的 な感度低下が抑制される。

【 0 0 3 6 】

図13は、片側シフトにおいて、固定する検出器リングを入れ替えて試行した結果であ る。図13(a)は、AからCまでの3通りの移動方法による感度分布の結果であり、図 13(b)は左右の検出器リング(検出器1及び検出器2)の検出器中心の体軸上位置の 座標を図示したものである。いずれの場合も、時刻0から10の間では検出器1を固定、 検出器2を可動とし、時刻10から時刻20の間では検出器2を固定、検出器1を可動と した。時刻0における隙間はG=153mmとし、AからCは、それぞれ最小の隙間を0 mm、77mm、115mmとした場合である。感度ピークが分散されて局所的な感度低 10

下が抑制されており、その効果は左右対称であり、かつシフト量が大きいほど大きいこと が分かる。

【0037】

2 分割の検出器リングによる開放型 P E T 装置では、感度分布は、中央ピークに加えて 左右に半分程度のピークを持つ。接近シフトは、中央ピークを維持したまま、左右のピー クを中央よりにシフトさせることで感度の溝を埋めることから、開放領域に絞って画質を 高めようとする方法である。一方、平行シフトは、それぞれの感度ピークを削って感度の 溝を埋める効果があることから、開放領域だけでなく体軸視野全体において画質を高める 方法である。

【 0 0 3 8 】

次に、開放型PET装置を放射線治療のビームモニタリングに適用した本発明の実施形態について述べる。図14に、リング状の2つの同一の検出器リング(空間形成検出器リング)11、12を、独立したガントリ(60a、60b)として平行に配置し、検出器リング11、12間の空間に、放射線照射装置24を挿入することによって、治療後直ちに同一部位をPETで確認する治療モニタリングを実現した第1実施形態の構成を示す。 【0039】

具体的には、検出器リング11、12、それぞれを囲うガントリカバー60a、60b 、患者6が横たわるベッド8で構成され、それぞれのガントリには車輪62を装着し、共 通又は別々のレール64で体軸方向に移動できる機能を持つ。

【0040】

放射線照射装置24から発生された治療ビーム22は、検出器リング11、12間の空間隙間領域を通り、PETのガントリ(60a、60b)と干渉することなく、患者6の 照射野に向けて照射される。

【0041】

図14に於いて、放射線照射装置24及びPET装置は、照射計画プログラムが入力さ れた照射装置制御システム26及びガントリー位置制御装置68によって制御される。照 射装置制御システム26は、放射線の照射位置を設定する照射位置設定手段と、前記放射 線の照射位置に照射ビームを照射させる放射線照射手段を含み、ガントリー位置制御装置 68は、可動検出器リング位置を設定する位置設定手段を含み、放射線照射手段の照射タ イミング情報を基に位置設定手段に可動検出器リングの位置を設定する。 【0042】

可動検出器リングには、図示しない、サーボモータ、ボールネジアクチュエータ、エン コーダ、前記車輪62及びレール64等で構成される移動手段を備え、移動手段は位置設 定手段が設定した設定位置に可動検出器リングを移動させる。

【0043】

そして、電磁石、コリメータ、散乱体、リッジフィルタ、スリットなどを制御する照射 位置設定手段により照射野内の照射位置を設定し、X線やガンマ線を照射する放射線照射 手段によりその設定位置に所定形状のビームを照射する。

[0044]

PET装置はその照射によって患部近傍から生じる放射線を計測し、その収集データを 40 基にPET画像を再構成する。得られたPET画像は、照射装置制御システム26にフィ ードバックされ、照射野の位置決め、治療効果の確認や治療計画の修正に用いられる。 【0045】

次に、計測データの処理方法について述べる。患者6の体内の核種7からは、ほぼ180°の角度をなして飛行する一対の消滅放射線7a、7bが四方八方に放出される。検出器リング11及び12において、一対の消滅放射線7a、7bのうちの片側の計測データであるシングルイベントデータSDは、それぞれ共通の同時計数回路40に送られて、検出器リング11と12の間の同時計数ペアの情報であるリストモードデータLDに変換される。

【0046】

20

(10)

このリストモードデータLDは、データ収集装置42にて記録媒体に保存された後、画 像再構成装置44に送られて、画像再構成演算を行なった後、画像表示装置46にて再構 成画像が表示される。

【0047】

検出器リング11、12の移動は、コンソール装置66から指定されたガントリ位置情報に基づき、ガントリ位置制御装置68によって制御される。ガントリ位置情報は、同時計数回路40を通じてリストモードデータLD内に含めるか、あるいは、画像再構成装置44に直接送る等して、画像再構成演算の際に、実際の検出器の位置情報に基づいて計算が行なえるようにする。

【0048】

検出器リングはビーム照射を常に計測しているが、ビーム照射中はPET計測にとってノ イズ成分となる即発性のガンマ線が多く発生することが知られており、ビーム照射中の計 測データは画像化に適さない。よって、データ収集システムの負荷を避けるためには、画 像再構成に使うデータのみを選択するデータ選択工程を設けた後にデータ収集工程を設け ることが望ましいが、データ収集システムの負荷に余裕があれば、データ収集工程の後に データ選択工程を設けることも可能である。

[0049]

次に、検出器シフト(接近シフト)を適用した本発明の実施形態について述べる。ビーム照射は、1回で十分な場合や、複数回に分けて行う場合があるが、ここでは2分間の照 射を8分間の間隔を開けて実施する場合を想定する。ビーム照射によって生じる消滅放射 線をPET装置で検出する際に考慮すべき点は、前述のように以下の2点である。 【0050】

(1)ビーム照射の際に回路が破壊されるなど検出器が損傷を受ける点。

(2) ビーム照射によって生成される核種の半減期は数十秒から20分と非常に短い 点。

【0051】

そこで、図15に示すように、(a)照射ポート56からビーム照射中は検出器リング 11、12を照射野から離しておき、照射が終了したら(b)検出器リング11、12を 接近させながらPET計測を行う。照射終了直後から検出器リング11、12を接近させ ることによって早く照射野へ近づき、短寿命の核種から生じる放射線を逃さず計測するこ とができる。図15(c)は、開放領域幅Gの時間変化として、(a)照射中は検出器リ ング11、12を40cmまで離すが、(b)照射後は20cmまで接近させた例を示し ている。上記は、ボーラス照射だけでなく、スポットスキャニング照射においても適用で きる。

【0052】

次に、検出器シフト(平行シフト)を、スポットスキャニング照射に適用した本発明の 第2実施形態を図16に示す。図は、さらに照射野を検出器リングと平行な多層域に分割 し、層間を順次移動し層毎にスポットビームを走査照射するスポットスキャニング照射を 示す。腫瘍の中心など基準位置をm0とし、開放領域の中央がm0と重なるときの、左右 の検出器リングの基準位置をそれぞれp0、q0とする。スポットスキャニング照射では 、点状の照射野で腫瘍全体が埋まるように、ペンシルビーム照射を短時間でスキャンする 。照射後スポットスキャニング照射の層移動を追跡するようにして検出器リングを体軸方 向に平行シフトさせることで、短寿命核種の分布を効率よく検出し、腫瘍およびその周辺 を精度よく画像化することができる。具体的には、ペンシルビームの照射野の現在位置を m(m=m0+s)とすると、左右の検出器リングをsだけシフトさせて、現在位置がそ れぞれp=p0+s、q=q0+sとなるようにする。

【0053】

図17は、照射全域を照射軸と垂直な多層域に分割し、その層間を順次移動し層毎にスポットビームを走査照射するスポットスキャニング方法を示す。スポットスキャニング照射の照射野の垂直方向の移動に合わせて、検出器リング11、12を照射軸方向に移動(

10

平行シフト)する第3実施形態である。腫瘍の中心など基準垂直位置をm0とし、開放領 域の中央がm0に重なるときの、検出器リング11、12の基準垂直位置をp0とする。照 射後スポットスキャニング照射の層移動を追跡するように検出器リング11、12を照射 軸方向に上下移動させることで、短寿命核種の分布を効率よく検出し、腫瘍およびその周 辺を精度よく画像化することができる。具体的には、ペンシルビームの照射野の垂直方向 の現在位置をm(m=m0 + s)とすると、検出器リング11、12の垂直位置をサーボモ ータ65によりsだけシフトさせて、現在位置がp=p0+sとなるようにする。なお、 第2実施形態及び第3実施形態共に、層毎の照射から一定の時間差となるように層移動を 追跡するように検出器リングを制御ことがより好ましい。さらに、放射線照射が層移動す る間に一旦照射を止めPET計測を行うと、短寿命核種の分布をより効率よく検出するこ とができる。

(11)

[0054]

また、第2実施形態及び第3実施形態共に、検出器リング11,12の両方が移動する 例を示したが、いずれか一方のみが移動するようにすることもできる。 【0055】

図18に、図16および図17に示した実施形態における、照射野および検出器の移動 パターンの一例を示す。図18(a)は、 60秒間かけて照射野を移動させて約100 mm幅の患部をカバーする例である。図18(b)は、検出器の移動パターンであり、照 射野の移動を追跡するように検出器(リング)を移動させ、照射と並行して計測を行う。 しかし照射中は、PET計測にとってノイズ成分となる即発性のガンマ線が多く発生する ため、実際には、照射中に周期的または非周期的に存在する短時間の照射合間の計測デー タからのみ、PET画像を生成することになる。

[0056]

これに対して図19は、一連の照射が終了した後に、照射野の移動を追跡して検出器を 移動させたパターンの例である。照射終了後からPET計測を行うことによって、即発性 のガンマ線の影響を受けないデータのみが収集される。照射によって生成される核種は数 十秒から数分程度の半減期を持つが、局在的な照射を時間をずらして行った場合、照射終 了後の時点では、さまざまな減弱度合いの核種が混在した状態になっている。そこで、一 連の照射時間に相当する一定の時間差(図19の例では60秒)を置いて、照射位置を追 跡するように検出器を移動させることによって、照射位置に依存した減弱のばらつきを抑 制する。

【0057】

なお、胸部の治療などにおいては、呼吸等による患部の移動を考慮する必要がある。具体的には、例えば呼吸サイクルの呼気状態など比較的安定的な呼吸フェーズにおいて照射 する治療計画を作成し、治療においては、胸部や照射部近傍に装着したマーカーなどの動 きを検出する呼吸モニタリングを行い、治療計画における呼吸フェーズと一致したときの み、照射を行う制御を行う。

[0058]

図20は、呼吸信号の呼気フェーズに応じて、照射をONにする制御を図示したものである。このとき、照射がOFFになっているタイミング(吸気フェーズ)に合わせてPET計 測を行うことによって、一連の照射の最中において効率的にPET計測を行うことができる。

[0059]

図20は、加速器から連続的に照射ビームを取り出せるケースを想定していたが、周期 的に断続して照射ビームを取り出すケースもある。図21は後者において、呼吸同期の照 射を行う場合である。呼気フェーズと照射クロックが合致したときのみ、照射を行うこと ができる。よって、図20のケースよりも照射可能なタイミングが限られてしまうが、一 方で、PET計測が可能なタイミングは増加し、より多くのPET計測データを収集する ことができる。なお、治療において考慮すべき体動には、呼吸に限らず、心拍やその他の 動きも含まれる。

50

10

20

[0060]

図22(A)に示すフローチャートにおいて、まず、検出器で放射線を検出すると(S 11)、既知の技術により同時計数判定を行う(S12)。同時に、放射線照射部近傍に 設けたマーカーの動きを検出分析するなどして得ている呼吸モニタリングデータを参照し (S13)、呼吸フェーズ以外のフェーズを選んで(S14)、同時計数と判定したデー 夕を収集し(S15)、照射が終了すると(S16)と、収集したデータを基に画像再構 成をおこない(S17)、画像を出力する(S18)。 【0061】

(12)

呼吸同期照射にPET装置による計測を適用した例はこれまでにない。図22(B)に 示すフローチャートは、呼吸同期照射ではない通常の照射においてPET装置による計測 を行った従来の方法である。従来の技術では呼吸モニタリングデータを参照する代わりに ステップS23において加速器情報を参照していた。本発明に於いては呼吸モニタリング データを直接参照しているので、より多くの情報が精度良く集取でき、照射システムに影 響することなく簡便にPET計測のための同期データを取得できるほか、呼吸フェーズ毎 にPET画像再構成を行うなどして、呼吸によるPET画像のぶれを抑制することも可能 になる。

[0062]

図 4 及び図 5 (B) に示した基本的な二つの検出器リングと放射線照射装置の作動の別 形態である第 4 実施形態を説明する。

【0063】

図23に示すタイムチャートは、図5(B)に示したタイムチャートでは検出器リング が往路を移動してあらかじめ設定された最も照射野に近い位置(P4)に到達すると直ち に復路を移動したが、到達後PET計測を終了するまで停止し、終了後復路を待避位置ま で移動するようにしたことを示す。

【0064】

次に、照射後、照射野により早く接近を可能とする図24に示す第5実施形態を説明する。

【0065】

図25に示すフローチャートは、あらかじめ待避位置に移動させた検出器リング(S3 1)を、放射線照射(S32)が終了する前に放射線停止時間から逆算して待避位置から 照射野方向に往路の移動を始めさせ(S33)、照射が終了した後に安全限界位置(放射 線が照射中であればその影響により損傷を受ける最も照射野から遠い位置)を通過させ(S37)、照射野に最も近づいた後復路を移動して再び安全限界位置を通過して待避位置 に復帰する(S40)プログラムを示す。

【0066】

安全のため、図24に示した待避位置(P1)と安全限界位置(P3)のほぼ中間に放 射線照射終了確認位置(P2)が設けられており、この放射線照射終了確認位置を検出器 リングが往路で通過するときには放射線照射が終了しているようにプログラムされていて 、照射終了確認位置の通過(S34)と同時に放射線照射が終了しているかを確認し、終 了していると(S35 / YES)そのまま通過させるが、終了していない場合(S35 / NO)は異常が発生したと判断し、検出器リングを安全限界位置超える前に停止させ(S42)同時に警報(S43)を出力する。このように放射線照射(S32)が終了する前に待 避位置から照射野方向に往路の移動を始めさせる(S33)ことにより、図5(B)及び 図23で示したタイムチャートのプログラムより安全限界位置をより速い速度で通過でき るので、より短時間で照射野に近づくことができる。

[0067]

次の放射線照射が開始される場合は、検出器リングが復路で安全限界位置を超えた後に 開始される。 P E T 計測は、往路で放射線照射確認位置を超えて(S 3 6)、復路で安全 限界位置を超える(S 3 9)前までが有効(S 3 8)である。照射計画が終了するまでス テップS 3 2 からS 4 0 までのルーチンを繰り返す(S 4 1)。 20

10

[0068]

安全限界位置は放射線照射の設定条件等により異なり、主に経験や実験により求められ る位置であり、例えば放射線照射テスト時に照射野から十分離れた位置に検出器リングを 位置させておき、少しずつ照射野方向に近づけながら各部の計測を行うなどして、求める ことができる。

[0069]

なお、ステップ35/NOにおける異常時の対応としては、検出器リングを安全限界位置 を超える前に停止させ(S42)た後、所定時間後(例えば1秒後)に再び放射線照射が 終了しているかを確認(S35)し、所定回数の確認内に放射線照射が終了しない場合に 警報(S43)を出力するようもできる。

[0070]

また、 P E T 計測は、安全限界位置を超える(S 3 9)前に終了する(S 3 8)かわり に、次の照射(S32)が始まる直前まで継続するように設定してもよい。 [0071]

図25のフローチャートにおける各部の作動タイミングを図26のタイムチャートに示 す。

【産業上の利用の可能性】

[0072]

ビーム 照射 によって生じる 消滅放射線を検出するための放射線 治療のビームモニタリン グ装置で、ビーム照射中は検出器を照射野から遠ざけておくが、ビーム照射終了後に照射 野に早く近付いて、あるいは近づけながら放射線計測を行なうことによって、ビーム影響 による検出器の性能低下や故障を防ぐと共に、照射野周辺の短寿命核種の分布を精度よく 画像化することが可能となる。

20

10

【図1】

(b) 開放型PET装置

【図2】

【図3】

(13)

(B) 照射野 体軸

【図6】

11 ~

ន

15

10 時間(相対値)

ហ

0

60

200

-200

00 64 64

o 体軸 [mm] (a) 感度分布

0

D G307 ⇔ 0mm

G307 ⇔77m

o

開放領域隙間G [mm] 8 8 8 8 8 6 6 8 8 8 8 8 8 8 8 8

(動校時) 敦懇

B G307⇔153m

ムシフトなし

(b) 開放領域隙間Gの縮小・拡大

【図10】

1.0 0.8 0.6 0.4 0.2

【図15】

【図16】

【図17】

【図19】

	INTERNATIONAL SEARCH REPORT		International application No.			
			PCT/JP2	008/063861		
A. CLASSIFIC	ATION OF SUBJECT MATTER					
G01T1/161	G01T1/161(2006.01)i					
According to Int	ernational Patent Classification (IPC) or to both nationa	l classification and IF	PC			
B FIFLDS SF	ARCHED					
Minimum docum	nentation searched (classification system followed by cl	assification symbols)				
G01T1/161		·····				
Documentation s	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Jitsuyo	Shinan Koho 1922-1996 Jit	tsuyo Shinan T	'oroku Koho	1996-2008		
Kokai J	itsuyo Shinan Koho 1971-2008 To:	roku Jitsuyo S	hinan Koho	1994-2008		
Electronic data b	pase consulted during the international search (name of	data base and, where	practicable, search	terms used)		
C. DOCUMEN	VTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where an	propriate, of the relev	ant passages	Relevant to claim No.		
8, v	TD 2008-124205 & (Chimodow C	'orn)	10-0	1 2 6-0 11		
A	12 June, 2008 (12.06.08),	orp./,		3-5,10		
	(Family: none)			,		
Y	JP 2004-166975 A (Mitsubishi	. Heavy Indus	stries,	1,2,6,9,11		
A	17 June. 2004 (17.06.04).			5,4		
	(Family: none)					
Y	JP 2008-173297 A (President	of National	Cancer	1,2,6-9,11		
	31 July, 2008 (31 07 08).					
	(Family: none)					
Y	JP 2005-52308 A (Toshiba Cor	τ ρ.) ,		1,2,6,9,11		
	03 March, 2005 (03.03.05), (Family: none)					
	(romrry, none)					
Further do	cuments are listed in the continuation of Box C.	See patent far	nily annex.			
* Special categ	Special categories of cited documents:					
"A" document defining the general state of the art which is not considered to be of notificial relevance				ion but cited to understand		
"E" earlier applie	"E" earlier application or patent but published on or after the international filing "X" document of particular relevance; the claimed invention cannot be					
date	date considered novel or cannot be considered to involve an inventive at a state of the dominent is taken a lone					
cited to esta	L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be					
"O" document re	special reason (as specified) considered to involve an inventive step when the document is "O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination					
"P" document pu	*P" document published prior to the international filing date but later than the being obvious to a person skilled in the art					
priority date claimed "&" document member of the same patent family						
Date of the actual completion of the international search Date of mailing of the international search report						
29 Sept	29 September, 2008 (29.09.08) 07 October, 2008 (07.10.08)			07.10.08)		
Name and mailin	ng address of the ISA/	Authorized officer				
Japane	Japanese Patent Office					
Facsimile No.		Telephone No				
Form PCT/ISA/21	Form PCT/ISA/210 (second sheet) (April 2007)					

	INTERNATIONAL SEARCH REPORT	International application No.			
PCT/JP			008/063861		
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.		
Y A	JP 2001-346773 A (Toshiba Corp.), 18 December, 2001 (18.12.01), (Family: none)		9 10		
Y A	JP 2007-3264 A (Shimadzu Corp.), 11 January, 2007 (11.01.07), Par. No. [0006] (Family: none)		9 10		
Y A	JP 2007-111535 A (Siemens AG.), 10 May, 2007 (10.05.07), Par. No. [0002] & US 2007/092123 A1		9 10		
A	Microfilm of the specification and drawi annexed to the request of Japanese Utili Model Application No. 128900/1988(Laid-o No. 48888/1990) (Shimadzu Corp.), 04 April, 1990 (04.04.90), (Family: none)	ings ity open	1-11		
A	JP 2001-141827 A (Hamamatsu Photonics Kabushiki Kaisha), 25 May, 2001 (25.05.01), & US 6774370 B1 & WO 2001/036996 A1		1-11		
A	JP 4-268484 A (Shimadzu Corp.), 24 September, 1992 (24.09.92), (Family: none)		1-11		
А	JP 9-211130 A (Shizuoka-Ken), 15 August, 1997 (15.08.97), (Family: none)		1-11		
A	JP 2006-513410 A (Koninklijke Philips Electronics N.V.), 20 April, 2006 (20.04.06), & US 2006/124855 A1 & WO 2004/061477	7 Al	1-11		

Form PCT/ISA/210 (continuation of second sheet) (April 2007)

	国際調査報告	国際出願番	₿ PCT∕JP20	08/06	33861
 A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl. 601T1/161(2006, 01)i 					
B. 調査を行	行った分野				
調査を行った Int.Cl. G	晨小限資料(国際特許分類(IPC)) 01T1/161				
最小限資料以外	トの資料で調査を行った分野に含まれるもの				
日本国実用 日本国公開 日本国実用 日本国登録	謝案公報 1922-1996年 謝案公報 1971-2008年 謝案登録公報 1996-2008年 実用新案公報 1994-2008年				
国際調査で使用	目した電子データベース (データベースの名称、	調査に使用した月	語)		
C. 関連する	ると認められる文献				
引用文献の カテゴリー *	引用文献名 及び一部の箇所が関連する	ときは、その関連	する箇所の表示	関 請求の(連する 範囲の番号
Y A	JP 2008-134205 A(株式会社島津製作所) 2008.06.12,(ファミリーなし)			1, 2, 0 3-5, 1	5-9, 11 10
Y A	JP 2004-166975 A (三菱重工業株式会社) 2004.06.17, (ファミリーなし)			1, 2, 0 3,	6, 9, 11 4
Y	JP 2008-173297 A(国立がんセンター 2008.07.31,(ファミリーなし)	一総長)		1, 2, 6	5 -9, 1 1
☑ C欄の続き	きにも文献が列挙されている。	📋 パテン	、ファミリーに関する	別紙を参	展。
 * 引用文献の 「A」特に関連もの 「E」国際出願 以後にな 「L」優先権主 る 文頭にこ。 「P」国際出願 	Dカテゴリー 極のある文献ではなく、一般的技術水準を示す 種日前の出願または特許であるが、国際出願日 公表されたもの E帳に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用す (理由を付す) よる開示、使用、展示等に言及する文献 種日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献			
国際調査を完了した日 国際調査報告の発送日 29.09.2008 07.10.2008				08	
国際調査機関の 日本	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	特許庁審査官(林 小田倉 i		2 Q	9163
東京	郵便番写100−8915 郡千代田区霞が関三丁目4番3号	電話番号 03-	3581-1101	内線	3292

様式PCT/ISA/210 (第2ページ) (2007年4月)

国際調査報告		国際出願番号 PCT/JP2008/063861			
C(続き).	関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号		
Υ	JP 2005-52308 A(株式会社東芝) 2005.03.03,(ファミリーなし)		1, 2, 6, 9, 11		
Y A	JP 2001-346773 A(株式会社東芝) 2001.12.18,(ファミリーなし)		9 1 0		
Y A	JP 2007-3264 A(株式会社島津製作所) 2007.01.11,段落【0006】(ファ	ミリーなし)	9 1 0		
Y A	JP 2007-111535 A(シーメンス アクチョ 2007.05.10,段落【0002】 & US 2	エンゲゼルシヤフト) 2007/092123 A1	9 1 0		
А	日本国実用新案登録出願63-128900号(日 2-48888号)の願書に添付した明細書及び クロフィルム(株式会社島津製作所)199 し)	本国実用新案登録出顧公開 図面の内容を撮影したマイ 90.04.04,(ファミリーな	1-11		
А	JP 2001-141827 A (浜松ホトニクス株式: 2001.05.25, & US 6774370 B1 & WO 20	会社) 001/036996 A1	1-11		
А	JP 4-268484 A(株式会社島津製作所) 1992.09.24,(ファミリーなし)		1-11		
А	JP 9-211130 A(静岡県) 1997.08.15,(ファミリーなし)		1-11		
Α	JP 2006-513410 A(コーニンクレッカ ニクス エヌ ヴィ) 2006.04.20, & US 2006/124855 A1 & ♥	フィリップス エレクトロ 70 2004/061477 A1	1-11		

様式PCT/ISA/210(第2ページの続き)(2007年4月)

フロントページの続き

- (72)発明者 蓑原 伸一千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内(72)発明者 稲庭 拓
- 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内
 (72)発明者 古川 卓司
 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内
 (72)発明者 森 慎一郎

千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人放射線医学総合研究所内 Fターム(参考) 2G088 EE02 FF07 JJ02 JJ22 KK15 KK37 LL13 4C082 AC02 AC04 AE02 AG05 AG08 AG09 AG51 AJ06 AJ13 AN01

AP01 AP06

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に 係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法 第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。