(19) 日本国特許庁 (JP)			(12) 特許	許	公	報(B2)	(11) 特許番号	
							特許的	第5417644号
(45)発行日	平成26	年2月 19日 (2014. 2	2. 19)			(24)登録[日 平成25年11月29日	(P5417644) (2013.11.29)
(51) Int.Cl.			FΙ					
A61N	5/10	(2006.01)	A	61N	5/10	Н		
G21K	5/04	(2006.01)	A	61N	5/10	Q		
G O 1 T	1/29	(2006.01)	C	521K	5/04	А		
			C	521K	5/04	С		
			C	GO 1 T	1/29	С		
							請求項の数 12	(全 20 頁)
(21) 出願番号		特願2010-28047	(P2010-280	047)	(73)特	許権者 000003	3078	
(22) 出願日		平成22年2月10日	(2010.2.)	10)		株式会社	東芝	
(65) 公開番号		特開2011-161056 (P2011-161056A)			東京都港区芝浦一丁目1番1号			
(43) 公開日		平成23年8月25日 (2011.8.25)			(73)特	許権者 301032	2942	
審査請求日		平成24年6月22E	22日 (2012. 6. 22)			独立行政法人放射線医学総合研究所		
						千葉県千	·葉市稲毛区穴川四丁	目9番1号
					(74) 代	理人 11000138	30	
						特許業務	法人東京国際特許事業	務所
					(72)発	明者 井関 康		
						東京都港	8区芝浦一丁目1番1	号 株式会社
						果之内 四龙 店 1963	π	
					(72)発	明者 堝 勝詞 吉言初道		
						果 京都福 東 茶 中	5区之浦一丁日1番1	亏 休式会社
						界之内		

(19) 姓 **拉 小 起(R2)**

最終頁に続く

(54) 【発明の名称】粒子線ビーム照射装置及びその制御方法

(57)【特許請求の範囲】

【請求項1】

粒子線ビームを生成するビーム生成部と、

前記粒子線ビームの出射を制御するビーム出射制御部と、

前記粒子線ビームを2次元走査するビーム走査部と、

複数の第1の線状電極が第1の方向に並列配置され、複数の第2の線状電極が前記第1 の方向と直交する第2の方向に並列配置されるセンサ部と、

前記各第1の線状電極から出力される第1の信号と、前記各第2の線状電極から出力さ れる第2の信号とから前記粒子線ビームの重心位置を算出し、前記第1、及び第2の信号 から前記重心位置の周辺の前記粒子線ビームの2次元ビーム形状を求めるビーム形状算出 部と、

10

前記重心位置に対応する前記2次元ビーム形状を、前記2次元走査の範囲に亘って累積 記憶する記憶部と、

前記記憶部に累積的に記憶することで得られる、スライス毎の2次元走査範囲の全範囲 に亘る線量プロファイルであって、走査位置ごとに前記粒子線ビームの2次元ビーム形状 が反映された線量プロファイルを表示する表示部と、

を備えたことを特徴とする粒子線ビーム照射装置。

【請求項2】

前記ビーム形状算出部は、

20 前記重心位置の周辺の複数の前記第1、及び第2の信号の振幅値から前記2次元ビーム

形状を求める、

ことを特徴とする請求項1に記載の粒子線ビーム照射装置。

【請求項3】

前記ビーム形状算出部は、

前記重心位置の周辺の複数の前記第1、及び第2の信号の振幅値から前記第1の方向の 軸上の第1ビーム形状と前記第2の方向の軸上の第2ビーム形状を夫々求め、前記第1ビ ーム形状と前記第2ビーム形状の積によって前記2つの軸上以外の領域のビーム形状を求 めることにより、前記2次元ビーム形状を求める、

請求項2に記載の粒子線ビーム照射装置。

【請求項4】

前記ビーム形状算出部は、

10

前記第1、及び第2の信号の各振幅値から位置の分散を求め、前記重心位置と前記分散 とから定まるガウス分布形状を前記2次元ビーム形状とする、

ことを特徴とする請求項1に記載の粒子線ビーム照射装置。

【請求項5】

前記ビーム形状算出部は、

前記重心位置の周辺の複数の前記第1、及び第2の信号の各振幅値から前記第1の方向 の位置の第1分散と、前記第2の方向の位置の第2分散を夫々求め、

前記第1の方向の軸上の第1ビーム形状を前記重心位置と前記第1分散から定まる第1 のガウス分布形状とし、前記第2の方向の軸上の第2ビーム形状を前記重心位置と前記第 ²⁰ 2分散から定まる第2のガウス分布形状とし、

前記第1ビーム形状と前記第2ビーム形状の積によって前記2つの軸上以外の領域のビ ーム形状を求めることにより、前記2次元ビーム形状を求める、

ことを特徴とする請求項4に記載の粒子線ビーム照射装置。

【請求項6】

前記ビーム走査部は、

照射対象の患部を前記粒子線ビームの軸方向に分割した各スライスに対して、前記粒子 線ビームを2次元走査し、

前記記憶部は、

前記2次元ビーム形状を、前記スライス単位で前記2次元走査の範囲に亘り、前記スラ 30 イス単位で累積記憶し、

前記表示部は、

前記線量プロファイルを前記スライス単位で表示すると、

ことを特徴とする請求項1に記載の粒子線ビーム照射装置。

【請求項7】

複数の第1の線状電極が第1の方向に並列配置され、複数の第2の線状電極が前記第1の 方向と直交する第2の方向に並列配置されるセンサを具備すると共に、粒子線ビームの出 射を制御するビーム出射制御部と、前記粒子線ビームを2次元走査するビーム走査部と、 前記粒子線ビームの2次元ビーム形状を求めるビーム形状算出部と、記憶部と、表示部と を具備する粒子線ビーム照射装置の制御方法において、

40

前記ビーム出射制御部が、前記粒子線ビームの出射を制御し、

前記ビーム走査部が、前記粒子線ビームを2次元走査し、

前記ビーム形状算出部が、前記各第1の線状電極から出力される第1の信号と、前記各 第2の線状電極から出力される第2の信号とから前記粒子線ビームの重心位置を算出し、 前記ビーム形状算出部が、前記第1、及び第2の信号から前記重心位置の周辺の前記粒 子線ビームの2次元ビーム形状を求め、

<u>前記記憶部が、</u>前記重心位置に対応する前記2次元ビーム形状を、前記2次元走査の範 囲に亘って累積記憶し、

<u>前記表示部が、前記記憶部に累積的に記憶することで得られる、スライス毎の2次元走</u> 査範囲の全範囲に亘る線量プロファイルであって、走査位置ごとに前記粒子線ビームの2

次元ビーム形状が反映された線量プロファイルを表示する、

ステップを備えたことを特徴とする粒子線ビーム照射装置の制御方法。

【請求項8】

前記2次元ビーム形状を求めるステップでは、

前記重心位置の周辺の複数の前記第1、及び第2の信号の振幅値から前記2次元ビーム 形状を求める、

(3)

ことを特徴とする請求項7に記載の粒子線ビーム照射装置の制御方法。

【請求項9】

- 前記2次元ビーム形状を求めるステップでは、
- 前記重心位置の周辺の複数の前記第1、及び第2の信号の振幅値から前記第1の方向の ¹⁰ 軸上の第1ビーム形状と前記第2の方向の軸上の第2ビーム形状を夫々求め、前記第1ビ ーム形状と前記第2ビーム形状の積によって前記2つの軸上以外の領域のビーム形状を求 めることにより、前記2次元ビーム形状を求める、
- 請求項8に記載の粒子線ビーム照射装置の制御方法。

【請求項10】

前記2次元ビーム形状を求めるステップでは、

前記第1、及び第2の信号の各振幅値から位置の分散を求め、前記重心位置と前記分散 とから定まるガウス分布形状を前記2次元ビーム形状とする、

ことを特徴とする請求項7に記載の粒子線ビーム照射装置の制御方法。

【請求項11】

前記2次元ビーム形状を求めるステップでは、

前記第1、及び第2の信号の各振幅値から前記第1の方向の位置の第1分散と、前記第 2の方向の位置の第2分散を夫々求め、

前記第1の方向の軸上の第1ビーム形状を前記重心位置と前記第1分散から定まる第1 のガウス分布形状とし、前記第2の方向の軸上の第2ビーム形状を前記重心位置と前記第

2分散から定まる第2のガウス分布形状とし、

前記第1ビーム形状と前記第2ビーム形状の積によって前記2つの軸上以外の領域のビ ーム形状を求めることにより、前記2次元ビーム形状を求める、

ことを特徴とする請求項10に記載の粒子線ビーム照射装置の制御方法。

【請求項12】

前記2次元走査するステップでは、

照射対象の患部を前記粒子線ビームの軸方向に分割した各スライスに対して、前記粒子 線ビームを2次元走査し、

前記累積記憶するステップでは、

前記2次元ビーム形状を、前記スライス単位で前記2次元走査の範囲に亘り、前記スラ イス単位で累積記憶し、

前記表示するステップでは、

前記線量プロファイルを前記スライス単位で表示する、

ことを特徴とする請求項7に記載の粒子線ビーム照射装置の制御方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、粒子線ビーム照射装置及びその制御方法に係り、特に、炭素等の重粒子線ビ ームや陽子ビーム等を患部に照射してがん治療を行う粒子線ビーム照射装置及びその制御 方法に関する。

- 【背景技術】
- [0002]

今日の日本国において、がんは死因として最も多いものであり、毎年30万人以上の国 民がなくなっている。このような状況の中、治療効果の高さや副作用の少なさなどの優れ た特徴を有する、炭素ビームや陽子ビームを用いた粒子線治療法が注目されている。この

20

40

治療法は、加速器から出射された粒子線ビームをがん細胞に照射することで、正常細胞に 与える影響を小さくしながら、がん細胞を死滅させることができる。 【0003】

(4)

この治療方法において、現在使用されている粒子線照射方法は、拡大ビーム法と呼ばれ る方法である。この拡大ビーム法では、粒子線ビームをワブラ法あるいは二重散乱体法と 呼ばれる方法によりビーム径を患部サイズ以上に拡大し、多数の金属製の板(リーフ)で 形成されたマルチリーフコリメータにより照射領域を制限することにより、患部形状に合 致させて照射を行う。また、ビーム進行方向(ビーム軸方向)にはリッジフィルタと呼ば れるビーム飛程拡大装置によりビームを拡大し、ボーラスと呼ばれるポリエチレン製のビ ーム飛程整形装置によってビーム停止位置を深い位置での患部形状(外郭)に合致させて 照射する。

[0004]

しかし、拡大ビーム法は厳密には3次元的に患部形状に正確に合致させることができな いので、患部周りの正常細胞への影響を小さくするには限界がある。さらには、形状コリ メータやボーラスは患部(さらには患部に対する照射方向)毎に製作されるので、治療照 射後には放射線廃棄物が発生するという問題がある。

[0005]

そこで、粒子線治療のさらに進んだ照射法として、体内患部を3次元格子状に切り分け て照射を行うスキャニング照射法の開発が進められている。このスキャニング照射法では 、形状コリメータやボーラスを用いることなく、ビーム軸方向についても精度よく患部に 合わせることが可能になり、従来の2次元的照射方法と比較して正常細胞への被爆を抑制 することができる。

20

10

[0006]

例えばスポットスキャニング照射法と呼ばれる3次元照射法においては、次のように各 点の照射を行っていく。

[0007]

ある点に対して予め決められた線量(この照射点毎の照射線量を決める作業は治療計画 と呼ばれる)を照射すると、スキャニング制御装置は線量モニタからの満了信号を受けて スポット切替指令を出力する。このスポット切替指令に基づき、ビーム出射制御装置はビ ーム出射を停止する。同時に、粒子線ビームを走査するスキャニング電磁石に励磁電流を 流すための電磁石電源は、次の照射点の座標に対応した電流値の設定を開始する。スキャ ニング照射装置は、電磁石電源の電流値の設定の完了信号を受信すると、ビーム出射制御 装置に対しビーム開始命令を出力し、次の点に対する照射が開始される。これを順次繰り 返して、1つの照射スライスに対する治療部位の照射を行う。そして、これが終了すると 、ビーム出射を一旦停止し、加速器から出射するビームのエネルギーを変更するか、レン ジシフタと呼ばれる飛程調整装置を制御することにより、ビーム進行方向のビーム停止位 置(スライス)を変更する。このようにスキャニング照射とスライス切替を順次行ってい くことで治療部位全域にわたる照射を行う。

[0008]

スポットスキャニング照射法の弱点は、ビーム出射制御装置がビーム停止命令を出力し ても、実際には直ちにビーム出射が停止できないことである。このため、漏れ線量が電磁 石の励磁電流変更時、すなわち、照射位置の移動中に患部に照射されることになる。各点 に対する照射線量(設定線量)が小さいときは、漏れ線量の比率(漏れ線量/設定線量) が大きくなるため、特に問題になる。この問題を抑制するには、ビーム強度を低下させて 、漏れ線量の比率を相対的に小さくさせる必要があるが、ビーム強度を低下させることは 、一方では治療の長時間化を招き、患者の身体的負担が大きくなってしまう。

【 0 0 0 9 】

スポットスキャニング法でビーム強度が上げられない問題を解決するため、ラスタース キャニング法と呼ばれる方法が新たに開発されている(非特許文献1等参照)。この方法 ではスポットスキャニング法と異なって、照射点を移動するときもビームを停止させない

50

。つまり、停止照射点(粒子線ビームが移動中でなく、停止した状態で設定された線量を 照射する点を停止照射点と呼ぶことにする)と停止照射点との間を粒子線ビームが移動す るときもビームが照射されるが、この間の照射量も含めて、治療計画、すなわち各停止点 における照射線量の最適化が行なわれる。

[0010]

スキャニング照射法において、正しい位置にビームが照射されていることを保証するため、照射ポートには位置モニタが配備されている。万一、スキャニング電磁石電源の電流設定異常や、上流の加速器からスキャニング装置までのビーム輸送部分でのビーム位置ずれなどにより、予め決められた照射位置と、位置モニタで測定された位置に相違が発生した場合は、スキャニング制御装置内の位置監視機構(ここでは位置モニタコントローラと呼ぶことにする)によりインターロック信号が出力され、治療照射は一時中断される。 【0011】

スキャニング照射用の位置モニタの一例は、例えば、特許文献1等に開示されている。 位置モニタは、例えば、電離箱の収集電極の電極部分が1軸方向に電気的に非接続な多数 のストリップに区切られた構成を持ち、これらストリップには各々、計測回路が接続され ている。計測回路の内部には積分部が設けられ、照射スポット毎に、各ストリップに収集 された電荷に相当する電気量が貯えられる。積分部から出力される電圧は、A/D変換器 (以下「ADC回路」と記す)によりデジタル信号として取り出される。そして、これら デジタル信号に対して重心計算などの演算を施すことによって、スポット位置を算出する

γ	n
2	υ
	-

30

10

【先行技術文献】

【特許文献】

[0012]

【特許文献1】特開2001-33560号公報

【非特許文献】

[0013]

【非特許文献1】古川卓司、外8名、「3次元スキャニング照射装置の設計検討」、放射 線医学総合研究所HIMACレポート:HIMAC-124、独立行政法人放射線医学総 合研究所発行、2007年4月

【発明の概要】

【発明が解決しようとする課題】

【0014】

他方、医師や放射線技師からは、スライス毎の線量プロファイル、即ち、スキャン時の 線量 2 次元分布が正しい分布であるかどうかを、照射中に視覚的に確認したいという強い 要望がある。前述した位置モニタは各照射点で位置が正しいかどうかを確認するためのも のであり、 2 次元分布としての線量プロファイルを出力するものではない。

【0015】

線量プロファイルを測定する装置として、平行平板電離箱の信号電極をマルチアレイ型 に形成したマルチアレイプロファイルモニタと呼ばれる装置がある。しかし、この装置で は各アレイから信号線を取り出す必要などから、信号電極が厚くなってしまう。スキャニ ング照射法では、良好な線量分布を形成する上で、ビームサイズ(ビーム幅)が重要なパ ラメータである。しかしながら、厚い電極を持つ装置(マルチアレイプロファイルモニタ)を粒子線ビームの経路上に配備するとビームは散乱を受け、ビームサイズ(ビーム幅) が許容できない範囲にまで広がってしまう。このビームサイズの増大が起きると、照射領 域はぼやけた線量分布となり、患部形状に合致した高精度の照射ができなくなってしまう ばかりでなく、患部の外側の正常組織の被爆が増大してしまう。

[0016]

本発明は、上記事情に鑑みてなされたものであり、粒子線ビーム形状の劣化を低く抑え つつ、簡素な構成でスキャン時の線量2次元分布を測定し表示することができる粒子線ビ ーム照射装置及びその制御方法を提供することを目的とする。

50

【課題を解決するための手段】

【0017】

上記課題を解決するため、本発明に係る粒子線ビーム照射装置は、粒子線ビームを生成 するビーム生成部と、前記粒子線ビームの出射を制御するビーム出射制御部と、前記粒子 線ビームを2次元走査するビーム走査部と、複数の第1の線状電極が第1の方向に並列配 置され、複数の第2の線状電極が前記第1の方向と直交する第2の方向に並列配置される センサ部と、前記各第1の線状電極から出力される第1の信号と、前記各第2の線状電極 から出力される第2の信号とから前記粒子線ビームの重心位置を算出し、前記第1、及び 第2の信号から前記重心位置の周辺の前記粒子線ビームの2次元ビーム形状を求めるビー ム形状算出部と、前記重心位置に対応する前記2次元ビーム形状を、前記2次元走査の範 囲に亘って累積記憶する記憶部と、前記記憶部に<u>累積的に記憶することで得られる、スラ</u> イス毎の2次元走査範囲の全範囲に亘る線量プロファイルであって、走査位置ごとに前記 粒子線ビームの2次元ビーム形状が反映された線量プロファイルを表示する表示部と、を 備えたことを特徴とする。

[0018]

また、上記課題を解決するため、本発明に係る粒子線ビーム照射装置の制御方法は、複数の第1の線状電極が第1の方向に並列配置され、複数の第2の線状電極が前記第1の方向と直交する第2の方向に並列配置されるセンサを具備する<u>と共に、粒子線ビームの出射</u>を制御するビーム出射制御部と、前記粒子線ビームを2次元走査するビーム走査部と、前記粒子線ビームの2次元ビーム形状を求めるビーム形状算出部と、記憶部と、表示部とを具備する粒子線ビーム照射装置の制御方法において、<u>前記ビーム出射制御部が、</u>前記粒子線ビームの出射を制御し、<u>前記ビーム走査</u>部が、前記粒子線ビームを2次元走査し、<u>前記</u>ビーム形状算出部が、前記各第1の線状電極から出力される第1の信号と、前記各第2の線状電極から出力される第2の信号とから前記粒子線ビームの重心位置を算出し、<u>前記ビーム形状算出部が、</u>前記記1、及び第2の信号から前記重心位置の周辺の前記粒子線ビームの2次元ビーム形状を求め、<u>前記記憶部が、</u>前記重心位置に対応する前記2次元ビーム形状を求め、<u>前記記憶部が、</u>前記重心位置に対応する前記2次元ビーム形状を、前記2次元走査の範囲に亘って累積記憶し、<u>前記表示部が、前記記憶部に累積的に記憶することで得られる、スライス毎の2次元走査範囲の全範囲に亘る線量プロファイルであって、走査位置ごとに前記粒子線ビームの2次元ビーム形状が反映された線量プロファイルであって、走査位置ごとに前記粒子線ビームの2次元ビーム形状が反映された線量プロファイルであって、走査位置ごとに前記粒子線ビームの3次元</u>

30

40

10

20

【発明の効果】【0019】

本発明に係るは粒子線ビーム照射装置及びその制御方法によれば、粒子線ビーム形状の 劣化を低く抑えつつ、簡素な構成でスキャン時の線量2次元分布を測定し表示することが できる。

【図面の簡単な説明】

[0020]

- 【図1】従来の粒子線ビーム照射装置の構成例を示す図。
- 【図2】ストリップ型の位置モニタ部(センサ部)の構成例を示す図。
- 【図3】3次元スキャニング照射の基本的な処理例を示すフローチャート。
- 【図4】スライス上の走査パターンの一例を示す図。

【図5】従来の3次元ラスタースキャニング照射における線量およびビーム位置の管理・ 制御の一例を示すタイミングチャート。

- 【図6】従来の位置モニタ(位置モニタ部とビーム位置検出回路)の例を示す図。
- 【図7】第1の実施形態に係る粒子線ビーム照射装置の構成例を示す図。
- 【図8】ビーム形状算出部(第1の実施形態)の細部構成例を示すプロック図。
- 【図9】各チャンネル信号から1次元ビーム形状を求める処理の概念を示す図。
- 【図10】記憶部の記憶領域を2次元で表現した図。

【図11】スライス毎の2次元走査範囲の全範囲に亘る線量プロファイル(線量の2次元 分布)の表示概念を示す図。 【図12】ビーム形状算出部の各処理と、記憶部に線量プロファイルを記憶させていく処 理のタイミングチャート。

(7)

【図13】ビーム形状算出部(第2の実施形態)の細部構成例を示すブロック図。

【発明を実施するための形態】

【 0 0 2 1 】

本発明の実施形態について添付図面を参照して説明する。

【0022】

(1)従来装置の構成及び動作

図1は、本発明の実施形態に係る粒子線ビーム照射装置1(図7)との比較のため、従 来の粒子線ビーム照射装置300の構成例を示した図である。粒子線ビーム照射装置30 0は、ビーム生成部10、出射制御部20、ビーム走査部30、X用電磁石30a、Y用 電磁石30b、真空ダクト31、線量モニタ部50、位置モニタ部51、リッジフィルタ 60、レンジシフタ70、制御部80等を備えて構成されている。 【0023】

粒子線ビーム照射装置300は、炭素等の粒子や陽子等を高速に加速して得られる粒子線ビームをがん患者100の患部200に向けて照射し、がん治療を行う装置である。粒子線ビーム照射装置300では、患部200を3次元の格子点に離散化し、各格子点に対して細い径の粒子線ビームを順次走査する3次元スキャニング照射法を実施することが可能である。具体的には、患部200を粒子線ビームの軸方向(図1右上に示す座標系における2軸方向)にスライスと呼ばれる平板状の単位で分割し、分割したスライスZ_i、スライスZ_{i+1}、スライスZ_{i+2}等の各スライスの2次元格子点(図1右上に示す座標系におけるX軸及びY軸方向の格子点)を順次走査することによって3次元スキャニングを行っている。

【0024】

ビーム生成部10は、炭素イオンや陽子等の粒子を生成すると共に、シンクロトロン等の加速器(主加速器)によってこれらの粒子を患部200の奥深くまで到達できるエネル ギーまで加速して粒子線ビームを生成している。

【0025】

出射制御部20では、制御部80から出力される制御信号に基づいて、生成された粒子 線ビームの出射のオン、オフ制御を行っている。

【 0 0 2 6 】

ビーム走査部30は、粒子線ビームをX方向及びY方向に偏向させ、スライス面上を2次元で走査するものであり、X方向に走査するX用電磁石30aとY方向に走査するY用 電磁石30bの励磁電流を制御している。

【0027】

レンジシフタ70は、患部200のZ軸方向の位置を制御する。レンジシフタ70は、 例えば複数の厚さのアクリル板から構成されており、これらのアクリル板を組み合わせる ことによってレンジシフタ70を通過する粒子線ビームのエネルギー、即ち体内飛程を患 部200スライスのZ軸方向の位置に応じて段階的に変化させることができる。レンジシ フタ70による体内飛程の大きさは通常等間隔で変化するように制御され、この間隔がZ 軸方向の格子点の間隔に相当する。なお、体内飛程の切り替え方法としては、レンジシフ タ70のように粒子線ビームの径路上に減衰用の物体を挿入する方法のほか、上流機器の 制御によって粒子線ビームのエネルギー自体を変更する方法でもよい。

【0028】

リッジフィルタ60は、ブラッグピークと呼ばれる体内深さ方向における線量のシャー プなピークを拡散させるために設けられている。ここで、リッジフィルタ60によるブラ ッグピークの拡散幅は、スライスの厚み、即ちZ軸方向の格子点の間隔と等しくなるよう に設定される。3次元スキャニング照射用のリッジフィルタ60は、断面が略2等辺三角 形のアルミニウム棒状部材を複数並べて構成している。粒子線ビームが2等辺三角形を通 過する際に生じる径路長の差異によってブラッグピークのピークを拡散させることが可能 30

20

10

40

であり、2等辺三角形の形状によって拡散幅を所望の値に設定することができる。 [0029]

線量モニタ部50は、照射する線量をモニタするためのものであり、その筐体内に、粒 子線の電離作用によって生じた電荷を平行電極で収集する電離箱や、筐体内に配置された 二次電子放出膜から放出される二次電子を計測するSEM(Secondary Electron Monit or)装置等によって構成されている。

位置モニタ部51は、ビーム走査部30によって走査された粒子線ビームが正しい位置 にあるかどうかを識別するためのものである。線量モニタ部50と類似した電荷収集用の 平行電極を有している。位置モニタ部51の電荷収集用電極は、線状電極(例えば複数の 短冊状の電極や、複数のワイヤからなる電極)がX方向及びY方向に夫々並列に配列され ている。複数の短冊状電極が配列されたものはストリップ型と呼ばれ、複数のワイヤ電極 が配列されたものはマルチワイア型と呼ばれる。

[0031]

図2は、ストリップ型の位置モニタ部51の構成例を示す図である。図2に示すように 、位置モニタ部51は、複数の短冊状電極(複数の第1の線状電極)がX軸方向(第1の 方向)に並列配置され、複数の短冊状電極(複数の第2の線状電極)がY軸方向(第1の 方向と直交する第2の方向)に並列配置されている。

制御部80は、粒子線ビーム照射装置1全体の制御をおこなうためのものであり、出射 制御部20に対するビーム出射のオン、オフ制御、ビーム走査部30に対するビーム走査 に関する指示、レンジシフタ70に対するスライス変更に伴うレンジシフト量の制御等を 行っている。

[0033]

図3は、3次元スキャニング照射の基本的な処理例を示すフローチャートである。 [0034]

まず、患部をビーム軸に対して複数のスライスに仮想的に分割し、分割されたスライス の1つが選択される。最初は例えば患部の最も深い位置にあるスライスZiが選択される 。また選択されたスライスの位置に応じて粒子線ビームの入射エネルギーとレンジシフタ 70におけるアクリル板の組み合わせが選択、設定される(ステップST1)。 [0035]

次に、最深スライスにおける患部形状に応じて粒子線ビームを照射する格子点の数Mと 格子点の位置(Xi、Yi)「i=1~M]、即ち照射対象のスポットが選択され、ビーム 走査部30によりスライス上の格子点位置(Xi、Yi)に粒子線ビームの向きが設定され る(ステップST2)。その後、粒子線ビームの出射が開始される(ステップST3)。 ビーム走査部30から出力された粒子線ビームは、リッジフィルタ60によって、体内飛 程分布幅がスライス幅に対応するようエネルギー分布がΖ軸方向に拡大される。

[0036]

格子点(Xi、Yi)に対する照射線量は線量モニタ部50により監視され、対象格子 点に対する照射線量が計画した線量に達すると線量満了信号が制御部80に出力され、制 御部80はこの信号を受信する(ステップST4)。

[0037]

3次元スキャニング照射法はスポットスキャニング法とラスタースキャニング法に大別 される。スポットスキャニング法は、粒子線ビームの位置をある格子点から次の格子点に 移動させている間はビーム出射を停止させ、移動完了後にビーム出射を再開させる方法で ある。従って、同一スライスを走査する間はビーム出射が断続することになる。 [0038]

これに対して、ラスタースキャニング法は、粒子線ビームの位置をある格子点から次の 格子点に移動させている間もビーム出射は停止することなく継続される。つまり、同一ス ライスを走査する間は、ビーム出射は途切れることなく連続する。

10

【 0 0 3 9 】

なお、スポットスキャニング法及びラスタースキャニング法のいずれの方法であっても 、粒子線ビームの位置は各格子点において計画された線量に達するまで停止し、計画線量 に達した後次の格子点に移動する。

【0040】

ステップST5では、スポットスキャニング法及びラスタースキャニング法のいずれの 方法であるかを判定し、スポットスキャニング法の場合には、一旦ビーム出射を停止し(ステップST6)、次のスポットヘビーム位置を移動させる。この処理を対象とするスラ イスの最終スポットまで繰り返す(ステップST7)。

[0041]

10

一方、スポットスキャニング法ではない場合、即ちラスタースキャニング法の場合には ビーム出射を停止することなく最終スポットまでビーム出射を継続する。 【0042】

1 つのスライスに対する照射が終了すると(ステップST7のYES)、スポットスキャ ニング法及びラスタースキャニング法のいずれの場合も一旦ビーム出射を停止し(ステッ プST8)、ステップST1に戻って次のスライスを選択すると共にレンジシフタ70の 設定を変更する。以上の処理を最終スライスに達するまで繰り返す(ステップST9)。 【0043】

上記の照射手順に必要となる各諸元は、例えば照射パターンファイルと呼ばれるデータ ファイルに記述され、治療照射の開始前に制御部80に転送される。照射パターンファイ 20 ルには、格子点毎に、スライス位置を与えるレンジシフタ厚、格子点(X、Y)に対応する ビーム位置を与えるX用電磁石30aやY用電磁石30bの駆動電流値、各格子点に対す る照射線量等が照射順に記述されている。

[0044]

図4は、スライス上の走査パターンの一例を示す図である。左上の開始格子点から右下 の最終格子点に到る軌跡パターンが治療計画で予め定められ、この軌跡パターンにそって 一方向に順次粒子線ビームが走査されていく。

[0045]

図 5 は、従来の 3 次元ラスタースキャニング照射における線量およびビーム位置の管理 ・制御の一例を示すタイミングチャートである。

[0046**]**

図5(a)、(b)に示す2つの電磁石の励磁電流は、2軸方向(X、Y)の位置設定 値に対応する。線量モニタで計測される線量(線量モニタ積算線量、図5(c))が設定 値に達すると線量満了信号(図5(e))が出力され、電磁石の励磁電流を変更して設定 値に達するとその励磁電流値に保持される。ビーム照射点は電磁石の励磁電流の変化にし たがい移動する。

【0047】

図5(f)、(g)に示すように、従来の位置モニタでは、位置モニタの各チャンネル に対して、線量満了信号により生成された信号により積分停止、データ読み出し、積分電 荷のクリア、積分開始が連続して行なわれる。積分される電荷は照射点を移動中に生じる 収集電荷と停止照射点に照射されたビームにより生じる収集電荷の和として得られる。 【0048】

40

30

図6は、従来の位置モニタ(位置モニタ部51とビーム位置検出回路)の例を示す図で ある。従来のビーム位置検出回路では、収集電極のチャンネル毎に、電流出力を電圧信号 に変換するI/V変換器と、電圧信号を増幅する増幅器と、増幅器に接続された積分器と 、A/D変換を行なうためのADC回路が接続されている。積分器には、照射点に対して 2桁にわたる照射時間の違いに対して精度を確保するため、3つのコンデンサが接続され 、これらを切り替えて積分時定数を変更できるようになっている。

【0049】

また、ビーム位置検出回路には2つの収集電極51a、51bそれぞれに対してFPG 50

(10)

A (Field Programmable Gate Array)等で構成される重心位置算出部が設けられている。重心位置算出部は A D C 回路の出力を取り込み、重心計算を行なって 2 つの収集電極 5 1 a、 5 1 b に対してそれぞれ重心位置(X c, Y c)を算出する。

【 0 0 5 0 】

算出された重心位置(Xc,Yc)は、予め決められた位置設定値(Xr,Yr)と比較され、これらの差(Xc-Xr、あるいはYc-Yr)が許容範囲を超えていれば位置 異常と判定してインターロック信号を発生させ、ビーム出射を停止させている。 【0051】

このように従来の位置モニタはスポットビームの位置が正常かどうかを判定するために ビームの重心位置を算出する機能を有している。

【0052】

しかしながら、従来の位置モニタから得られる情報は、あくまでも各ビームスポットの 推定重心位置を離散的に示す情報であり、スポット位置の重ね合わせとして形成される連 続的な線量分布は得ることができない。

[0053]

他方、医師や技師は、照射中に線量プロファイル(X方向及びY方向の線量の2次元分 布、或はこの2次元分布から切り出したX方向、Y方向の線量の1次元分布)を視覚的に 確認できることを望んでいる。例えば、スライス毎に線量プロファイルが表示されれば、 照射が正確に行われていることを確認しながら治療をおこなっていくことができるため、 安心感を持って治療を行うことが可能になる。

【0054】

そこで、本実施形態に係る粒子線ビーム照射装置1では、連続的な線量プロファイルを 高精度で、かつ簡素な構成でモニタリングする手段を提供している。

【 0 0 5 5 】

(2)本実施形態に係る粒子線ビーム照射装置(第1の実施形態)

図7は、第1の実施形態に係る粒子線ビーム照射装置1の構成例を示す図である。第1 の実施形態に係る粒子線ビーム照射装置1は、従来の粒子線ビーム照射装置300の構成 に加えて、ビーム形状算出部90、記憶部97、及び表示部98を有している。

【0056】

第1の実施形態に係る粒子線ビーム照射装置1においても、従来と同じ位置モニタ部5 30 1を有しているが、従来の位置モニタ部51がビーム位置の異常判定ためのセンサとして 用いられていたのに対して、第1の実施形態では、位置モニタ部51を、線量プロファイ ルを得るためのセンサとして利用している。

[0057]

ビーム形状算出部90は、位置モニタ部51(センサ部)のX電極51a(第1の線状 電極)の夫々から出力されるXチャンネル信号(第1の信号)と、Y電極51b(第2の 線状電極)の夫々から出力されるYチャネル信号(第2の信号)とから粒子線ビームの重 心位置を算出し、複数のXチャンネル信号、Yチャンネル信号から重心位置周辺の粒子線 ビームの2次元ビーム形状を求めている。

【0058】

40

10

20

記憶部97は、重心位置に対応する2次元ビーム形状を、2次元走査の範囲に亘って累 積記憶している。また、表示部98は、記憶部97に記憶した2次元走査の範囲の前記2 次元ビーム形状を、粒子線ビーム線量の2次元分布として表示している。

【0059】

図8は、ビーム形状算出部90の細部構成例を示すブロック図である。

【0060】

位置モニタ部51のX電極51a、Y電極51bの数(チャンネル数)は、特に限定す るものではないが、以下では、X方向、Y方向のチャンネル数が共に120チャンネルで ある場合を例として説明する。

[0061]

X 電極51 a の出力電流は、電流電圧変換(IV変換)回路911 a で電圧に変換され、 増幅器912 a で適宜の電圧に増幅された後、AD変換器(ADC)92 a でデジタル 信号に変換される。次段のデータ補正処理部93 a は、このデジタル信号に対してオフセ ット補正処理や平滑化処理を施して、重心位置算出部94 a に出力する。

【0062】

上記のIV変換回路911a、増幅器912b、ADC92a、及びデータ補正処理部 93aは、X電極51aの夫々に対して設けられており、本例では、120チャンネル分 となる。

【0063】

Y 電極 5 1 a の夫々に対しても、同様に、120チャンネル分のIV変換回路911b 10 、増幅器912b、ADC92b、及びデータ補正処理部93bが設けられている。

【0064】

次段の重心位置算出部94a、94bでは、オフセット補正処理や平滑化処理が施されたX方向、Y方向の各チャンネル信号の振幅値から、粒子線ビームのX方向の重心位置と、Y方向の重心位置を夫々算出している。重心位置の算出方法自体は特に限定するものではなく、従来の公知技術を利用すればよい。

【0065】

[0066]

1次元ビーム形状(X)抽出部95aは、算出されたX方向重心位置の周辺の複数のX チャンネル信号(第1の信号)の振幅値からX方向(第1の方向)の1次元ビーム形状(第1ビーム形状)を求めている。1次元ビーム形状(Y)抽出部95bも同様にY方向の ² 1次元ビーム形状を求めている。

20

30

図9は、各チャンネル信号から1次元ビーム形状を求める処理の概念を示す図である。 X方向の重心位置が求まると、その重心位置に最も近いチャンネル(このチャンネルを、 以下、中心チャンネルNcxと呼ぶ)をX方向の120チャンネルの中から特定し、中心 チャンネルの信号の振幅値X(Ncx)と、中心チャンネルの前後nチャンネル、例えば 、前後5チャンネル、の信号の振幅値とを抽出する。抽出したn+1チャンネルの信号の 振幅値を、例えば、Xi=X(i);(i=Ncx-n~Ncx+n:i、nは整数)と 表記すると、X方向の1次元ビーム形状は、抽出したn+1チャンネルの信号の振幅値を チャンネルの順に配列したデータ系列F(Xi)として表すことができる。 【0067】

同様に、Y方向の重心位置に最も近いチャンネル(中心チャンネルNcy)の信号の振幅値Y(Ncy)と、中心チャンネルの前後のmチャンネル(例えば、前後5チャンネル)の信号の振幅値とを、例えば、Yj=Y(j);(j=Ncy-m~Ncy+m:j、mは整数)と表記すると、Y方向の1次元ビーム形状は、抽出したm+1チャンネルの信号の振幅値をチャンネルの順に配列したデータ系列F(Yj)として表すことができる。 【0068】

2次元ビーム形状算出部96は、上記のようにして得られたX方向及びY方向の夫々の 1次元ビーム形状F(Xi)とF(Yj)の積から次式のように2次元ビーム形状G(X i,Yj)を求めている。

【0069】

G(X i , Y j) = F(X i)・F(Y j) (式 1) X i = X (i) ; (i = N c x - n ~ N c x + n : i、nは整数) Y j = Y (j) ; (j = N c y - m ~ N c y + m : j、mは整数)

【 0 0 7 0 】

2次元ビーム形状G(Xi,Yj)を構成するチャンネル数m、n、即ち、全チャンネルから抽出するチャンネル数)が多いほどビーム形状の精度は上がるが、必要以上にチャンネル数を増やしても演算時間やデータ転送時間が増加するだけである。適正なチャンネル数は、ビームサイズ(ビーム幅)と線状電極の間隔によって概ね定まる。 【0071】

(11)

ビーム形状はガウス分布形状で概略近似することが可能であり、この場合ビームサイズ はガウス分布の標準偏差で近似することができる。ビームサイズ(標準偏差)が5mmで あるとすると、重心位置を中心として20mm程度がビームプロファイルを形成する範囲 である。したがって、チャンネル間隔(線状電極の間隔)が2mmであれば、重心位置に 最も近いチャンネルを中心に11チャンネル(中心チャンネルと、その前後の5チャンネ ル)が伝送するのに適した範囲となる。

【0072】

このように、2次元ビーム形状G(Xi,Yj)を構成する適正なチャンネル数はビームサイズに依存して異なるため、全チャンネルから抽出するチャンネル数は変更可能に構成することが好ましい。

【0073】

上式で算出された2次元ビーム形状G(Xi,Yj)は記憶部97に転送される。図1 0は、記憶部97の記憶領域を2次元で表現した図であり、2次元ビーム形状G(Xi, Yj)がX方向チャンネル番号iとY方向のチャンネル番号jに対応するアドレスに記憶 される様子を例示している。前述したように、本例では、X方向、Y方向の全チャンネル 数は夫々120であり、2次元ビーム形状G(Xi,Yj)を構成するチャンネル数は、 X方向、Y方向の全チャンネル数は夫々11となっている。

【0074】

なお、重心位置が画像領域の端(最小チャンネル1、あるいは最大チャンネル120) から5チャンネル以内となった場合には不定のデータ値が入ってしまう。これを避けるた ²⁰ め、図10に示したように、X、Yともに120チャンネルの外側にそれぞれ5チャンネ ルずつの値ゼロを持つ領域(ダミーエリア)を入れておくとよい。

【0075】

スポット切替によりスキャニング電磁石の設定電流値が変化すると、これにしたがって スポット位置が変更され、異なる重心位置近傍に同様のプロファイルデータが形成される 。これらを記憶部97に累積的に記憶させることで、図11に例示したように、スライス 毎の2次元走査範囲の全範囲に亘る線量プロファイル(線量の2次元分布)を得ることが できる。

【0076】

記憶部97に累積記憶された線量プロファイルは、例えばスライス単位で表示部98に ³⁰ 送られ、記憶部97の記憶領域に対応する表示部98の画面Wに線量プロファイルが視認 容易に表示される。

【0077】

図12は、ビーム形状算出部90の各処理と、記憶部97に線量プロファイルを記憶さ せていく処理のタイミングチャートである。

【0078】

チャンネル毎に設けられている夫々のAD変換器92aは、全チャンネルのチャンネル 信号を当時並列に、例えば0.2μs毎にサンプリングしてAD変換する(図12(a))。また、データ補正処理部93aは、AD変換器92aの出力信号に対して、チャンネ ル毎のオフセット補正を行い、さらにアベレージング処理を行ってノイズの影響の低減を 図っている。アベレージ処理が施されたX方向の各チャンネル信号は、例えば、5μs毎 にX用重心位置算出部94aに送られる。アベレージ処理が施されたY方向の各チャンネ ル信号も同様に、Y用重心位置算出部94bに送られる(図12(b))。

40

10

【0079】

X用、Y用重心位置算出部94a、94bでは、入力されたX方向、Y方向の120チャンネルのデータを用いてX方向、Y方向夫々の重心演算を行って重心位置を求める。また、1次元ビーム形状(X)抽出部95a、及び1次元ビーム形状(Y)抽出部95bは、重心位置近傍の11チャンネルのチャンネルデータを抽出する。重心位置の算出、及び 重心位置近傍の11のチャンネルデータの抽出は、データの入力に同期して、例えば5µ s周期で行われる(図12(c))。

(12)

[0080]

抽出された X 方向、 Y 方向夫々11のチャンネルデータ(1次元ビーム形状F(Xi) とF(Yj))は、2次元ビーム形状算出部96に出力される。2次元ビーム形状算出部 96では、(式1)の演算を行い、算出された2次元ビーム形状G(Xi,Yj)を記憶 部97に送る。記憶部97では、送られてきた2次元ビーム形状G(Xi,Yj)を対応 するチャンネルに順次累積的に記憶している。

(13)

[0081]

2次元ビーム形状の算出処理と記憶部97への記憶処理(図12(d)に示すイメージ 処理)もデータの入力に同期して、例えば5µsの周期で行われる。

【0082】

10

記憶部97は、制御部80aからスライス切換指令を受信すると、累積記憶している2次元ビーム形状、即ち、線量プロファイルを表示部98に出力し、スライス単位の線量プロファイルを表示部98に表示させる。

【0083】

一方、制御部80aからのスポット切換信号を受信すると(図12(e))、重心位置
 算出部94a、94bで算出されたX方向、Y方向の重心位置は制御部80aへ送られ(図12(f))、制御部80aで従来と同様にビーム位置の異常/正常の判定が行われる

【0084】

従来の粒子線ビーム照射装置では、位置モニタ部51から出力されるチャンネル信号を ²⁰ 用いて粒子線ビームの重心位置を算出し、ビーム位置の異常判定を行う機能しか有してい なかった。

【0085】

これに対して、第1の実施形態に係る粒子線ビーム照射装置1では、粒子線ビームの重 心位置を算出してビーム位置の異常判定を行う機能に加えて、位置モニタ部51から出力 されるチャンネル信号を用いて線量プロファイルを生成し、表示部98に2次元画像とし て表示することができる。この線量プロファイルの表示により、医師や放射線技師はスキ ャン時の線量2次元分布が正しい分布であるかどうかを、照射中に視覚的に確認すること が可能となる。また、線量プロファイルは、マルチアレイプロファイルモニタと呼ばれる 特殊な装置をビーム経路に別途設けることなく、従来の装置が具備している位置モニタ部 51からの出力信号を処理することで生成することができる。このため、マルチアレイプ ロファイルモニタの挿入によってビームサイズ(ビーム幅)を増大させることなく、従来 の粒子線ビーム照射装置と同じシャープなビーム形状を維持することができる。

30

【0086】

また、従来からある位置モニタ部51からの出力信号に対して、比較的簡易な処理で線 量プロファイルを生成しているため、装置全体のコスト増も低く抑えることができる。 【0087】

(3)第2の実施形態

次に本発明に懸かる第2の実施形態について説明する。図13は、第2の実施形態に係 る粒子線ビーム照射装置1のビーム形状算出部90aの構成例を示す図である。第1の実 ⁴⁰ 施形態と同じ機能を有する構成に対しては図8と同じ符号を付している。

【0088】

第2の実施形態では、データ補正処理部93a、93bにてチャンネル毎のオフセット 補正やスムージング処理を行った後、重心位置 / 分散算出部941a、941bでX方向 、Y方向の重心位置(X'、Y')を算出すると共に、位置X、Yの分散(Sx、Sy) を算出している。

【 0 0 8 9 】

X方向の重心位置(X')と分散(S x)は、例えば、次式によって算出される。ここで、xはチャンネル番号(x:1~120)であり、P(x)は、各チャンネルのチャンネル信号である。また、Aは、チャンネル信号の総和である。

【数1】

$$Sx = \frac{1}{A} \cdot \sum_{x=1}^{n} \left[x^2 \cdot P(x) \right] - X'^2 = \frac{1}{A} \sum_{x=1}^{n} \left[(x - X')^2 \cdot P(x) \right]$$
 10

(式4)

[0090]

一方、1次元ガウスビーム算出部951aでは、X方向1次元ビーム形状がガウスビーム形状で近時できるものと仮定し、算出した重心位置(X')と分散(S x)を用いて、X方向1次元ビーム形状F(x,S x)を次式によって算出する。
 【数2】

$$F(x, Sx) = \frac{1}{\sqrt{2\pi Sx}} \cdot \exp\left[-\frac{1}{2} \cdot \frac{(x - X')^2}{Sx}\right]$$
 20

(式5)

同様にして、1次元ガウスビーム算出部951bでは、Y方向1次元ビーム形状F (y, Sy)を、算出した重心位置(Y')と分散(Sy)を用いて、次式から算出する。

$$F(y, Sy) = \frac{1}{\sqrt{2\pi Sy}} \cdot \exp\left[-\frac{1}{2} \cdot \frac{(y - Y')^2}{Sy}\right]$$

(式6)

30

[0091]

2次元ビーム形状算出部96では、第1の実施形態と同様に、2つの1次元ビーム形状 (第2の実施形態では、いずれも1次元ガウスビーム形状)の積をとって、次式のように 2次元ビーム形状G(×、y)を算出する。

【0092】

$$G(x, y) = F(x, Sx) \cdot F(y, Sy) \quad (\exists 7)$$

【0093】

1次元ガウスビーム算出部951a、及び951bでは、重心位置と分散が送られてく 40 る毎に適宜のメモリに保存していく。そして、スライス切換信号を受信すると、1次元ガ ウスビーム算出部951a、及び951bでは(式5)、(式6)の演算を行い、2次元 ビーム形状算出部96では(式7)の演算を行って線量プロファイルを作成し、記憶部9 7に累積保存していく。そして、1スライス分の線量プロファイルが累積されると、表示 部98に出力して線量プロファイルを表示する。

[0094]

第1の実施形態と第2の実施形態のいずれでも線量プロファイルを作成し、表示することができるが、以下の点で相違している。

【0095】

第1の実施形態では、重心演算を行う毎に、1次元ビーム形状、及び2次元ビーム形状 50

の作成処理と記憶部97への累積保存処理を平行して行っているため、スライス切替指令 を受けると直ちに線量プロファイルを表示することができる。また、第2の実施形態のよ うにビーム形状を特定の分布形状(本例では、ガウス分布形状)で近似することなく、生 データを用いて2次元データを算出するため、実際の二次元分布との合致性が高い。 【0096】

一方、第2の実施形態では、スライス切替指令を受けてから1次元ビーム形状、及び2 次元ビーム形状の作成処理を行うため、画像データ出力までに時間を有するものの、信号 処理回路に画像データを保存するためのメモリが必要でなくなるので、位置モニタのチャ ンネル数が大きい場合に適している。また、算出した分散を保存することにより、画像に 異常が認められたときに原因を追求することが容易になる。分散の平方根は標準偏差であ り、ビームサイズを直接表す指標となるからである。

【0097】

以上説明してきたように、上記第1、第2の実施形態に係る粒子線ビーム照射装置1及 びその制御方法によれば、粒子線ビーム形状の劣化を低く抑えつつ、簡素な構成でスキャ ン時の線量2次元分布(線量プロファイル)を測定し表示することができる。

【0098】

なお、本発明は上記の実施形態そのままに限定されるものではなく、実施段階ではその 要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示さ れている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、 実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる 実施形態にわたる構成要素を適宜組み合わせても良い。

20

10

【符号の説明】 【0099】

- 1 粒子線ビーム照射装置
- 10 ビーム生成部
- 20 出射制御部
- 30 ビーム走査部
- 51 位置モニタ部(センサ部)
- 90 ビーム形状算出部
- 97 記憶部
- 98 表示部

【図3】

【図8】

フロントページの続き

- (72)発明者 前田 一尚
 東京都港区芝浦一丁目1番1号 株式会社東芝内
 (72)発明者 角谷 暢一
- 東京都港区芝浦一丁目1番1号 株式会社東芝内 (72)発明者 古川 卓司 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人 放射線医学総合研究所内 (72)発明者 稲庭 拓
- 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人 放射線医学総合研究所内
 (72)発明者 佐藤 眞二
 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人 放射線医学総合研究所内
- (72)発明者 野田 耕司 千葉県千葉市稲毛区穴川四丁目9番1号 独立行政法人 放射線医学総合研究所内

審査官 沖田 孝裕

(56)参考文献 特開2010-012056(JP,A) 特開2002-006051(JP,A) 特開平03-108687(JP,A) 特開2008-175829(JP,A)

(58)調査した分野(Int.Cl., DB名)

A 6 1 N 5 / 1 0 G 2 1 K 5 / 0 4 G 0 1 T 1 / 2 9