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Description

TECHNICAL FIELD

[0001] The present invention relates to an H-mode drift-tube linac which is the type of drift-tube linear accelerator
designed to accelerate charged particles by utilizing a TE wave (i.e., H mode) generated inside a resonator, and a
method for adjusting the frequency therefor. In particular, the present invention relates to an auto-tuner selection process
for use in the H-mode drift-tube linac.

BACKGROUND ART

[0002] A drift-tube linac (i.e., drift-tube linear accelerator) designed to accelerate charged particles by utilizing a trans-
verse electric (TE) wave (i.e., H mode) where a current flows in a direction perpendicular to the beam axis (i.e., the axis
of a charged particle beam) is known as an H-mode drift-tube linac. In the H-mode drift-tube linac, a large number of
drift tubes are arranged in a cavity resonator along the beam axis in the resonator, and a predetermined voltage is
applied between respective adjacent ones of the drift tubes so that particles are accelerated according to the voltage
(i.e., potential difference) successively every time the particles pass through each of the drift tubes.
[0003] One type of H-mode drift-tube linac using an interdigital H-mode (IH) resonator is known as an IH linac. The
IH resonator typically has a structure in which a pair of upper and lower plates, called "ridges", are mounted (in a vertically
opposed arrangement) inside a cylindrical- shaped resonator (although the ridges are not essential to the IH linac). A
plurality of drift tubes are alternately attached to the upper and lower ridges through  respective stems in such a manner
as to be aligned in an axial direction of the resonator. Particles will travel in the axial direction while passing through the
drift tubes.
[0004] Generally, a linac is equipped with a tuner for adjusting a resonant frequency and a voltage distribution in an
entire cavity of a resonator. The tuner includes a plurality of fixed tuners and a manually- operated tuner. The fixed
tuners are installed in a lateral portion of a wall of a resonator tank and adapted to be used for roughly adjusting the
voltage distribution and the resonant frequency. The fixed tuners are immovably welded after the rough adjustment. The
manually- operated tuner is adapted to be used for fine adjustment to set a final voltage in the cavity.
[0005] During operation of the linac, the resonant frequency is likely to vary due to thermal expansion of the tank and
other factor. An auto-tuner is an effective means to compensate or correct such a variation in the resonant frequency
caused by temperature change, during the linac operation. Specifically, a slight resonant frequency shift on the side of
the tank due to temperature change and other factor is detected by measuring a phase difference between a traveling-
wave component in an output of a high-frequency amplifier, and a monitoring signal picked up inside the tank. Then, an
automatic frequency control (AFC) circuit performs a calculation based on the measured phase difference to drive the
auto-tuner in such a manner as to correct the slight resonant frequency shift.
[0006] The H-mode drift-tube linac employs a plurality of tuners, wherein some of the tuners are selectively used as
an auto-tuner, and the remaining tuners are used as manually-operated and fixed tuners. The plurality of tuners are
arranged in an axial direction of a resonator and along an outer surface of a resonator tank, and each adapted to allow
an end member thereof to be inserted into a cavity through a lateral portion of a wall of the resonator tank so as to
change a circuit constant of the resonator to modify a resonant frequency or a voltage distribution, as will be described
later. Among the tuners, one type configured to change an inductance of the resonator is an inductive tuner, i.e., L tuner,
and another type configured to  change a capacitance of the resonator is a capacitive tuner, i.e., C tuner.
[0007] S. Arai et al., "Performance of the RNB linac at KEK-TANASHI", proceedings EPAC 98, pages 770-772,
XP002561730 describes a piston-tuner control system for a linac. The piston tuners are moved automatically so as to
minimize the reflected power from the cavity in order to compensate the resonant-frequency shift of the cavity due to
the temperature change.
The auto-tuner is required to have a function of changing only a frequency without changing a voltage distribution. In
reality, if one of the tuners is changed in position, a voltage distribution in the entire resonator tends to be changed. It
is known that this tendency becomes prominent, particularly, in the IH linac. Thus, two or more of the tuners different in
position have to be selectively used as auto-tuners in such a manner that respective voltage changes attributed thereto
are cancelled out to keep the voltage distribution from being changed. For this purpose, a three-dimensional electro-
magnetic field calculation is essential to accurately figure out the voltage distribution, because the voltage distribution
in the resonator is dependent on an entire structure of the resonator. However, if the three-dimensional electromagnetic
field calculation is performed for each of the tuners while finely changing an insertion amount thereof, to figure out a
relationship between a tuner insertion amount and a voltage change, a considerable time has to be spent therefor. As
a way for evaluating a combination of tuners suitable for auto-tuners, such a repetitive three-dimensional electromagnetic
field calculation is not realistic.
[0008] Non- Patent Publication 1: Satoshi YAMADA, et al., "Integrated Report on Construction of Heavy Particle Beam
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Cancer Therapy Equipment", March/ 1995, National institute of Radiological Sciences.
US- 2005/0029970 relates to a drift tube accelerator for the acceleration of ion packets in ion beams acceleration systems,
wherein a housing consists of longitudinally divided three- part vacuum tank having a central unit and a lower half- shell
comprising a structured lower steel block and an upper half- shell comprising a structured upper steel block. The  drift
tube accelerator has such a stable and massive structure that it requires no external supporting aids of any kind in order
to obtain alignment, which is reliable and accurate to within of few micrometers, of the acceleration components within
the drift tube accelerator with respect to the longitudinal axis of iron beam guidance of the central unit. The massive
structure of the drift tube accelerator according to the invention can be used in general for any linear accelerator.
A. K. Mitra et al., "RF test and commissioning of the radio frequency structures of the TRIUMF ISAC I facility", proceedings
LINAC 02, pages 106- 108, XP002561729 describes a linac with five independent inter- digital H- mode (IH) structures,
each with 0 degree synchronous phase, providing the main acceleration. All the given IH tanks are equipped with coarse
tuners to bring the resonant frequencies of the tanks within the tuning range of the fine tuners. Bead pull measurement
on all the cavities show field variation of 6 1% across the gaps.

DISCLOSURE OF THE INVENTION

[PROBLEM TO BE SOLVED BY THE INVENTION]

[0009] It is an object of the present invention to provide a step of evaluating a combination of tuners suitable for auto-
tuners without the need for time-consuming calculation.
It is another object of the present invention to provide a method for adjusting the frequency of a H-mode linac using
auto-tuners selected through the evaluation step, and a linac designed through said method.

[MEANS FOR SOLVING THE PROBLEM]

[0010] According to a first aspect of the present invention, there is provided a method for adjusting the frequency of
an H-mode drift-tube linac utilizing a TE wave (H mode) generated inside a resonator, said method comprising the steps
of nominating at least two tuners from among a plurality of tuners arranged along an axial direction of said resonator;
and characterized by selecting said nominated tuners as auto-tuners through evaluation in terms of whether only a
frequency is changed without changing a voltage distribution in said resonator, using a combination of respective positions
of said nominated tuners in the axial direction of said resonator and respective insertion amounts of said nominated
tuners into said resonator.
[0011] Preferably, the step of selecting includes the sub- steps of calculating or measuring individual voltage change
data corresponding to respective insertion amounts, for each of the plurality of tuners, based on a given relationship
between a tuner insertion amount and a voltage change, and determining a combination of at least two auto- tuner and
a combination of respective insertion amounts of the at least two auto- tuner, using the individual voltage change data.
[0012] Preferably, the step of selecting further includes the sub- step of verifying the given relationship between a
tuner insertion amount and a voltage change.
[0013] Preferably, the step of selecting further includes the sub- step of verifying whether the determined combinations
are adequate.
[0014] In a specific embodiment of the present invention, the given relationship between a tuner insertion amount and
a voltage change is a linear relationship between a tuner insertion amount and a voltage change. In this case, the
individual voltage change data corresponding  to respective insertion amounts, for each of the plurality of tuners, are
calculated through a proportional calculation based on the linear relationship.
[0015] In another specific embodiment of the present invention, the sub-step of determining a combination of at least
two auto-tuners and a combination of respective insertion amounts of the at least two auto-tuners comprises determining
the combinations on a condition that, when the individual voltage change data of the nominated tuners are added together,
respective voltage changes attributed to the nominated tuners are cancelled out to allow an entire voltage distribution
to have substantially no change.
Preferably, the respective insertion amounts of said auto-tuners are adjusted without changing a ratio between said
respective insertion amounts.
[0016] According to a second aspect of the present invention, there is provided an H-mode drift-tube linac utilizing a
TE wave (H mode) generated inside a resonator, said linac comprising a plurality of tuners which are arranged along
an axial direction of said resonator, and partly used as an auto-tuner, wherein said auto-tuner consists of at least two
tuners; and characterized by comprising means for selecting said at least two tuners which are nominated from among
said plurality of tuners, said means selecting through evaluation in terms of whether only a frequency is changed without
changing a voltage distribution in said resonator, using a combination of respective positions of said nominated tuners
in the axial direction of said resonator and respective insertion amounts of said nominated tuners into said resonator.
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[0017] Preferably, the linac of the present invention includes insertion- amount adjustment means adapted to adjust
respective insertion amounts of the selected at least two auto- tuners without changing a ratio between the respective
insertion amounts.
[0018] Preferably, the insertion- amount adjustment means includes storage means adapted to store the value of the
ratio between the respective insertion amounts of the at least two auto- tuners.

[EFFECT OF THE INVENTION]

[0019] In the present invention, at least two tuners are nominated from among a plurality of tuners arranged along an
axial direction of a resonator, and evaluated using a combination of respective positions of the nominated tuners in the
axial direction of said resonator and respective insertion amounts of the nominated tuners into the resonator, so that a
combination of tuners suitable for auto-tuners can be determined in a relatively simple manner. In particular, a combination
of two or more tuners which allow respective voltage changes attributed thereto to be cancelled out so as to substantially
avoid a change in entire voltage distribution can be determined in a relatively simple manner. In the process of evaluating
which combination of tuners is optimal, individual voltage change data corresponding to respective insertion amounts,
for each of the plurality of tuners, are calculated based on a given relationship between a tuner insertion amount and a
voltage change. This makes it  possible to eliminate the need for a three-dimensional electromagnetic field calculation
requiring a considerable time for an infinite number of combinations of tuners. Further, in the present invention, respective
insertion amounts of the selected auto-tuners are adjusted without changing a ratio between the respective insertion
amounts. Thus, a voltage change during the adjustment can be estimated, and a resonant frequency can be corrected
while maintaining the voltage change in an allowable range.

BEST MODE FOR CARRYING OUT THE INVENTION

[0020] The present invention will now be described based on one embodiment thereof where an IH-mode drift-tube
linac (IHDTL) having a resonator provided with sixteen tuners is designed to allow some of the tuners to be finally used
as auto-tuners. FIG 1 is a conceptual diagram of the IH-mode drift-tube linac. This linac has a resonator formed by a
tank 1 with a vacuum cavity (i.e., evacuated hollow) structure. The tank 1 is provided with sixteen tuners (tuners T1 to
T16) which are arranged axially (i.e., in an axial direction of the resonator) over the range from an inlet end 2 to an outlet
end 3 thereof and alternately on right and left sides of an outer surface thereof Further, the tank 1 is internally provided
with a plurality of drift tubes 4 which are aligned along the axial direction.
[0021] FIGS. 2, 3 and 5 are schematic vertical sectional views showing the linac, taken along a direction orthogonal
to the axial direction. As shown in FIGS. 2 and 3, each of the drift tubes 4 is mounted to upper and lower regions of an
inner surface of a wall of the tank 1 through upper and lower ridges 5. Each of the tuners T is installed in a lateral portion
of the wall of the tank 1. Each of the tuners T is adapted to allow an end member 6 thereof to be inserted into a cavity
through the lateral portion of the wall of the tank 1. That is, the tuners T1 to T16 in FIG 1 are structurally the same, but
different from each other in position in the axial direction of the resonator.
[0022] FIG 2 shows a state when the end member 6 is not inserted into the cavity, i.e., the tuner  T is set at a maximally
retracted position. FIG 3 shows a state after the end member 6 is inserted into the cavity. A distance by which the end
member 6 is inserted into the cavity will hereinafter be referred to as "insertion distance d", as shown in FIG 4. FIG 4 is
a cross-sectional view of a connection portion between the resonator and the tuner, taken along the axial direction of
the resonator, which specifically shows a state after the end member 6 of the tuner is inserted into the cavity through
the lateral portion of the wall of the tank 1. As shown in FIG 1, the tank 1 is formed to have an inner diameter which
gradually increases in a direction from the inlet end 2 to the outlet end 3. Thus, in a strict sense, respective insertion
distances d on an inlet side (upper side in FIG 4) and on an outlet side (lower side in FIG 4) are different from each
other, as shown in FIG 4. As used in the following description about the embodiment of the present invention, the term
"insertion distance d" means an insertion distance on the outlet side, therethroughout.
[0023] A tuner to be used in the present invention may be an inductive tuner or may be a capacitive tuner. The tuner
T illustrated in FIGS. 2 to 4 is an inductive tuner (L tuner), and a tuner Tc illustrated in FIG 5 is a capacitive tuner (C
tuner). The capacitive tuner Tc comprises an end member 6, a rod 7 fixed to the end member 6, and a conductive plate
8 fixed to a distal end of the rod 7. The conductive plate 8 is formed and disposed to cover the drift tube 4 and extend
up to respective portions of the upper and lower ridges 5. The capacitive tuner Tc is designed to change an insertion
amount thereof so that a distance between the conductive plate 8 and each of the drift tube 4 and the portions of the
ridges 5, i.e., a capacitance therebetween, can be changed to adjust a voltage distribution or a resonant frequency in
the resonator.
[0024] Some of the sixteen tuners illustrated in FIG 1 are used as auto-tuners, and the remaining tuners are used as
manually-operated tuners. For this purpose, it is evaluated how many tuners are necessary as auto-tuners, and which
combination of tuners is optimal. This evaluation is performed according to the following steps:
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(1) A linearity of a voltage change to a tuner insertion amount is verified;
(2) Based on the voltage-change linearity, voltage change data corresponding to respective insertion amounts are
calculated for all the tuners, individually;
(3) A combination of auto-tuners and a combination of respective insertion amounts of the auto-tuners are determined
using the calculated individual voltage change data; and
(4) It is verified whether the determined combinations of auto-tuners and respective insertion amounts of the auto-
tuners are adequate, by a direct three-dimensional electromagnetic field calculation.

[0025] If a three-dimensional electromagnetic field calculation is performed for each of the sixteen tuners while finely
changing an insertion amount thereof, to figure out the relationship between a tuner insertion amount and a voltage
change, a considerable time has to be spent therefor. In contrast, when a voltage change has a linear characteristic
relative to a tuner insertion amount, voltage changes corresponding to respective tuner insertion amounts can be derived
from a voltage change corresponding to a certain tuner insertion amount by a proportional calculation. Thus, in this
embodiment, it is first verified whether a voltage change has a linear characteristic relative to a tuner insertion amount.
After the verification, a voltage change corresponding to a certain tuner insertion amount is calculated for each of the
sixteen tuners. Based on the calculation result, the relationship between a voltage change and a tuner insertion amount
in each of the sixteen tuners can be figured out. An auto-tuner is required to have a function of changing only a frequency
without changing a voltage distribution, and therefore two or more of the tuners different in axial position have to be
selectively used as auto-tuners in such a manner that respective voltage changes attributed thereto are cancelled out
to keep an entire voltage distribution from being changed. For this purpose, in this embodiment, respective voltage
changes to be caused by inserting the two or more tuners are added to estimate a total voltage change occurring when
the tuners are simultaneously inserted. That is, desired auto-tuners are determined based on a combination of two or
more tuners and a combination of respective insertion amounts of the two or more tuners. Lastly, a direct three-dimensional
electromagnetic field calculation is performed for a model having the two or more tuners simultaneously inserted, to
verify whether the  determined auto-tuners are adequate.
[0026] Although a given relationship between a voltage change and a tuner insertion amount in the present invention
is solely described as the linear relationship in the above embodiment, the given relationship in the present invention is
not limited to the linear relationship, but may be any other suitable relationship therebetween which allows an operation
of acquiring voltage change data based on a three- dimensional electromagnetic field calculation to be omitted. In the
above embodiment, the voltage change linearity and the adequacy in the combinations of auto- tuners and respective
insertion amounts of the auto- tuners are verified in the steps (1) and (4) . These verification steps are not essential to
the present invention, and may be omitted. Further, in the above embodiment, the voltage change data is acquired from
each of the sixteen tuners (i.e., all the tuners), using the linear relationship between a voltage change and a tuner
insertion amount. Alternatively, in the present invention, the voltage change data may be acquired only from some of a
plurality of tuners to be subjected to auto- tuner selection (i.e., to be nominated for auto- tuners), instead of all the tuners.

<Verification of Linearity>

[0027] In each of the sixteen tuners, it is verified whether the relationship between a voltage change and an insertion
amount of the tuner becomes linear when the tuner is gradually inserted into the cavity. More specifically, a three-
dimensional electromagnetic field calculation is performed while changing the tuner insertion amount, and calculated
voltage values are plotted. In the present invention, the calculation for verifying the linearity may be performed for at
least one of a plurality of tuners. The following description will be described about one specific example where this
calculation was performed for the tuner T1. In this example, a position where the tuner T1 is inserted by 10 mm from a
maximally retracted position (see FIG 2), (i.e., a position where an insertion distance is 10 mm), is defined as a reference
position, and a voltage at the reference position is defined as a reference voltage V. FIG 6 shows plots of voltage changes
ΔV occurring when the tuner T1 is inserted and retracted relative to the reference position, wherein the voltage changes
ΔV are  represented by a percentage with respect to the reference voltage V. Given that an insertion amount from the
reference position is X, the following relation is satisfied in this embodiment: d = 10 + X. It is understood that this reference
position is set for data acquisition, and the reference position in the present invention may be set at any other suitable
position for data acquisition. In the present invention, the term "insertion amount" generally means the above insertion
amount X. The insertion amount X has a positive or negative value. That is, the insertion amount X having a positive
value means that the end member of the tuner T1 is inserted from the reference position into the cavity, and the insertion
amount X having a negative value means that the end member of the tuner T1 is retracted from the reference position
in a direction for moving the end member out of the cavity.
[0028] In FIG 6, the horizontal axis represents a gap number which is assigned to each gap in ascending order from
the inlet end, and the vertical axis represents ΔV/V (%). In FIG 6, curves S0, S20, S30 and S40 indicate voltage changes
at insertion distances d = 0 mm, 20 mm, 30 mm and 40 mm (insertion amounts = - 10 mm, 10 mm, 20 mm and 30 mm),
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respectively. For more detailed verification, tuner insertion amounts and voltage changes in representative gaps were
plotted, as shown in FIG 7. In FIG 7, the horizontal axis represents an insertion distance d of the tuner T1, and curves
G1, G20, G40, G60 and G72 indicate voltage changes in gap numbers 1, 20, 40, 60 and 72, respectively. As seen in
FIG 7, each of these curves exhibits approximate linearity, and it can be verified that linearity is sufficiently adequate.

<Relationship between Insertion Amount and Voltage Change in all Tuners>

[0029] As described above, the linearity of a voltage change to a tuner insertion amount is adequate. This makes it
possible to calculate a voltage change corresponding to only a certain tuner insertion amount, and then calculate re-
spective voltage changes corresponding to remaining tuner insertion amounts by a proportional calculation. Specifically,
a voltage change at a position having an insertion amount X of 10 mm (insertion distance d of 20 mm) was calculated
for each of the sixteen tuners. The result is shown in FIG. 8 (tuners T1 to T8) and FIG 9 (tuners T9 to T16).
[0030] In FIGS. 8 and 9, curves t1 to t16 indicate voltage changes in the tuners T1 to T16, respectively. As with a
model resonator, a voltage change curve has a wide peak in each of the different tuners, i.e., in each of the tuners which
are different in axial position, and therefore a voltage change in each of the tuners has an effect on an entire voltage
distribution of the resonator. Thus, two or more of the tuners have to be used as auto-tuners in such a manner as to
allow respective voltage changes attributed thereto to be cancelled out.

<Determination of Auto-Tuners and Verification based on Direct Three-Dimensional Electromagnetic Field Calculation>

(1) Combination of Two Tuners

[0031] As a first example, two of the tuners are combined to cancel out respective voltage changes attributed thereto
so as to eliminate a change in the entire voltage distribution of the resonator. For this purpose, a program-based search
was performed to evaluate an optimal combination. Specifically, based on the voltage change curve of each of the tuners
illustrated in FIGS. 8 and 9, voltage changes corresponding to respective insertion amounts in each of the tuners were
calculated through a proportional calculation with an accuracy controllable by an after-mentioned stepping motor or the
like. Then, two of the voltage changes were added together to evaluate a combination providing a minimum voltage
change. As a result, a combination of two tuners and a combination of respective insertion amounts of the two tuners
which provided a minimum voltage change were satisfied by the tuner T4 and the tuner T12. In this case, a ratio of the
insertion amount of the tuner T4 to the insertion amount of the tuner T14 was 6.67 : 10.00.
[0032] A voltage change in the combinations of the two tuners T4, T12 and the respective insertion amounts of the
two tuners T4, T12 was calculated. FIG. 10 is a graph showing a voltage change occurring when the tuner T4 has an
insertion amount X of 6.67 mm (insertion distance d of 16.67 mm), and the tuner 12 has an insertion amount X of 10.00
mm (insertion distance d of 20.00 mm). In FIG 10, the curve A1 indicates a voltage change obtained by  adding the
respective voltage changes of the two tuners T4, T14. As shown in FIG 10, a variation width of ΔV/V was 1.2% in the
entire resonator, i.e., a maximum width of voltage change was 1.2%.
[0033] Then, a model having the two tuners T4, T14 simultaneously inserted was prepared, and a voltage change in
the model was calculated using a direct three- dimensional electromagnetic field calculation code. The curve B1 in FIG
10 indicates the calculation result. As seen in FIG. 10, the voltage change obtained by adding the respective voltage
changes of the two tuners almost conforms to the voltage change calculated through the direct three- dimensional
electromagnetic field calculation.
[0034] Table 1 shows parameters indicative of characteristics of the resonator, such as a resonant frequency, a quality
factor (Q), a shunt impedance and a required power, obtained through a direct three-dimensional electromagnetic field
calculation. As shown in Table 1, a change in resonant frequency was 81 KHz (0.081 MHz). There was substantially no
change in the remaining parameters. Thus, it is proven that only a resonant frequency can be adjusted using the
combination of auto-tuners, without exerting an influence on a voltage distribution and other characteristics of the res-
onator. In Table 1, an original model means a model having the two tuners at a non-inserted position, i.e., at the reference
position.
[0035]

Table 1

Parameter Original Model Model after Insertion of Tuners Difference

resonant frequency (MHz) 200.103 200.184 0.081

Q 16054 16022 -32.000

shunt impedance (MΩ/m) 111.64 111.37 -0.269
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(2) Combination of Three Tuners

[0036] As a second example, three of the tuners are combined to cancel out respective voltage changes attributed
thereto. For this purpose, a program-based search was performed in the  same manner as that in the first example for
the combination of two tuners. As a result, a combination of three tuners and a combination of respective insertion
amounts of the three tuners which provided a minimum voltage change were satisfied when the tuners T3, T9, T16 were
inserted at a ratio of 5.40 : 7.60 : 10.00.
[0037] FIG 11 is a graph showing a voltage change occurring when the three tuners T3, T9, T16 have an insertion
amount X of 5.40 mm (insertion distance d of 15.40 mm), an insertion amount X of 7.60 mm (insertion distance d of
17.60 mm) and an insertion amount X of 10.00 mm (insertion distance d of 20.00 mm), respectively. In FIG. 11, the
curve A2 indicates a voltage change obtained by adding the respective voltage changes of the three tuners T3, T9, T16.
As a result, a maximum width of voltage change was 0.81%, which is about 30% smaller than that in the combination
of two tuners illustrated in FIG 10.
[0038] Then, a voltage change in a model based on the combinations of the three tuners T3, T9, T16 and the respective
insertion amounts of the three tuners T3, T9, T16 was calculated using a direct three- dimensional electromagnetic field
calculation code. The curve B2 in FIG 11 indicates the calculation result. A sharp peak around the gap number 20 in
the curve B2 would result from calculation accuracy (setting of a calculation mesh) . As seen in FIG 11, the voltage
change obtained by adding the respective voltage changes of the three tuners almost conforms to the voltage change
calculated through the direct three- dimensional electromagnetic field calculation.
[0039] Table 2 shows parameters indicative of characteristics of the resonator, such as a resonant frequency, a quality
factor (Q), a shunt impedance and a required power, obtained through a direct three-dimensional electromagnetic field
calculation. As shown in Table 2, a change in resonant frequency was 95 KHz (0.095 MHz). There was substantially no
change in the remaining parameters. Thus, it is proven that only a resonant frequency can be adjusted using the
combination of auto-tuners, without exerting an influence on a voltage distribution and other characteristics of the res-
onator. In Table 2, an original model means a  model having the three tuners at a non-inserted position, i.e., at the
reference position.
[0040]

[0041] Then, in the model illustrated in FIG 11, the tuner was retracted from the reference position by the same amount
to lower the frequency. That is, the three tuners T3, T9, T16 were set to have an insertion amount X of- 5.40 mm (insertion
distance d of 4.60 mm), an insertion amount X of- 7.60 mm (insertion distance d of 2.40 mm) and an insertion amount
X of- 10.00 mm (insertion distance d of 0.00 mm), respectively. The curve A3 in FIG 12 indicates a voltage change in
this case, and the curve B3 indicates a voltage change calculated using a direct three- dimensional electromagnetic
field calculation code.
[0042] Table 3 shows parameters indicative of characteristics of the resonator, such as a resonant frequency, a quality
factor (Q), a shunt impedance and a required power, obtained through a direct three-dimensional electromagnetic field
calculation in the above case. As shown in Table 3, a change in resonant frequency was - 75 KHz (0.075 MHz). There
was substantially no change in the remaining parameters. As seen in Table 3, when the three tuners are retracted even
in the same combination, an amount of frequency change is less than that when the three tuners are inserted. The
reason would be that the three tuners during retraction are hidden behind the remaining tuners. In Table 3, an original
model means a model having the three tuners at a non-inserted position, i.e., at the reference position.
[0043]

(continued)

Parameter Original Model Model after Insertion of Tuners Difference

required power (KW) 365.00 365.90 0.899

Table 2

Parameter Original Model Model after Insertion of Tuners Difference

resonant frequency (MHz) 200.103 200.198 0.095

Q 16054 16054 0.000

shunt impedance (MΩ/m) 111.64 111.59 -0.045

required power (KW) 365.00 365.27 0.271
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[0044] The following discussion will be made about a third example where three tuners other than those in FIGS. 11
and 12 are used as auto-tuners. When the tuners T3, T9, T16 are used as auto-tuners, the linac is insufficient in terms
of a symmetry property, as shown in FIG 1. Thus, in view of a symmetry property, a calculation was performed for a
linac using the tuners T4, T9, T16 as auto-tuners. As a result of a program-based search, when the tuners T4, T9, T16
were inserted at a ratio of 5.85 : 4.54 : 10.00, a voltage change in the entire resonator was minimized. FIG 13 is a graph
showing a voltage change occurring when the three tuners T4, T9, T16 have an insertion amount X of 5.85 mm (insertion
distance d of 15.85 mm), an insertion amount X of 4.54 mm (insertion distance d of 14.54 mm) and an insertion amount
X of 10.00 mm (insertion distance d of 20.00 mm), respectively.
[0045] In FIG 13, the curve A4 indicates a voltage change obtained by adding the respective voltage changes of the
three tuners T4, T9, T16. As a result, a maximum width of voltage change was 0.97%. The curve B4 in FIG 13 indicates
a voltage change calculated using a direct three-dimensional electromagnetic field calculation code. As seen in FIG 13,
the voltage change obtained by adding the respective voltage changes of the three tuners almost conforms to the voltage
change calculated through the direct three-dimensional electromagnetic field calculation.
[0046] Table 4 shows parameters indicative of characteristics of the resonator, such as a resonant frequency, a quality
factor (Q), a shunt impedance and a required power, obtained through a direct three-dimensional electromagnetic field
calculation in the third example. As  shown in Table 4, a change in resonant frequency was 79 KHz (0.079 MHz). There
was substantially no change in the remaining parameters. Thus, it is proven that only a resonant frequency can be
adjusted using the combination of auto-tuners, without exerting an influence on a voltage distribution and other charac-
teristics of the resonator. In Table 4, an original model means a model having the three tuners at a non-inserted position,
i.e., at the reference position.
[0047]

[0048] A calculation was also performed for a linac using a combination of the tuners T2, T9, T16 as auto-tuners. As
a result, a voltage change had a positive peak of 0.8% and a negative peak of - 0.6%, i.e., a maximum width of voltage
change was 1.4%, which is greater than those in the aforementioned combinations.
[0049] The following description will be made about a temperature correction range based on auto-tuners selected by
a process according to one embodiment of the present invention. The resonator typically has a resonant frequency f0
of 200 Hz. The resonator is made of iron having a linear expansion coefficient a of 1.18 3 10-5. Thus, a resonant
frequency change Δf per degree in temperature t is calculated as follows: 

Table 3

Parameter Original Model Model after Insertion of Tuners Difference

resonant frequency (MHz) 200.103 200.028 -0.075

Q 16054 16085 31.000

shunt impedance (MΩ/m) 111.64 111.89 0.256

required power (KW) 365.00 364.10 -0.898

Table 4

Parameter Original Model Model after Insertion of Tuners Difference

resonant frequency (MHz) 200.103 200.182 0.079

Q 16054 16033 -21.000

shunt impedance (MΩ/m) 111.64 111.40 -0.239

required power (KW) 365.00 365.67 0.664



EP 1 931 182 B1

9

5

10

15

20

25

30

35

40

45

50

55

[0050] In the aforementioned second example where the three tuners T3, T9, T16 used as auto-tuners have an insertion
amount X of 5.40 mm (insertion distance d of 15.40 mm), an  insertion amount X of 7.60 mm (insertion distance d of
17.60 mm) and an insertion amount X of 10.00 mm (insertion distance d of 20.00 mm), respectively, an increase in
resonant frequency was about 95 KHz. Thus, a temperature correction range ΔC in the insertion amounts of the tuners
is as follows:

[0051] When the tuners are retracted from the reference position in the second example [where the three tuners T3,
T9, T16 were set to have an insertion amount X of - 5.40 mm (insertion distance d of 4.60 mm), an insertion amount X
of - 7.60 mm (insertion distance d of 2.40 mm) and an insertion amount X of - 10.00 mm (insertion distance d of 0.00
mm), respectively], the resonant frequency was lowered by 75 KHz. Thus, the temperature correction range ΔC is as
follows:

As above, considering only the insertion amounts, the temperature correction range extends from - 32 degrees to + 40
degrees. It can be said that this correction range is sufficient from a practical standpoint.
[0052] Thus, a tuner insertion amount per degree is 5.4 [mm] / 40 [degree] = 0.14 [mm/ degree] at a minimum. In a
control for 0.1 degree in temperature, a moving step during insertion of the tuner is 0.014 [mm/ step] = 14 [mm/ step] .
This value falls within a range adequately controllable by a stepping motor.
[0053] As mentioned above, in the method according to the embodiment of the present invention, it is verified whether
the linearity of a voltage change to an insertion amount of the inductive tuner is adequate. Then, a voltage change in a
combination of two or more of a plurality of tuners can be estimated by calculating respective voltage changes attributed
to the plurality of tuners and adding the voltage changes of the two or more tuners. A voltage change occurring when
respective insertion amounts of the two or more tuners are increased without changing a ratio between the respective
insertion amounts of the two or more tuners  can also be estimated. Then, a model having the two or more tuners
simultaneously inserted is prepared, and a voltage change in the model is calculated using a three-dimensional elec-
tromagnetic field calculation code, to verify whether the calculated voltage change adequately conforms to the estimated
voltage change in the combination of two or more tuners.
[0054] In the specific examples based on the method according to the embodiment of the present invention, a calculation
was performed for total four combinations: one combination of two tuners; and three combinations of three tuners. In
either example, a voltage change could be reduced within 6 0.8%. Among the four combinations, the combination of
the tuners T3, T9, T16 had a minimum voltage change, and the voltage change was reduced to slightly more than 6
0.4%. The combination of the tuners T3, T9, T16 provided a sufficient temperature correction range of - 32 to + 40
degrees, even during insertion thereof Thus, in the above examples, the combination of the tuners T3, T9, T16 is most
suitable as auto-tuners.
[0055] A method of correcting a resonant frequency of a resonator using auto-tuners selected by the process according
to the embodiment of the present invention will be briefly described below. FIG 14 is an explanatory block diagram
schematically showing a mechanism for correcting a resonant frequency of a resonator. In FIG 14, an ion beam is input
into a resonator 11 as indicated by the arrow. Then, the ion beam is accelerated inside the resonator by a high-frequency
power supplied through a high-frequency amplifier 12, and output from the resonator 11 as indicated by the arrow. The
resonator 11 is provided with two auto-tuners 13, 14 consisting of auto-tuners A, B selected by the process according
to the embodiment of the present invention. Each of the auto-tuners is designed to be driven by a stepping motor (not
shown), and a driving signal is sent to each of the stepping motors through a corresponding one of two motor drivers
15, 16 consisting of motor drivers A, B.
[0056] As shown in FIG 14, an automatic frequency control (AFC) device 17 is provided as a means to correct a slight
resonant frequency shift in the resonator. The AFC device 17  comprises a phase comparator 18 adapted to compare
a traveling wave S1 from the high-frequency amplifier 12 with a monitoring signal picked up in an acceleration cavity of
the resonator 11, and output a phase difference therebetween, and a sample and hold circuit 19 adapted to sample and
hold the phase difference. Specifically, a synchronization signal generated from an external synchronization signal
generator 20 is input into the AFC device 17, and the sample and hold circuit 19 is operable, in response to receiving
the synchronization signal, to sample and hold a value of the phase difference.
[0057] The phase difference detected by the AFC device 17 is sent to a sequencer 21. The sequencer 21 is operable
to send a control signal to the motor drivers A, B so as to adjust respective insertion amounts of the auto-tuners A, B
depending on the phase difference. In the present invention, the respective insertion amounts of the auto-tuners A, B
are adjusted without changing a ratio between the respective insertion amounts which is obtained during the process

ΔC = 95 [KHz] / 2.36 [KHz] = 40 [degree]

ΔC = 75 [KHz] / 2.36 [KHz] = 32 [degree]
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of selecting the auto-tuners. Specifically, given that the auto-tuners A, B are the tuners T4, T12, respectively, as in the
aforementioned first example about the selection process for a combination of two tuners, the sequencer 21 is operable
to adjust the respective insertion amounts of the auto-tuners A, B without changing the ratio of the insertion amount of
the auto-tuner A to the insertion amount of the auto-tuner B, i.e., 6.67 : 10.00. For example, when the insertion amount
of the auto-tuner A is adjusted to increase twofold, the insertion amount of the auto-tuner B is also adjusted to increase
twofold. As a result, the voltage change will be increased in a linear relation to an increase in the insertion amount, and
therefore the maximum width of voltage change can be estimated to be double, i.e., 2.4%. Thus, this adjustment method
makes it possible to correct the resonant frequency while maintaining the voltage distribution in the resonator in an
allowable range.
[0058] The sequencer 21 is provided with a ratio storage device 22 for storing the ratio of the insertion amount of the
auto-tuner A to the insertion amount of the auto-tuner B. The sequencer 21 is operable to issue a control instruction for
the respective motor drivers A, B to generate pulses corresponding to the detected phase difference in such a manner
as to keep the  insertion-amount ratio stored in the ratio storage device 22 from being changed. The motor drivers A, B
are operable, in response to receiving the control instruction, to drive the corresponding tuners A, B through the corre-
sponding stepping motors.
[0059] In the embodiment illustrated in FIG 14, the sequencer is used as insertion-amount adjustment means. Alter-
natively, a personal computer may be used in place of the sequencer. While the AFC device in the embodiment illustrated
in FIG 14 is provided separately from the sequencer and the motor drivers, the sequencer and/or the motor drivers may
be integrated with the AFC device. Further, while the number of auto-tuners used in the embodiment illustrated in FIG
14 is two, the number of auto-tuners to be used in the present invention may be three or more. For example, in the
aforementioned second example about the selection process for the optimal combination of the tuners T3, T9, T16, the
insertion-amount ratio of the tuner T3 : the tuner T9 : the tuner T16 is 5.40 : 7.60 : 10.00. Thus, in this example, the
respective insertion amounts of the tuners T3, T9, T16 will be adjusted without changing this insertion-amount ratio.
[0060] FIG 15 is a flowchart showing a process of selecting auto-tuners and a process of correcting a resonant
frequency using the selected auto-tuners, according to one embodiment of the present invention. In this embodiment,
in Step S1, respective characteristics of the plurality of tuners are acquired. This processing is performed by verifying
a linearity of a voltage change to a tuner insertion amount, and calculating voltage change data corresponding respective
insertion amounts, for each of the plurality of tuners, through a proportional calculation based on the voltage change
linearity, as described above. Then, in Step S2, two auto-tuners are determined based on the acquired data about the
plurality of tuners. This processing is performed by determining a combination of tuners suitable for auto-tuners and a
combination of respective insertion amounts of the tuners, according to a program-based search, and verifying the
determination result through a direct three-dimensional electromagnetic field calculation, as described above. Then, in
Step S3, an insertion-amount ratio is stored. This processing is performed by storing the verified insertion amounts of
the  tuners in the ratio storage device of the sequencer. The processings in Steps S1 and S2 will be more specifically
described with reference to FIG. 16.
[0061] After selecting auto-tuners in the above manner, in Step S4, an operation of the linac is initiated. During the
linac operation, a high-frequency power is supplied to the resonator 11 through the high-frequency amplifier 12 to maintain
the cavity of the resonator 11 in a resonant condition. In Steps S5 and S6, a phase of an output from the high-frequency
amplifier and a phase inside the resonator are monitored. If a resonant frequency is changed due to a change in
temperature of the resonator, the monitored phases are compared with each other to output a phase difference, in Step
S7. Then, in Step S8, it is determined whether or not the phase difference falls within an allowable range. If the phase
difference is out of the allowable range, the routine advances to Step S9 to correct the resonant frequency. This correction
processing is performed by sending a control signal to the motor drivers A, B so as to adjust the respective insertion
amounts of the auto-tuners A, B depending on the phase difference. The respective insertion amounts of the auto-tuners
A, B are adjusted without changing the ratio of the insertion amount of the auto-tuner A to the insertion amount of the
auto-tuner B stored in Step S3.
[0062] In Steps S10 and S11, in response to receiving the control signal, each of the motor drivers A, B controls a
corresponding one of the stepping motors. According to the control of the motor drivers A, B, the auto-tuners A, B are
activated to correct the resonant frequency. After completion of the correction, the routine advances to Step S 14 to
determine whether the linac operation is stopped. In Step S8, when it is determined that the phase difference falls within
the allowable range, the routine also advances to Step 14. In Step S14, if it is determined that the linac operation is
continued, the routine will return to the process flow just after Step S4 to repeat the subsequent Steps. In Step S 14,
when it is determined that the linac operation is stopped, the routine is terminated.
[0063] The auto-tuner selection process according to the embodiment of the present invention  comprises Steps S1
and S2 in FIG. 15. FIG. 16 is a flowchart more specifically showing the auto-tuner selection process. As shown in FIG.
16, Step S1 includes Step S1a and Step S1b. In Step S1a, a linearity of a voltage change to a tuner insertion amount
is first verified. Specifically, an insertion amount of a nominated one of the tuners is changed, and voltage changes
corresponding to the respective insertion amounts are calculated through a three-dimensional electromagnetic field
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calculation. The voltage changes are plotted to create a graph, and the linearity of a voltage change to a tuner insertion
amount is verified based on the graph. Then, in Step S1b, based on the voltage change linearity, voltage change data
corresponding respective insertion amounts are calculated for each of the plurality of tuners through a proportional
calculation. Specifically, a voltage corresponding to a certain insertion amount, e.g., an insertion amount of 10 mm, is
calculated for each of the plurality of tuners through a three-dimensional electromagnetic field calculation. Then, based
on the calculation result, voltage change data corresponding to the remaining insertion amounts are calculated for each
of the plurality of tuners. In the above manner, a process of acquiring respective characteristics of the plurality of tuners,
i.e., a process of acquiring voltage change data corresponding to respective insertion amounts, for each of the plurality
of tuners, is completed.
[0064] As shown in FIG 16, Step 2 includes Step S2a and Step S2b. In Step S2b, auto-tuners A, B are determined
based on the acquired data about the plurality of tuners. This processing is performed by determining a combination of
tuners suitable for auto-tuners and a combination of respective insertion amounts of the tuners, according to a program-
based search, as described above. Specifically, according a program-based search, a combination of nominated tuners
and a combination of respective insertion amounts of the nominated tuners are determined on a condition that, when
the individual voltage change data of the nominated tuners are added together, respective voltage changes attributed
to the nominated tuners are cancelled out to allow an entire voltage distribution to have substantially no change. Then,
in Step S2b, it is verified whether the determined combinations are adequate, through a direct three-dimensional elec-
tromagnetic field calculation. Through the verification, the  nominated tuners are finally selected as auto-tuners. In the
above manner, a combination of auto-tuners and a combination of respective insertion amounts of the auto-tuners are
adequately determined.

BRIEF DESCRIPTION OF DRAWINGS

[0065]

FIG 1 is a conceptual diagram of an IH-mode drift-tube linac.
FIG 2 is a schematic vertical sectional view of a resonator and an inductive tuner, wherein the tuner is at a retracted
position.
FIG 3 is a schematic vertical sectional view of the resonator and the inductive tuner, wherein the tuner is at an
inserted position.
FIG 4 is a schematic fragmentary horizontal sectional view specifically showing an insertion state of the inductive
tuner in FIG 3.
FIG 5 is a schematic vertical sectional view of a resonator and a capacitive tuner, wherein the tuner is at an inserted
position.
FIG. 6 is a graph showing a relationship between a tuner insertion amount and a voltage change.
FIG 7 is a graph showing a relationship between a tuner insertion amount and a voltage change, in representative
gaps.
FIG 8 is a graph showing a voltage change at a position where an insertion distance "d" is 20 mm, in tuners T1 to T8.
FIG 9 is a graph showing a voltage change at a position where an insertion distance "d" is 20 mm, in tuners T9 to T16.
FIG 10 is a graph showing a voltage change when the tuners T4, T12 are used as auto-tuners.
FIG 11 is a graph showing a voltage change when the tuners T3, T9, T16 are used as auto-tuners.
FIG 12 is a graph showing a voltage change when each of the tuners T3, T9, T16 used as auto-tuners is retracted
by the same insertion amount as that in FIG 11 symmetrically with  respect to a reference position (insertion distance
= 10 mm).
FIG 13 is a graph showing a voltage change when the tuners T4, T9, T16 are used as auto-tuners.
FIG 14 is an explanatory block diagram schematically showing a mechanism for correcting a resonant frequency
of a resonator.
FIG 15 is a flowchart showing a process of selecting auto-tuners and a process of correcting a resonant frequency
using the selected auto-tuners, according to one embodiment of the present invention.
FIG 16 is a flowchart specifically showing the auto-tuner selection process according to the embodiment.

[EXPLANATION OF CODES]

[0066]

1: tank
2: inlet end
3: outlet end
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4: drift tube
5: ridge
6: end member
7: rod
8: conductive plate
11: resonator
12: high-frequency amplifier
13: auto-tuner A
14: auto-tuner B
15: motor driver A
16: motor driver B
17: automatic frequency control (AFC) device
18: phase comparator
19: sample and hold circuit
20: synchronization signal generator
21: sequencer
T1 to T16: tuner

Claims

1. A method for adjusting the frequency of an H-mode drift-tube linac utilizing a TE wave (H mode) generated inside
a resonator (1), said method comprising the steps of:

nominating at least two tuners from among a plurality of tuners (T) arranged along an axial direction of said
resonator (1); and characterized by
using a combination of respective positions of said nominated tuners (T) in the axial direction of said resonator
and respective insertion amounts of said nominated tuners (T) into said resonator (1),
evaluate whether only a frequency is changed without changing a voltage distribution in said resonator (1), and
select the nominated tuners for which the evaluate step is satisfied as auto-tuners.

2. The method as defined in claim 1, wherein said step of selecting includes the sub-steps of:

calculating or measuring (S1b) individual voltage change data corresponding to respective insertion amounts,
for each of said plurality of tuners (T), based on a given relationship between a tuner insertion amount and a
voltage change; and
determining (S2a) a combination of at least two auto-tuners and a combination of respective insertion amounts
of said at least two auto-tuners, using said individual voltage change data.

3. The method as defined in claim 2, wherein said step of selecting further includes the sub-step of verifying (S1a)
said given relationship between a tuner insertion amount and a voltage change.

4. The method as defined in claim 2 or 3, which said step of selecting further includes the sub-step of verifying whether
said determined combinations are adequate by a direct three dimensional electromagnetic field calculation.

5. The method as defined in any one of claims 2 to 4, wherein said given relationship is a  linear relationship between
a tuner insertion amount and a voltage change, wherein said individual voltage change data corresponding to
respective insertion amounts, for each of said plurality of tuners (T), are calculated through a proportional calculation
based on said linear relationship.

6. The method as defined in any one of claims 2 to 5, wherein said sub-step of determining a combination of at least
two auto-tuners and a combination of respective insertion amounts of said at least two auto-tuners comprises
determining said combinations on a condition that, when the individual voltage change data of said nominated tuners
(T) are added together, respective voltage changes attributed to said nominated tuners (T) are cancelled out to
allow an entire voltage distribution to have substantially no change.

7. The method as defined in any of the preceding claims, further comprising adjusting respective insertion amounts of
said auto-tuners without changing a ratio between said respective insertion amounts.
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8. An H-mode drift-tube linac utilizing a TE wave (H mode) generated inside a resonator (1), said linac comprising a
plurality of tuners (T) which are arranged along an axial direction of said resonator (1), wherein at least two tuners
(T) are used as auto-tuners, and characterized by comprising
means for selecting said at least two tuners according to claim 1.

9. The H-mode drift-tube linac as defined in claim 8, which includes insertion-amount adjustment means adapted to
adjust respective insertion amounts of said selected at least two auto-tuners without changing a ratio between said
respective insertion amounts.

10. The H-mode drift-tube linac as defined in claim 9, wherein said insertion-amount adjustment means includes storage
means (22) adapted to store the value of said ratio between the respective insertion amounts of said at least two
auto-tuners.

Patentansprüche

1. Verfahren zur Anpassung der Frequenz eines H-Moden Driftröhren-Linearbeschleunigers mittels einer TE-Welle
(H-Mode), welche innerhalb eines Resonators (1) generiert wird, wobei das Verfahren die folgenden Verfahrens-
schritte umfasst:

- Nominieren mindestens zweier Tuner aus einer Vielzahl von Tunern (T), welche entlang einer axialen Richtung
des Resonators (1) angeordnet sind, wobei das Verfahren gekennzeichnet ist durch die Verfahrensschritte des
- Nutzens einer Kombination aus den jeweiligen Positionen der nominierten Tuner (T) entlang der axialen
Richtung des Resonators und den jeweiligen Einschubweiten der normierten Tuner (T) in den Resonator hinein;
- Bewertens, ob lediglich eine Frequenz verändert wird, ohne eine Spannungsverteilung in dem Resonator (1)
zu verändern; und
- Wählen derjenigen nominierten Tuner als Auto-Tuner, für welche der Schritt des Bewertens erfüllt ist.

2. Verfahren nach Anspruch 1, wobei der Schritt des Wählens die folgende Unterschritte umfasst:

- Berechnen oder Messen (S1b) individueller, zu den jeweiligen Einschubweiten korrespondierender Span-
nungsveränderungsdaten für jeden Tuner aus der Vielzahl der Tuner (T), basierend auf einer vorbestimmten
Beziehung zwischen der Tuner-Einschubweite und einer Spannungsveränderung; und
- Determinieren (S2a) einer Kombination von mindestens zwei Auto-Tunern und einer Kombination der jeweiligen
Einschubweiten dieser mindestens zwei Auto-Tuner unter Verwendung der individuellen Spannungsverände-
rungsdaten.

3. Verfahren nach Anspruch 2, wobei der Schritt des Wählens ferner den Unterschritt des Verifizierens (S1a) der
vorbestimmten Beziehung zwischen einer Tuner-Einschubweite und einer Spannungsveränderung umfasst.

4. Verfahren nach Anspruch 2 oder 3, wobei der Schritt des Wählens ferner einen Unterschritt des Verifizierens umfasst,
in welchem verifiziert wird, ob die determinierten Kombinationen adäquat sind, wobei die Verifikation durch eine
direkte dreidimensionale elektromagnetische Feldkalkulation erfolgt.

5. Verfahren nach einem der Ansprüche 2 bis 4, wobei die vorbestimmte Beziehung eine lineare Beziehung zwischen
einer Tuner-Einschubweite und einer Spannungsveränderung ist, wobei die zu den jeweiligen Einschubweiten kor-
respondierenden, individuellen Spannungsveränderungsdaten für jeden Tuner aus der Vielzahl der Tuner (T) durch
eine proportionale Kalkulation, basierend auf dieser linearen Beziehung, berechnet werden.

6. Verfahren nach einem der Ansprüche 2 bis 5, wobei in dem Unterschritt des Determinierens einer Kombination von
mindestens zwei Auto-Tunern sowie einer Kombination der jeweiligen Einschubweiten dieser mindestens zwei Auto-
Tuner die Determination dieser Kombinationen nach der Vorschrift erfolgt, dass wenn die individuellen Spannungs-
veränderungsdaten der nominierten Tuner (T) zusammenaddiert werden, sich die jeweiligen, den nominierten Tunem
(T) zuordenbaren Spannungsveränderungen auslöschen, sodass die gesamte Spannungsverteilung im Wesentli-
chen unverändert bleibt.

7. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend das Anpassen der jeweiligen Einschub-
weiten der Auto-Tuner, ohne das Verhältnis der jeweiligen Einschubweiten zueinander zu verändern.
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8. H-Moden Driftröhren Linearbeschleuniger, welcher eine innerhalb eines Resonators (1) generierte TE-Welle (H-
Mode) verwendet und eine Vielzahl von Tunem (T) umfasst, welche entlang einer axialen Richtung des Resonators
(1) angeordnet sind, wobei mindestens zwei Tuner (T) als Auto- Tuner verwendet werden, dadurch gekennzeichnet,
dass
der H-Moden Driftröhren Linearbeschleuniger Mittel zur Wahl der mindestens zwei Tuner gemäß Anspruch 1 umfasst.

9. H-Moden Driftröhren Linearbeschleuniger nach Anspruch 8, ferner umfassend ein Mittel zur Anpassung der Ein-
schubweite, welches dazu ausgebildet ist, die jeweilige Einschubweiten der jeweils ausgewählten mindestens zwei
Auto-Tuner anzupassen, ohne das Verhältnis zwischen den jeweiligen Einschubweiten zueinander zu verändern.

10. H-Moden Driftröhren Linearbeschleuniger nach Anspruch 9, wobei das Mittel zur Anpassung der Einschubweiten
ein Speichermittel (22) umfasst, welches dazu ausgebildet ist, den Wert des Verhältnisses zwischen den jeweiligen
Einschubweiten der mindestens zwei Auto-Tuner zu speichern.

Revendications

1. Procédé pour ajuster la fréquence d’un accélérateur linéaire à tube de glissement en mode H utilisant une onde TE
(mode H) générée à l’intérieur d’un résonateur (1), ledit procédé comprenant les étapes :

de désignation d’au moins deux syntoniseurs parmi une pluralité de syntoniseurs (T) agencés le long d’une
direction axiale dudit résonateur (1) ; et caractérisé par
l’utilisation d’une combinaison des positions respectives desdits syntoniseurs (T) désignés dans la direction
axiale dudit résonateur et des quantités d’insertion respectives desdits syntoniseurs (T) désignés dans ledit
résonateur (1),
l’évaluation si seulement une fréquence est changée sans changer une distribution de tension dans ledit réso-
nateur (1), et
la sélection des syntoniseurs désignés pour lesquels l’étape d’évaluation est satisfaite en tant qu’auto-synto-
niseurs.

2. Procédé selon la revendication 1, dans lequel ladite étape de sélection comprend les étapes secondaires :

de calcul ou de mesure (S1b) des données de changement de tension individuelle correspondant aux quantités
d’insertion respectives, pour chacun de ladite pluralité de syntoniseurs (T), sur la base d’une relation donnée
entre une quantité d’insertion de syntoniseur et un changement de tension ; et
de détermination (S2a) d’une combinaison d’au moins deux auto-syntoniseurs et d’une combinaison des quan-
tités d’insertion respectives desdits au moins deux auto-syntoniseurs, en utilisant lesdites données de change-
ment de tension individuelle.

3. Procédé selon la revendication 2, dans lequel ladite étape de sélection comprend en outre l’étape secondaire de
vérification (S1a) de ladite relation donnée entre une quantité d’insertion de syntoniseur et un changement de tension.

4. Procédé selon la revendication 2 ou 3, dans lequel ladite étape de sélection comprend en outre l’étape secondaire
de vérification si lesdites combinaisons déterminées sont adéquates par un calcul d’un champ électromagnétique
tridimensionnel continu.

5. Procédé selon l’une quelconque des revendications 2 à 4, dans lequel ladite relation donnée est une relation linéaire
entre une quantité d’insertion de syntoniseur et un changement de tension, dans lequel lesdites données de chan-
gement de tension individuelle correspondant aux quantités d’insertion respectives, pour chacun de ladite pluralité
de syntoniseurs (T), sont calculées par un calcul proportionnel basé sur ladite relation linéaire.

6. Procédé selon l’une quelconque des revendications 2 à 5, dans lequel ladite étape secondaire de détermination
d’une combinaison d’au moins deux auto-syntoniseurs et d’une combinaison des quantités d’insertion respectives
desdits au moins deux auto-syntoniseurs comprend la détermination desdites combinaisons à condition que, lorsque
les données de changement de tension individuelle desdits syntoniseurs (T) désignés sont ajoutées les unes aux
autres, les changements de tension respectifs attribués aux dits syntoniseurs (T) désignés soient annulés pour
permettre qu’une distribution de tension entière ne présente sensiblement aucun changement.
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7. Procédé selon l’une quelconque des revendications précédentes, comprenant en outre l’ajustement des quantités
d’insertion respectives desdits auto-syntoniseurs sans changer un rapport entre lesdites quantités d’insertion res-
pectives.

8. Accélérateur linéaire à tube de glissement en mode H utilisant une onde TE (mode H) générée à l’intérieur d’un
résonateur (1), ledit accélérateur linéaire comprenant une pluralité de syntoniseurs (T) qui sont agencés le long
d’une direction axiale dudit résonateur (1), dans lequel au moins deux syntoniseurs (T) sont utilisés en tant qu’auto-
syntoniseurs, et caractérisé en ce qu’il comprend
des moyens pour sélectionner lesdits au moins deux syntoniseurs selon la revendication 1.

9. Accélérateur linéaire à tube de glissement en mode H selon la revendication 8, qui comprend des moyens d’ajus-
tement de quantité d’insertion conçus pour ajuster les quantités d’insertion respectives desdits au moins deux auto-
syntoniseurs sélectionnés sans changer un rapport entre lesdites quantités d’insertion respectives.

10. Accélérateur linéaire à tube de glissement en mode H selon la revendication 9, dans lequel lesdits moyens d’ajus-
tement de quantité d’insertion comprennent des moyens de mémorisation (22) conçus pour mémoriser la valeur
dudit rapport entre les quantités d’insertion respectives desdits au moins deux auto-syntoniseurs.
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