N I R S - M - 2 3 3

平成21年度

サイクロトロン利用報告書

独立行政法人 放射線医学総合研究所

1.	平原	戊2	1 名	F度	サ	1	ク		ト		ン	の	利	用	状	況	,		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(1)
2.	サイ	イク		- 🗆	ン	တဲ	運	転	維	持			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(5)
3.	サイ	ィク		- 🗆	ン	_ກ	R	Ιį	製	造	~(の	利	用	状	況	,		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(9)
4.	重料	位子	線の)生	物	効	果	初	朝	過	程	に	お	け	る	基	礎	物	理	研	究			•	•	•	•	•	•	•	•	•	•	•	(1	5)
_	- عمل	7 4白	∔ ∆ ⊔		~	88 4	7 0																													
э.	▲1	计称	快口	ᅝᇷ	с С	用:	无	~ •		-		-	_	حد	ᅫ																				<i>.</i>	4.
5	—	1.	甲管	E∱	顸	出	岙(の	荆	発	ح.	6	の	狩	任	評	価		_	•		•	•	•	•	•	•	•	•	•	•	•	•	•	(2	
	ļ	5 —	1 -	- I	•	核	昄	砕	5:	生	页.		重	微	分	断	面	槓	の	測	定	_	_	•	•	•	•	•	•	•	•	•	•	•	(2	2)
	Ę	5 —	1 -	- П	•	'H (¹³ C), n	I) J	反応	心7	5	6(の	中	性	子	線	測	定	こ	よ	る	PH	IT	S			۴	の	検	ΕĒ		•	(3	1)
	Ļ	5 —	1 -	- Ш	•	硼	素	中	生	子	庯	捉	療	法	用	加	速	器	中	性	子	源	の	た	め	の	16	6Me	۶V	陽	子	に	よ	る		
								べ	IJ	リ	ウ.	4	タ・		ゲ	ッ	ト	か	6	の	中	性	子	ス	ペ	ク	۲	ル	測	定			• •	• •	(3	5)
	Į	5 —	1 -	-IV		高	T	ネノ	レ	ギ・	—:	ガ	ン	マ	線	照	射	埸	Ø	特	性	評	価			•	•	•	•	•	•	-	•	•	(3	9)
5	5 — 2	2.	宇宙	冒放	射	線(の	荷	電	粒	子	成	分	検	出	器	の	開	発			•	•	•	•	•	•	•	•	•	•	•	•	•	(4	5)
	ļ	5 —	2 -	- I		汎	用	照	討	室	C-	8			ス	に	お	け	る	ビ	_	Ь	制	御			-	•	•	•	•			-	(4	6)
	į	5 —	2 -	- п	_	宇	审计	敐	討	線	D?	荷	雷	籿	구	成	分	検	Ш	器	ഗ	開	発												(5	0)
F	5 — :	3	光马	と構	哭	ரா	时	討	計	線	性	能		盟	ל	る	研	空																	(5	5)
F	5 — 2	J. 1	立す	正由	搢	···· 倍·	マング で(т Л	生:	行	は		1-	滴	í.	t-	習	い 倍	*	山	絈	Ŧ	_	々	ച	盟	郄	ᄪ	空						(5	a)
	-	т.	iej ie	-1 <i>1</i> ,X	**	-76	<u> </u>		75	11		11			U	/_	**	-76		81 81	49K		_	_	~/	177.1	76	141	76						(0	•/
6.	超位	云導	線木	オな	6	び	12:	۔ د	1.	ル	構	成	材	料	の	耐	放	射	線	性	に	関	す	る	研	究			•	•	•	•	•	•	(6	1)
7.	陽日	F線	照射	れこ	お	ける	57	大争	₹, -	ኮ፣	ţ	61	v	5	低	酸	素	下	で	の	細	胞	致?	死	効	果			•	•		•	•	•	(7	1)
8.	研究	名成	果−	-覧			•	•	•	•	•	•	•	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	(7	3)
9.	関近 平月	車資 戊2	料 1	F度	第	I	期	•]	ΠĴ	期	र :	シ	ン	タ	イ	ム	予	定	表			•	•	-						-	•	-	-	•	(8	5)

目

次

1. 平成21年度サイクロトロンの利用状況

平成21年度のサイクロトロンの利用状況

北條 悟^A、金澤 光隆^A、鈴木 直方^A、本間 壽廣^A、杉浦 彰則^A、 岡田 高典^B、神谷 隆^B、高橋 勇一^B、小松 克好^B、野田 耕司^A

^A: 放射線医学総合研究所重粒子医科学センター物理工学部 ^B: 加速器エンジニアリング株式会社

概要

放射線医学総合研究所のサイクロトロン施設には、建設より 36 年間運転を続けている大型サイクロトロン(NIRS-930)と、1994 年に放射性薬剤の製造を目的として導入された小型サイクロトロン(HM-18)の2台のサイクロトロンが設置されている。大型サイクロトロンには、9 つの照射ポートがあり、そのうちの2 つの照射ポートは、小型サイクロトロンと兼用になっている。大型サイクロトロンでは、放射性薬剤の製造研究を中心に、粒子線の検出器の開発や、重粒子線における基礎物理実験等が行なわれ、小型サイクロトロンでは、放射性薬剤の製造が行われた。平成 21 年度の大型サイクロトロンの総運転時間は 1488 時間となった。その内訳は、放射性薬剤の製造研究に 37%、生物・物理実験 34%、有料実験 5%、調整運転 24%であった。また、小型サイクロトロンの総運転時間は、1445 時間で、その 98%がプロトンによる放射性薬剤の製造研究に利用され、重陽子や調整運転の時間は、わずかな時間であった。以下に本年度におけるサイクロトロンの利用状況の詳細を述べる。

施設概要

放射線医学総合研究所のサイクロトロン施設には、大型サイクロトロン(NIRS-930)と小型サイクロトロン(HM-18)の2台のサイクロトロンがある。小型サイクロトロンで加速可能なビームの粒子は、プロトン(P)と重陽子(D)で、エネルギーは、それぞれP18 MeVとD9 MeVである。これらのビームは、RI生産照射室にある C-1, C-2 コースに加え、本体に直結している4つのターゲットポートも、あわせて放射性薬剤の製造に利用された。大型サイクロトロンは外部イオン源で生成された様々なイオンを加速し、4つの照射室にある9つのビームポートにおいて利用されている。C-1, C-2 コースはRI生産照射室、C-4 コースは直線照射室、C-9 コースは垂直照射室にあり、これらのビームポートでは放射性薬剤の製造が行なわれている。また、C-9 コースと同じ垂直照射室には、ベリリウムターゲットを用いた中性子照射ポート(C-3 コース)があり、中性子による損傷試験に利用された。 C-6, C-7, C-8, C-10 コースは汎用照射室にあり、粒子線検出器の開発をはじめとして、生物・物理実験など様々な分野で利用されている。

サイクロトロンの運転実績

本年度の小型サイクロトロン(HM-18)の運転時間は1444.7時間であった。このなかで、 陽子(18 MeV)の提供時間は、1421.0時間と小型サイクロトロンの運転時間の98%を占め ている。また、陽子ビームの調整運転時間は、23.5 時間であった。重陽子(9 MeV)の運転時間は、本年度は提供依頼がなかった為、ビーム調整時間のみの6.0 時間であった。 一方、大型サイクロトロンの大型サイクロトロンの総運転時間は1487.5 時間で、その

利用目的別運転実績を表1に示す。また、表2に加速粒子別の運転実績の詳細を示す。 各利用目的について、運転実績の詳細を以下に述べる。

1. 放射性薬剤の製造研究	547.8 h (36.8 %)
2. 粒子線検出器の開発	329.9 h (22.2 %)
3. 基礎物理研究	124.0 h (8.3 %)
4. 中性子による損傷試験	30.4 h (2.0 %)
5. 生物研究	14.8 h (1.0 %)
6. 有料ビーム提供	78.3 h (5.3 %)
 7.新ビーム調整 調整運転 放射線安全測定 	62.0 h (4.2 %) 289.0 h (19.4 %) 11.3 h (0.8 %)
合 計	1487.5 h

表1. 平成21年度大型サイクロトロン利用目的別運転実績

表2.平成21年度大型サイクロトロン加速粒子別運転実績

プロ	トン	炭	素	その他の粒子							
エネルギー(MeV)	運転時間(h)	エネルギー(MeV)	運転時間(h)	エネルギー(MeV)	運転時間(h)						
80.0	11.5	180.0*	4.0	H ₂ + 27.0	288.9						
70.0	273.9	156.0*	3.5	H ₂ + 28.0	166.0						
50.0	9.0	144.0	28.0								
40.0	34.3	120.0	24.5	d ⁺ 30. 0	39.6						
30.0	163.9	72.0	173.5								
18.0	65.3	48.0	32.8	α 40.0	10.5						
16.0	23.0										
12.0	74.0			$^{13}C^{4+}$ 104. 0	24.3						
10.0	26.0			$^{13}C^{4+}$ 143. 0	11.0						
	計 680.9		計 266.3		計 540.3						
『*』は、加速調整のみで未取出しビームである。 運転時間総計(h) 14											

1. 放射性薬剤の製造研究

放射性薬剤の製造研究[本誌 p9-p13]では、小型サイクロトロンの総運転時間の 98% である 1421 時間が利用された。提供したビームは、¹¹C や ¹³N、¹⁸F の製造に用いられる プロトン 18 MeV のみであった。また、大型サイクロトロンでは、総運転時間の 36%で ある 548 時間が当目的で利用された。そのなかで加速ビームのイオン種としては、プ ロトン(H⁺)が 28%で、さらに水素分子(H₂⁺)加速によるプロトンの利用が 71%となってお り、利用時間のほとんどがプロトンの利用となっている。利用されているプロトンの エネルギーは、¹²⁴I や ⁷⁶Br の製造に用いられる 14 MeV と 13.5 MeV の水素分子(H₂⁺)加 速での運転時間が、放射性薬剤の製造研究に利用された時間のそれぞれ 26%と 45%であ った。他のエネルギーではプロトン(H⁺)を加速して利用された、¹⁸F 等の製造に用いら れる 18 MeV が 10%、⁶²Zn/⁶²Cu 等の製造に用いられる 30 MeV が 9%、⁶⁴Cu 等の製造に用 いられる 12 MeV が 8%であった。

2. 粒子線検出器の開発

粒子線検出器の開発では、330時間が利用された。粒子別にみると、プロトンの利用 時間がその69%を占めている。プロトンの中でも、エネルギー別では、70 MeVが44%を 占めており、そのほかのエネルギーも10MeV~80MeVといった広範囲のものが利用され た。これらのプロトンビームは、直接プロトンを測定する実験に加えて、中性子検出 器の開発のため、ベリリウム、リチウム、グラファイト等のターゲットにプロトンを 入射し、そこからの中性子を測定する実験にも利用された[本誌p35-p38]。また、宇宙 放射線検出器の相互比較実験[本誌p50-p53]や、可搬型複合シンチレーションモニタの 性能評価[本誌p59-p60]が行われた。また、プロトン以外の加速粒子では、質量数12 の炭素(¹²C)が28%、質量数が13の炭素(¹³C)が10%、αが3%となっている。これらの粒子 は、6 MeV/u~12 MeV/uに加速され、アクリル等のターゲットに照射し、そこから発生 する中性子を測定する実験[本誌p31-p34]に利用された。

3. 基礎物理研究

基礎物理研究[本誌 p15-p19]では、124 時間が利用され、主に炭素が水分子へ入射した際の二次電子の測定が行われた。利用されたエネルギーは、前年度から引き続き、6 MeV/u である 72 MeV の利用がその 91%を占めている。さらに本年度は、低エネルギーの要求があり、4MeV/u である 48 MeV の利用が行われた。本実験では、今後、4MeV/u での実験の他に、炭素より重い粒子の加速も要求されている。

4. 中性子による損傷試験

中性子による損傷試験[本誌 p61-p69]では、重陽子 30MeV が 30 時間利用された。この実験では、C-3 コースのベリリウムターゲット直下での、イットリューム(YBC0)系

超伝導線材とビスマス(Bi-2223)系超伝導線材への中性子照射が行われた。線材への中 性子照射による放射化測定と、超伝導特性への影響調査が行われた。

5. 生物実験

生物実験としては、大気下ならびに低酸素下での細胞致死効果の比較[本誌 p71]の ための細胞照射実験に、プロトン 70MeV が 15 時間利用された。低 LET 放射線であるプ ロトン 70MeV が、ガラスシャーレーを用いた低酸素下において、高 LET との対照線源 として適当であるかの検証が行われた。

6. 有料ビーム提供

有料ビーム提供では3機関4グループによって、プロトン70MeVが64時間利用された。宇宙線による半導体等の損傷を評価するための利用であるため、このサイクロトロンとしては極低強度の提供となっている。広い照射野が要求される場合は、C-8コース、狭い照射野で十分な場合は、C-6コースと、何れも汎用照射室での利用となっている。

7. 新ビーム調整・調整運転・放射線安全測定

本年度は、新しいイオン種やエネルギーのビーム調整としての利用は、62 時間であ った。新たな加速モードのハーモニック3モードを用いた48 MeV をはじめとして、120 MeV, 156 MeV, 180 MeV の炭素ビームの調整が試みられた。ハーモニック3モードでの 48 MeV の運転に関しては、サイクロトロンの運転維持の項にて、詳細を述べる。また、 156 MeV, 180 MeV の高磁場での炭素ビームにおいては、加速テストのみで、取出しビ ーム確認まで至っていない。今後、調整が進められていく予定である。また、主に放 射性薬剤の製造用に利用されている、低エネルギープロトンビームの高強度化への調 整運転が289 時間を使って行われた。放射線安全測定のために11.25 時間を使って、 放射線安全課による、6カ月定期線量測定(漏えい測定)が年2回行われた。 2. サイクロトロンの運転維持

サイクロトロンの運転·維持

北條 悟^A、金澤 光隆^A、鈴木 直方^A、本間壽廣^A、杉浦 彰則^A、 岡田高典^B、神谷 隆^B、高橋 勇一^B、小松 克好^B、野田耕司^A

^A: 放射線医学総合研究所重粒子医科学センター物理工学部 ^B: 加速器エンジニアリング株式会社

概要

大型サイクロトロン(NIRS-930)は、様々な核種と広いエネルギー範囲での運転が可能で あるといった利点を生かし、多種多様なユーザーからの要求に応えてビームを供給してい る。本年度においては、新たにハーモニック3モードを導入し、これまでのエネルギー範 囲より、さらに低いエネルギーのビームを供給することができた。

一方、建設より 36 年が経っており、様々な老朽化対策を行いながら運転を続けている。 また、昨年度に制御装置および電源の更新が行われた小型サイクロトロン(HM-18)において は、高強度ビームでの安定な運転を行うことができた。以下に本年度のサイクロトロンの 運転維持について詳細を述べる。

ハーモニック3モードでの炭素ビーム加速

サイクロトロンでの加速可能なエネルギー範囲は、磁場と、加速電場の周波数のハーモ ニックモードによって決まる。これまで、大型サイクロトロンでは、ハーモニック1(H=1) とハーモニック2(H=2)の2つの加速モードによってビーム加速を行ってきた。この場合 炭素ビームにおける加速エネルギーの範囲は、大型サイクロトロンの磁場限界である C144MeV(12MeV/u)から、H=2における加速電場の最低周波数でのC72MeV(6MeV/u)まで となっていた。今回、物理研究ユーザーより、更にエネルギーの低いC48MeV(4MeV/u)の 加速依頼があり、ハーモニック3(H=3)での運転を試みた。H=3の問題点は、ファースト ターンの軌道と、加速電極への入射(プラー)と電場の位相との関係にある。プラー電極 の位置を理想的な位置に合わせる場合は、Dee 電極の先端部に大きな改造が必要となってし まう。そのため、今回は大きな改造を行わずに、H=2用のプラー電極を使用して、ビーム加 速テストを行った。H=2用のプラー電極は、先端ピラーが細いため、ファーストターンのビ ームを通しやすく、更に、H=1用やH=1,2兼用プラー電極に比べて全長が短く、理想的な位 置に近づけることができる。

H=2 用のプラー電極を用いたビーム加速テストの結果、Fig.1のようなインフレクタの位置で、サイクロトロンから 300nA の 48MeV 炭素ビームが取出された事を確認することができた。しかしながら、ユーザーからの要求強度を十分に満たすには、さらに入射・取出し効率を上げる必要があり、今後の課題となっている。

Fig.1 H=3 モード運転時のインフレクタと H=2 用プラー電極の位置 (H=2 モード運転時のインフレクタと兼用プラー位置を併記する。)

ECRイオン源真空排気系の改造

現在のビームの供給は、すべて永久磁石型 ECR イオン源(Kei-source)から行われている。Kei-sourceの真空排気は、イオン源の上流側(TMP1)に350L/sec、下流側(TMP2)に1000L/sec の2台のターボ分子ポンプが設置されている。

これらの排気装置やそれぞれの真空バルブの操作は、真空度を確認の上すべて手動で行っており、操作室から遠隔での動作確認もできない状態になっていた。そこで今回、各バルブに真空度と、ポンプの動作状態によるインターロックを追加し、さらに操作室にグラフィックパネル(Fig.3)を設置し、真空ポンプおよび真空バルブの動作状態の確認が遠隔で可能となった。真空度の測定点は、真空チェンバ内のみであったのに加えて、新たに2台のターボ分子ポンプの排圧に測定点(PG1, PG2)を追加し、TMP1にはチェンバとの間に真空バルブ(MV1)を追加した。改造後の真空排気システムのレイアウト図をFig.2に示す。

Fig.2 Layout of Beam line and vacuum systems for Kei-source

Fig. 3 Graphic panel of Vacuum systems (W:white G:Green R:Red)

ひし形スリットの導入

放射線損傷のテストのためのビーム利用の多くは、極めて弱い強度のビームが要求され ることが多くなってきている。こういったビームを供給する場合には、Kei-sourceのプラ ズマの強度を下げていくが、下げすぎるとビームが不安定となる要因になってしまう。ま た、放射性薬剤製造用の低エネルギーで大強度のビームでは、ビームに広がりが生じて、 Kei-source からサイクロトロンへの入射効率が低下する傾向がみられる。 そこで、この2つの対策として、Kei-sourceから分析マグネットまでの間のスタンダー ドBOX (ST-BOX1: Fig2参照) に設置されている固定型コリメータにかわり、可動型のスリ ットを導入した。固定型コリメータのサイズはΦ30 で、コリメータによるビームサイズの 変更や、分析前でのビーム強度の調整を行うことができなかった。これに対して、可動型 スリットでビームを制限することにより、さらに低い強度の安定したビームの供給が可能 となると考えた。また、低エネルギーのビームでは、分析マグネットより上流でビームサ イズを制限することにより入射の効率を良くすることができると考えた。

一般的に可動型のスリットは、上下左右から4方向にビームの通過範囲を制限するが、 今回スリットを設置する場所は、ビームラインへの挿入スペースがないため、上下左右の4 方向からの挿入はできなかった。そのため、左右からのみの挿入で、上下左右の制限を可 能とするため、先端に角度をもった切り込みを入れ、左右からの挿入によって、開口部を ひし形となるようにした(Fig.4)。これにより、左右 2 か所からの挿入のみで、上下左右 の4方向のビームの通過範囲を制限することが可能となっている。

ひし形スリットの駆動真空シールは、駆動時の真空悪化を防ぐためにベローズを用いた。 駆動には、インダクションモータを用いて、駆動速度は可変となっている。位置表示には、 ポテンショメータと演算可能なデジタルパネルメータを組み込み、ビームラインセンター からの寸法を直接表示するようになっている。

平成22年3月に入射ラインへの組み込みが終了し、今後、実際のビーム供給運転時に利用される予定である。

Fig.4 ひし形スリット

機器の保守

大型サイクロトロンでは、主排気系ターボ分子ポンプの排圧に設置されているメカニカ ルブースターポンプの更新を行った。ビーム輸送系においては、四極電磁石への電流供給 ラインが老朽化しており、ケーブルが固化していたり、端子台にひび割れが生じたりして いたため、更新工事を行った。今後、垂直入射系の制御を、PLCを用いた PC での制御へ移 行する予定があり、制御盤等の設計・製作等が進められている。 3. サイクロトロンのRI製造への利用状況

サイクロトロンの RI 製造への利用状況

分子イメージングセンター、分子認識研究グループ 根本和義、中尾隆士、福村利光、張明栄、

「概要」

分子認識研究グループでは、大型、小型サイクロトロンを利用して¹¹C、¹³N、¹⁵O、¹⁸F やその他の 金属、ハロゲン核種で標識した標識化合物を定常的に製造し、分子イメージングセンターのみなら ず重粒子医科学センター病院や外部の大学・研究機関・企業の研究者に提供している。その主 な用途は、放射薬剤の新規製造法の開発、新規放射性薬剤の開発、動物実験による薬剤の有効 性評価、臨床研究等である。臨床研究用に製造された放射性薬剤は、1)HIMAC を用いた腫瘍の 治療効果の評価や転移の有無などの判定、2) 腫瘍の治療抵抗性低酸素部位に関する研究 3)統合失調症、躁鬱病、アルツハイマー病などの精神神経疾患の診断や病態解明研究などに利 用されている。

「生産・提供状況」

平成 21 年度は、「新規短寿命放射性薬剤の有効性及び安全性に関するワーキンググループ」 において新規に4種類の短寿命放射性薬剤([¹¹C]thiothymidine, [¹⁸F]FEt-PE2I, [¹¹C]sulpiride及 び[¹¹C]AZD2184)が承認され、臨床利用が可能となり、これらのうち1つの薬剤は、臨床研究に利 用された。

21年度に製造した標識化合物の種類、生産量、提供量を表1に、被験者数を図1に、生産・提供回数の推移を図2にそれぞれ示した。製造回数は昨年度とほぼ同じ2000回を超える生産回数であった。

製造した放射性薬剤は、腫瘍診断([¹¹C]メチオニン、[¹⁸F]FDG、[¹⁸F]FLT、[⁶²Cu]Cu-ATSM、 [¹⁸F]FAZA など)、脳・中枢機能診断([¹¹C]ラクロプライド、[¹¹C]MNPA、[¹¹C]6-OH-BTA-1、 [¹¹C]DASB など)の臨床利用、サルやラットなどの動物実験([¹¹C]Ac5216、[¹¹C]FLB457、 [¹¹C]PE2I、[¹¹C]タミフルなど)、校正用ファントム線源([¹⁸F]FDG、[¹⁸F]F⁻など)等に提供した。

表1. 平成21年度に製造した標識化合物および生産量

拉话	ルムル	生産		診	断供給量	動物供給量			
修性	化合形	GBq	(回数)	GBq	(回数)	(人数)	GBq	(回数)	
	DOPA	25.88	(17)	9.65	(11)	(11)			
	DASB	30.67	(11)	6.77	(7)	(7)	2.521	(5)	
	FLB	33.772	(18)	2.034	(7)	(7)	4.184	(10)	
	BTA	169.256	(49)	46.27	(42)	(46)	19.21	(39)	
	SCH	39.55	(14)	2.095	(7)	(7)	5.596	(10)	
	RAC	95.642	(39)	9.509	(32)	(32)	3.33	(7)	
	WAY	10.898	(7)				2.629	(4)	
	PE2I	51.489	(14)				6.322	(13)	
110	PK11195	2.402	(4)						
	MET	3198.767	(330)	1862.172	(583)	(961)	3.242	(1)	
	VER	14.894	(5)						
	MNPA	82.086	(28)	5.602	(22)	(22)	6.121	(14)	
	s−dThd	5.72	(2)						
	スルピリト゛	4.01	(1)						
	Ac5216	91.8719	(44)				22.071	(40)	
	CH3I	22.321	(57)						
	その他	835.2074	(939)				38.895	(71)	
	合計	4714.436	(1579)	1944.102	(711)	(1093)	114.121	(214)	
	NH3	14.82	(5)						
¹³ N	その他	1.158	(2)						
	合計	15.978	(7)						
	FDG	23.405	(9)	8.568	(11)	(21)	1.938	(2)	
	FEtDAA	20.892	(13)				8.948	(14)	
	SPARQ	23.295	(28)				13.967	(27)	
	FLT	20.272	(9)	5.853	(7)	(7)			
	FMeNER	28.648	(19)	4.047	(17)	(17)	0.236	(1)	
18-	FEtPE2I	8.008	(5)	5.231	(3)	(3)	0.455	(1)	
	MPPF	1.738	(2)				1.332	(2)	
	TO-002	14.048	(18)	3.349	(14)	(14)	0.654	(1)	
	FAZA	50.562	(31)	7.154	(15)	(15)	2.2185	(15)	
	F-	100.57	(112)				9.112	(24)	
	その他	151.7268	(147)				10.517	(15)	
	合計	443.1648	(431)	34.202	(67)	(77)	49.3775	(108)	
⁶² Cu	Cu-ATSM	7.2511	(10)						
⁶⁴ Cu	水溶液	3.945	(6)				2.412	(6)	
⁶² Zn	62Zn/Cu	13.532	(11)	9.581	(9)	(11)			
¹²⁴ I	水溶液	1.982	(15)				0.284	(2)	

──18F標識薬剤

2500

「分子プローブ・放射薬剤合成技術の研究開発」

新規分子プローブの開発、新規製造法・合成法の開発、超高比放射能化の研究等のためにも短 寿命放射性同位元素が製造された。以下にこれらの研究について代表的な成果を紹介する。

1)腫瘍の悪性度診断や治療反応性予測を目的とする分子プローブ開発

腫瘍の悪性度診断や治療反応性予測を可能にすると期待される 4'-[methyl-11C]thiothymidineの安全性試験に関し、その放射性医薬品としての投与量で は遺伝毒性は様々な指標からの検討で無視し得ると考えられ、臨床利用可能であること が新規短寿命放射薬剤審査部会において承認された。

2)脳/血液排泄輸送系に関連する機能を捉える分子プローブ開発

未だその機能が不明な血液脳関門に存在するヨードトランスポータ活性の定量測定を可 能にするプローブの開発に成功した。また、血液脳関門に存在する多剤耐性タンパクの ひとつ MRP4 および有機アニオントランスポータのひとつ OAT3 の活性を定量測定する ためのプローブ開発に関して、¹¹C 標識体を用いた基礎検討から有望なプローブを見出し た。

3)酸化ストレスをイメージングする分子プローブの開発研究 酸化ストレスの指標である Glutathione/GST 還元系機能を捉えるプローブ開発に関して、 ¹⁸F 標識体に続き、ポジトロン核種の中で比較的半減期の長い ⁷⁶Br 標識体について基礎 検討から有望なプローブを見出した。

4)マイクロダイアリシスの応用に関する研究

マイクロダイアリシスによる[¹³N]アンモニアの脳内代謝測定から脳アストロサイトの機 能測定に成功した。

5) 標識薬剤の超高比放射能化に関する研究

高比放射能(>100Ci/µmol)を有する PET プローブ[¹¹C]DAC と[¹¹C]AC-5216 を用い、軽、 中、重症の脳虚血動物モデルに対しイメージングを行った結果、軽症では高比放射能が 梗塞部位を検出できたことに対し、通常(多くの PET 施設で達成された最大値)の比放 射能では、梗塞部位を発見することができなかった。また、中/重症モデルにおいては、 高比放射能が通常の比放射能に比べ、検出感度は 4-6 倍高かった。

6)新規な標識化学反応・標識中間体の開発に関する研究

塩化[¹¹C]アセチルを使用し、ベンゼン環に[¹¹C]アセチル基を導入した新規な標識合成法 を確立した。また、[¹¹C]ニトロメタンを用いマイケル付加反応などによる C-¹¹C 結合の 新構築法を見いだした。さらに、[¹³N]アンモニアを用い、[¹³N]サリドマイドの効率で実 用的な合成法を確立した。

7)神経イメージング用分子プローブの開発

末梢性ベンゾジアゼピン受容体の PET プローブを開発した。その中から、¹⁸F/¹¹C で標識 した数種の新規なプローブが脳虚血、神経炎症、肺炎、肝炎などを検出できることが明 らかとなった。また、脳内イミダゾリン受容体、代謝型グルタメート受容体サブタイプ1 などをイメージングできる数種の PET プローブを合成し、評価を行った。さらに、薬物 耐性を評価できる数種の排泄トランスポーターの PET プローブを開発した。

8)金属核種・中半減期核種の製造法の開発

PET 分子プローブとして有用な核種である ${}^{63}Zn$ 、 ${}^{64}Cu$ のルーチン的な製造法を確立した。 ー方で ${}^{124}I$ について 20 μ A 以上の電流値で繰り返し照射・分離精製を行い安定した収量 で得られることの再現性を確認した。 ${}^{76}Br$ についても同じ照射装置用いて製造テストを 開始した。

4. 重粒子線の生物効果初期過程における基礎物理研究

重粒子線の生物効果初期過程における基礎物理研究 Biophysical investigation on the initial process of heavy-ion impact 大澤大輔^A、岡田豊史^B、俵博之^C、曽我文宣^C、村上健^C、本間壽廣^C、野田耕司^C D. Ohsawa^A, T. Okada^B, H. Tawara^C, F. Soga^C, T. Murakami^C, T. Honma^C, K. Noda^C 京大^A、千葉大^B、放医研^C

研究成果概要

水蒸気への6.0 MeV/u C⁴⁺入射で、二次電子エネルギー10 eV~10 keV、放出角度20~160°にわたる広範囲な二 次電子生成二重微分断面積(DDCS)を測定した。得られたDDCSエネルギースペクトルでは、非完全電離(多価) イオン入射特有の幅広のELC(Electron Loss to Continuum)ピークが観測された。また、DDCSの角度積分で得ら れる微分断面積(SDCS)では、低中エネルギー領域(10~700 eV)で入射イオン内の軌道電子のために、イオンポ テンシャルの遮蔽による電子放出の減少を観測し、このエネルギー領域のC⁶⁺、C⁴⁺入射のSDCS比はC⁴⁺の有効 電荷を考慮したZ²スケーリング則から求められる値とほぼ一致した。

1. 研究目的と背景

粒子線照射による深部ガン治療がブラッグピークによる線量集中性や予後の QOL の観点から注目され、近年、本格的に実用化されている。ブラッグピーク領域(6~25 MeV/u)のエネルギー損失過程は生体構成物質(主に水)の電離、励起が主であり、それに伴って多数の二次電子が放出されるため、その生物効果初期過程はこれら放出二次電子線の空間及びエネルギー分布に密接に関係している。過去に、様々な入射核種(主に軽イオン)、ターゲット(主に希ガス)を用いてこの種の実験がなされてきたが、数 MeV/u の重イオン衝撃による水からの二次電子放出については、高真空下で安定希薄な水蒸気ターゲット得ることが難しいため、信頼できる高精度実験データは殆ど発表されていない。

本研究の目的は、ブラッグピーク近傍のエネルギー(数 MeV/n)を持つ重イオン衝撃により水蒸気から放出 される二次電子線のエネルギー及び角度分布を測定し、既存の理論と比較しうる高精度な二次電子生成二重 微分断面積 d² σ/dEdΩ(DDCS: Doubly Differential Cross Section)を評価することである。さらに、得られた断面 積を九大上原氏らにより開発された電子輸送コード(KURBUC)に組み込み、重イオンの水中におけるトラッ ク構造(重イオンの飛跡に沿って生じるエネルギー付与の(平均化されていない)非均質性の情報を提供 するため、重イオンの持つ高い生物学的効果比(high RBE)、低い酸素増感度(low OER)、細胞周期依存性が無 い等のマクロな生物効果の、DNA レベルでのメカニズムの解明、さらに、DNA へのダメージ付与(局所的な 分子間結合の損傷)がどのようにして細胞不活性化(分裂停止)へ移行するかを解明する端緒となりえるが、元 となる断面積データが不足しているため、信頼性に欠く状況にある。断面積データについては、近年、デー タの相互利用、有機的なフィードバックを目的とした原子分子データベースの構築、XML(eXtensible Markup Language)等による標準化が進められているが、重粒子線と生体構成原子/分子の相互作用に関する高精度基礎 データは未だ整備されていない。本研究で得られる水蒸気ターゲットデータを組み入れることにより、重粒 子線治療における治療計画の精密化、テーラーメード医療の確立、その結果としてがん治癒率の向上に寄与 できると言える。

2. 研究内容と成果

今年度は、6.0 MeV/u C⁶⁺入射に加えて、非完全電離(多価)イオンの等速 C⁴⁺入射でも同様に二次電子生成断 面積を測定した。ブラッグピーク領域の炭素線は水中で完全電離しており、非完全電離イオンの二次電子生 成断面積はトラック構造解析の入力データとしては寄与しない。しかしながら、非完全電離イオンでは入射 イオン内の軌道電子のために、イオンポテンシャルの遮蔽による電子放出の減少と軌道電子の離脱による電 子放出の増加の2つのプロセスが新たに加わり、また、これら2つの寄与は二次電子エネルギー領域で異な ることが予想されるため、原子物理学上、大変興味深い。特に、水蒸気へのブラッグピーク領域のC⁴⁺入射に ついては、C⁶⁺入射と同様に実験値がないため、得られる断面積は二次電子放出の理論研究にも貢献できると 考えられる。

図1に 6.0 MeV/u C⁴⁺入射で得られた DDCS エネルギースペクトル(の一部)を示す。前年度に測定した等速 C⁶⁺入射の DDCS と比較した。二次電子放出率は二次電子エネルギーのほぼ2乗に比例して減少するため、両 者ともに二次電子エネルギーの増加に従い、いくつかのピークを除いて急激に減少している。また、全角度 で~490 eV、~950 eV にそれぞれ標的分子(H₂O)由来の O-K-LL Auger、O-KK-LLL Auger ピーク、また、90°以 下の角度で二体衝突(binary encounter)ピークが観測された。C⁴⁺入射では、これらのピークに加えて、~3.2 keV に幅広の ELC(Electron Loss to Continuum)ピークが観測された。ELC は非完全電離イオン内の軌道電子が標的 原子との衝突で離脱した直後、その同じ入射イオンのクーロン力により前方に入射イオンとほぼ等速で引っ 張られてできるピークであり、6.0 MeV/u イオン入射の ELC のピークエネルギーは

$6.0 \times 10^6 / 1836 = 3268$ eV

となる。測定ピークエネルギーは計算値とほぼ一致した。低中エネルギー領域(10~700 eV)では、C⁴⁺入射は C⁶⁺入射に比べて~50%減少した一方、高エネルギー領域(1~10.0 keV)の二体衝突ピークは両者でほぼ一致した。 これは、衝突径数 pの大小によって入射イオンのポテンシャルの遮蔽度が変わるためと思われる。すなわち、 低エネルギー電子放出は pの大きい、遠く離れた衝突で生じるため、これらの電子は十分に遮蔽されたイオ ンポテンシャルを感じるのに対して、高エネルギー電子放出は pの小さい、電子雲内部での衝突で生じるた め、ほぼ裸のイオンポテンシャルを感じるためと思われる。

図1. 水蒸気への6.0 MeV/u C⁴⁺入射による二次電子生成二重微分断面積(DDCS)エネルギース ペクトル(前方(<90°)、二次電子エネルギー10 eV~10 keV)

 C^{6+} 入射については、H₂O-K-LL Auger 電子放出断面積を求め文献値と比較することで測定の首尾一貫性を確認した。各角度の Auger ピークをガウスフィットしその総面積 [cm²]を求めることで、水蒸気への 6.0 MeV/u C^{6+} 入射における H₂O-K-LL Auger 電子放出断面積は

$(3.33 \pm 0.43) \times 10^{-18} \text{ cm}^2$

と求められた。原子への低エネルギー軽イオン入射における K 殻電離、KX 線放出、K-LL Auger 電子放出の 断面積は文献[1]にまとめられており、スケーリングすることで比較を試みた。水分子(H₂O)内の 5 つの分子軌 道(1b₁、3a₁、1b₂、2a₁、1a₁)のうち、最内殻軌道 1a₁ は酸素(O)の 1s 軌道の寄与が 100 %であるため[2]、H₂O-K-LL Auger と O-K-LL Auger 電子の放出断面積はほぼ等しいと見なせる。酸素(O)標的の文献値は、0.60~2.61 MeV 陽 子(H⁺)入射における K 殻電離断面積が参照でき、2.61 MeV 入射では

 $(2.4 \pm 0.6) \times 10^{-19} \ cm^2$

となっている。K 殻空孔の脱励起過程には KX 線放出と K-LL Auger 電子放出の 2 つが競合し、K 殻空孔 1 個 当たりに放出される KX 線数の割合は K 殻蛍光収率(fluorescence yield) ω_{K} と呼ばれる。図 2 に ω_{K} の原子番号 (Z)依存性を示す[3]。 ω_{K} は Z の減少に従って減少し、酸素(O)(Z=8)の K 殻空孔の脱励起過程はほぼすべてが K-LL Auger 電子放出となるため、酸素(O)の K 殻電離断面積は K-LL Auger 電子放出断面積とほぼ等しいとみ なせる。従って、H₂O への 6.0 MeV/u C⁶⁺入射における K-LL Auger 電子放出断面積は、スケーリングにより、 (2 4 + 0 6) × 10⁻¹⁹ × 6²

$$\frac{(2.4 \pm 0.0) \times 10^{-18}}{(2.4 \pm 0.9396)} \times 10^{-18} \text{ cm}^2$$

と求められ、測定値に近い結果となり、測定の首尾一貫性が確認できた。

図 2. K 殻蛍光収率 ωK の原子番号(Z)依存性

続いて、図 3 上に 6.0 MeV/u C⁶⁺、C⁴⁺入射で得られた二次電子生成微分断面積(SDCS: Singly Differential Cross Section)を示す。(1)に示すように、放出二次電子エネルギーを E [eV]として、SDCS(= $\frac{d\sigma}{dE}$)は DDCS(= $\frac{d^2\sigma}{dEd\Omega}$)を角度について数値積分することで得られ、放出二次電子のエネルギースペクトルに相当

$$\frac{d\sigma}{dE} = \int \frac{d^2\sigma}{dEd\Omega} d\Omega = \int_0^{\pi} \frac{d^2\sigma}{dEd\Omega} 2\pi \sin\theta d\theta$$

(1)

完全電離イオンの SDCS については、いくつかモデル式が提案されており、前年度には、H⁺入射における 半経験的解析式の1つの Rudd モデルにボルン近似を適用した Z²スケーリング値(x6²)と比較し有為な減少を 確認した。なお、前年度に観測された高エネルギー領域の異常増加については、マスフロー流量に対する全 二次電子(SE)計数の直線性(リニアリティ)を測定したところ、コリメータ改造(カーボンマスク化およびコリ メータ最上段へのサプレッサ電圧印加)にもかかわらず、15 sccm 以上で崩れていたため、10 sccm での測定を 採用した。これによって異常増加は目立たなくなっている。今年度は、さらに、CDW-EIS(Continuum Distorted Wave - Eikonal Initial State)による理論計算値と比較した。CDW 近似はボルン近似に電離電子が入射イオンに よって歪まされる効果を考慮し、電離電子の終状態の波動関数を二中心クーロン波動関数で表したもので、 ボルン近似よりも上位の近似とされている。理論計算はアルゼンチンの理論計算グループに依頼した。C⁶⁺入射 SDCS と CDW-EIS による理論計算値は、200 eV~6 keV でのわずかな減少(最大~50 %減少@2 keV)を除い て、それ以外の領域で良く一致した。一方、C⁶⁺入射 SDCS と CDW-EIS による理論計算値は 1~100 eV で共に Rudd モデルスケーリング値より小さくなった(最大~21.6 %減少@1 eV)。過去の He²⁺入射 SDCS は Rudd モデ ルスケーリング値(x2²)と良く一致しており、高 Z イオン入射で特有な現象と思われる。スケーリング、すな わちボルン近似が高 Z イオン入射で過大になることは全電離断面積(Total Ionization Cross Section: TICS)測定 でも報告されており、飽和(saturation)効果による高 Z イオン入射での Z² スケーリングの不適合、二中心効果 (two-center effect)、すなわち、前方への加速によるエネルギースペクトル変化が要因として指摘されている[4]。 今後、O⁸⁺、Ne¹⁰⁺、Ar¹⁸⁺等の他の入射イオンに対して同様に SDCS を測定し Z 依存性を調べることで飽和効 果の解明につながると思われる。100 eV 以下の低エネルギー電子放出はイオン-原子(分子)衝突における電離 イベントの圧倒的多数成分であり、その増減は全電離断面積の変動に直結し阻止能(あるいは線エネルギー付 与)にも影響を及ぼしうるため、この不一致(減少)は放射線生物学の観点からも重要であり興味深い。

図3. 水蒸気への6.0 MeV/u C⁶⁺、C⁴⁺入射による二次電子生成微分断面積(SDCS)エネルギース ペクトル(上)と両入射のSDCS比(C⁴⁺/C⁶⁺)(下)。C⁶⁺入射については、Ruddモデルスケー リング(x6²)、CDW-EISによる理論計算値と比較した。

 C^{4+} 入射 SDCS では、~490 eV の O-K-LL Auger に加えて、~3.2 keV に幅広の ELC ピークが観測された。前述のように、低エネルギー領域の電離は衝突径数 pが大きく、非完全電離イオン(多価)入射において電離される水分子内軌道電子は十分に遮蔽されたイオンポテンシャルを感じるはずである。従って、 C^{4+} の有効電荷を

 Z_{C4+} とすれば、 C^{6+} と C^{4+} 入射の SDCS は低エネルギー領域では Z^2 スケーリング則が成り立ち、その比 (C^{4+}/C^{6+}) は $(Z_{C^{4+}}/Z_{C^{6+}})^2$ になることが予想される。一般に、非完全電離イオンの有効電荷 Z_{eff} は

$$Z_{eff} = \left(\frac{E_b}{13.6 \times n^2}\right)^{\frac{1}{2}}$$
(2)

と表せる。ここで、 E_B 、nはそれぞれ非完全完全電離イオンの最外殻電子の軌道結合エネルギー [eV]、電子数であり、C⁴⁺イオンでは、 $E_B = 64.5$ eV[5]、n=2 となる。従って、 Z_{C4+} は

$$Z_{C^{4+}} = \left(\frac{64.5}{13.6 \times 2^2}\right)^{\frac{1}{2}} = 4.35$$
となる。よって、低エネルギー領域における C⁶⁺、C⁴⁺入射の SDCS 比(C⁴⁺/C⁶⁺)は
(3)

$$\left(\frac{C^{4+}}{C^{6+}}\right)^2 = \left(\frac{Z_{C^{4+}}}{Z_{C^{6+}}}\right)^2 = \left(\frac{4.36}{6}\right)^2 = 0.527$$
(4)

と予想される。図 3 下に C^{6+} 、 C^{4+} 入射の SDCS 比(C^{4+}/C^{6+})と予想値を示したところ、低エネルギー領域 (50~200 eV)で両者は良い一致を示した。なお、9.62 eV 値の不一致は磁気遮蔽効果の低い Cu 製冷却カバーで 測定したことによる残存磁場の影響と思われる。 μ -メタル製冷却カバーによる測定は来年度以降に行う予定 である。

参考文献

- [1] R.K. Gardner and Tom J. Gray, Cross sections for K-shell ionization, x-ray production, or auger-electron production by ion impact, Atomic Data and Nuclear Data Tables, Vol. **21**, 515 (1978).
- [2] 上原周三, マイクロドジメトリにおける電子飛跡構造, JAMP NEWS, 11, 1 (1995).
- [3] R.K. Gardner and Tom J. Gray, Cross sections for K-shell ionization, x-ray production, or auger-electron production by ion impact, Atomic Data and Nuclear Data Tables, Vol. **21**, 515 (1978).
- [4] P.D. Fainstein, V.H. Ponce and R.D. Rivarola, A theoretical model for ionisation in ion-atom collisions. Application for the impact of multicharged projectiles on helium, Journal of Physics B, **21**, 28 (1988).
- [5] V.G. Pal'chenko and V.P. Shevelko, Reference data on multicharged ions (Springer, Berlin, 1995).

5. 粒子線検出器の開発

5-1. 中性子検出器の開発とその特性評価

中性子検出器の開発とその特性評価

高田真志^a、佐波俊哉^b、萩原雅之^b、遠藤 暁^c、早川陽祐^c、森宗祐樹^c、田中浩樹^d、 A 放射線医学総合研究所

- B 高エネルギー加速器研究機構
- C 広島大学大学院工学研究科
- D 京都大学原子炉実験所

平成21年度

中性子検出器の開発と核データ評価のために、以下の実験研究を実施した

- 1. 核破砕片生成二重微分断面積の測定
- 2. ¹H(¹³C,n)反応からの中性子線測定による PHITS コードの検証
- 3. 硼素中性子捕捉療法加速器中性子源のための 16MeV 陽子によるベリリウムタ ーゲットからの中性子スペクトル測定
- 4. 高エネルギーガンマ線照射場の特性評価

核破砕片生成二重微分断面積の測定

佐波俊哉 ^a、萩原雅之 ^a、岩瀬広 ^a、高田真志 ^b、馬場護[。] ^a 高エネルギー加速器研究機構、^b放射線医学総合研究所、^o 東北大学

概要

核破砕片生成二重微分断面積は核子やイオンにより引き起こされた核反応に伴う核破砕片の生成エ ネルギー・角度分布を記述し、核子やイオンの物質中でのエネルギー付与分布・過程を正確に記述する ための基礎的なパラメータである。高エネルギー加速器研究機構、放射線医学総合研究所、東北大学か らなる当グループでは数 10MeV 陽子、中性子による核反応に伴う核破砕片の二重微分断面積の測定を 目的に、ブラックカーブカウンターを開発してきた[1.2.8]。このブラックカーブカウンター(BCC)に対 して、カソード信号を用いた低エネルギー粒子弁別能力の改善[1]、突き抜け粒子のエネルギー補正によ る高エネルギー粒子の測定[2]、という手法を開発し、数 10MeV 陽子起因の核破砕片の測定のために必 要とされる効率と可測定エネルギー域の確保を行ってきた。さらに、2008 年度には入射窓を従前のア ルミナイズドマイラーに比べ 1/10 の厚さの窒化シリコンに変更し、試料厚みも従前のポリエチレンの 約 1/10 となる炭素箔を用いることにより、エネルギーロスの低減とエネルギー分解能の向上を実現し [3]、より低い入射エネルギーである 40 MeV 入射に対するフラグメント生成から、2 体反応成分の同定 を行った [4]。本年は原子力基盤研究イニシアティブによる研究資金を利用した BCC による包括的なデ ータ測定プログラムが開始され、次年度の大阪大学核物理研究センターにおける、より高いエネルギー での効率的なデータ取得を視野に、入射粒子を陽子から炭素に変更した実験、および、BCC6号機の試 作と試験、酸化アルミ、窒化アルミ試料による、酸素、窒素の核破砕片生成断面積測定の試み、につい て実験を行った。

本報告では、平成21年度における実験の概要と結果について項目毎に述べる。

1. 実験装置[1,2,3,4]

実験は放射線医学総合研究所の大型サイクロトロン(NIRS-930)の C6 コースにて行っている。図1に 実験配置を示す。サイクロトロンから引き出されたビームは散乱チェンバー内での薄膜試料位置に於い て約5mm径に絞られる。薄膜試料を透過した陽子ビームは炭素製のビームダンプに吸収される。ビー ムダンプには電流計を接続し、ビーム量をモニターする。試料中の原子核と入射粒子が核反応をおこし、 二次粒子を生成する。散乱チェンバーには30,45,60,90,120,135,150度のポートがあり、これらのそれ ぞれに二次粒子検出器である BCC を接続し、生成した二次粒子の核種同定を行い、エネルギーを測定 する。

図1 実験機器配置の様子。30 度ポートと 45 度ポートに BCC をそれぞれ接続した場合
散乱チェンバー、ブラッグカーブカウンターの縦断面図を図 2 に示す。BCC は円筒形状をしたグリ ッド付き電離箱であり、カソードの位置に入射窓を有している。入射窓は金メッキタングステンメッシ ュサポート付き 2.5 µm 厚アルミナイズドマイラー(20 mm 径)のものと、昨年実用化したウィンドウフ レームサポート付き 0.2 µm 厚窒化シリコンのもの (10 mm 径)を測定粒子、検出ガス圧力に応じて使用 している[4]。カソードとアノードの距離は 30 cm でありアノードのカソード側 5 mm 手前にグリッド が設置されている。検出ガスは 200 Torr または 400 Torr の P10 ガスを利用しており、低圧ガスフロー システムにより圧力を一定に保ちながらガス置換を行っている。検出器厚みを薄くすることにより、二 次粒子のうち生成量の多い水素同位体の信号寄与を小さくして、エネルギー損失の大きいへリウム以上 の粒子を選択的に測定することができる。

図2 散乱チェンバー、ブラッグカーブカウンターの縦断面図

図3にブラックカーブカウンターの内部構造模式図(左)と粒子弁別の方法(右)について示す。入射粒子 は検出器左側から入射窓を透過して入射する。入射粒子は検出器内のガスを電離し、そのエネルギーと 検出器内のガス圧力に対応する飛程で止められる。飛程が検出器長より長い場合は検出器を突き抜ける が、この補正については後述する。電離により生成した電子はアノード、カソード間の電場を用いて収 集する。アノードの直前に適切な中間電圧を付与したグリッドを置くことにより、カソード・グリッド 間の電子のドリフトによる誘導からアノードを遮蔽し、アノードから電離電子の検出器内分布に相当す る時間分布を持つ信号を得ることができる。この信号の先頭部分はブラックピーク高に、全積分値はフ ラグメントのエネルギーに比例する信号となる。このブラックピーク高とエネルギーの相関から1台の 検出器でフラグメントの粒子同定とエネルギー測定ができる。

図4に典型的なブラックピーク・エネルギーの相関図として炭素標的に72 MeV 炭素を入射した場合 に生成する核破砕片を30度方向で測定した場合について示す。縦軸のブラックピークの高さが粒子の 種類に応じて変化しており、粒子が明瞭に同定されている。図中の1の成分は粒子のエネルギーが小さ くブラックピークを形成しないために粒子同定ができていない。我々の検出器ではカソード信号も取り 出しているために、カソード信号とアノード信号の時間差、すなわち粒子の飛程に相当する信号を得る ことができ、これを利用し図中の①の成分も粒子同定することができる[1]。また図中の②の成分は検出 器を突き抜けた成分であるが、粒子種が明確であるので、検出器への付与エネルギーから入射エネルギ ーを推定する手法により、これらの粒子についても入射エネルギーを決定している[2]。これらの2手法 を併用することにより従来のブラックカーブカウンターの可測定エネルギー域を大幅に拡充し、十分な 広い可測定をもったフラグメント測定を実現している。

図3 ブラックカーブカウンターの構造(左)と粒子弁別の方法(右):入射粒子は検出器左 側から入射窓を透過して検出器に入射する。粒子は検出器内のガスを電離し止められ る。電離により生成した電子を陽極に電場を用いて収集する。陽極の直前にグリッドを 置くことにより、1 台の検出器で、陽極信号(右図)の時間分布と積分値を用いて粒子の 種類とエネルギーの情報を得る。

図 4 炭素標的に 72 MeV 炭素を入射した場合に生成する核破砕片を 30 度方向で測定 した場合のブラックピークとエネルギーの相関図。縦軸のブラックピークの高さが粒子 の種類に応じて変化しており、粒子が明瞭に同定されている。

1. 炭素入射実験[7]

72 MeV(6 MeV/u)と 144 MeV(12 MeV/u)の炭素入射に対する炭素、アルミニウムの二重微分断面積 を 30 度、60 度において測定した。このビームエネルギーは核子の核内での束縛エネルギー付近である。 図 5 にそれぞれのエネルギーで取得したブラックピークとエネルギーの相関図を示す。生成核破砕片に ついて大きな違いがあることが分かる。72 MeV では炭素とボロンにピーク状の成分が観察される。炭 素のピークは、炭素原子核のエネルギー準位に相当するエネルギー差を有している。このことは炭素原 子核同士による散乱($^{12}C+^{12}C \rightarrow ^{12}C'+^{12}C'$)として理解できる。同様にボロンのピーク成分は $^{12}C+^{12}C \rightarrow ^{*+1}N+^{*-1}B$ といった 2 体反応が起きていることを示している。このような成分は 144MeV 入射ではまっ たく観察されていない。

また、72 MeV の結果に於いて、窒素と酸素の生成量を比較すると、明らかに酸素の生成量が大きい。 酸素は炭素にヘリウム原子核を付して、窒素は炭素に陽子を付して形成されることを考えると、核子あ たりの入射エネルギーが核子の核内での束縛エネルギー下回る核反応においては、核子(陽子)のストリ ッピングよりも、ヘリウム原子核のストリッピングが容易に起こることを示している。このことは炭素 が3つのヘリウム原子核からなるという側面を持つことから興味深い。一方ヘリウム原子核をはぎ取ら れた炭素原子核はベリリウム8原子核となるが、これは不安定ですぐに2つのヘリウム原子核に崩壊し てしまうことから測定されていない。測定されているベリリウムはベリリウム7とベリリウム9である。 従ってベリリウムの放出量は酸素に比べ極端に少ないと理解される。この事情は入射エネルギーを核子 あたりわずか6MeV 上昇させた144 MeV 入射において大きく変化している。このエネルギーでは窒素 と酸素の生成量比は逆転しており、上記のような反応の描像はもはや適用できないことを示唆してい る。

図4 炭素標的に72MeV炭素と144MeV炭素を入射した場合に生成する核破砕片を30度方向で測定した場合のブラックピークとエネルギーの相関図。

これらのブラックピーク、エネルギー相関図から粒子毎のエネルギースペクトルをを導出し、PHITS コード(ver 2.13)[6]を用いた QMD+GEM モデルとの比較を行った結果を図 5 に示す。核反応に原子核 の準位構造が関与し、散乱を起こす場合、炭素の原子核がヘリウム原子核のクラスタ構造を持つ場合に ついて QMD モデルがどの程度の再現能力を持つかが焦点である。

比較結果を 72 MeV について図 5 に、144 MeV について図 6 に示す。炭素の散乱過程が主である 72 MeV の炭素生成については QMD+GEM は大きく過小評価している。また 72 MeV の炭素原子へのヘ リウム原子核付着を示す酸素の生成量も過小評価している。一方同じ 72 MeV の炭素への陽子付着の生 成物である窒素については QMD+GEM は非常によく再現している。しかし 72 MeV の炭素からの陽子 除去の生成物であるボロンについては過小評価が見られる。一方、これらの反応過程による寄与が相対 的に少なくなり、核子・核子での反応が主要となる 144 MeV では QMD+GEM は実験値を非常に良く再

図 5 炭素標的に 72MeV 炭素を入射した場合に生成する核破砕片を 30 度方向で測定した場合の粒子毎の二重微分断面積

図6 炭素標的に72MeV炭素を入射した場合に生成する核破砕片を30度方向で測定した場合の粒子毎の二重微分断面積

現している。これらのことから、核子の束縛エネルギー以下の核子あたりエネルギーを持つ重イオン入 射を記述するためには QMD+GEM で記述される反応モデルに加え、原子核の構造を取り入れたモデル を用いることが実験値の再現に必要であることが推定される。

同様の実験はアルミニウム標的についても行っており、炭素との原子核構造の違いに起因する生成物 の変化が期待される。アルミニウムのデータについては現在解析中である。

2. 陽子入射実験

本研究では、これまでに、炭素、アルミニウム、シリコンの核破砕片生成二重微分断面積を陽子 40,50, 70,80 MeV 入射に対し測定している[3,5]。本年は陽子入射に対する測定として、新たに酸素、窒素、 組織等価試料についてのデータ取得を行った。酸素、窒素は炭素と同様に軽核であり、生体を構成する 重要な元素である。組織等価試料は、人体軟組織に陽子線が照射された場合に生成する核破砕片の生成 量、エネルギー・角度分布を直接与えるものとして期待できる。しかし、これらの核種・試料に対する データ核破砕片放出二重微分断面積データはこれまで全く報告されていない。これは核破砕片を効率的 に測定する手法が無かったこともあるが、試料作成が難しいという問題が大きい。

酸素、窒素は単体ではガスなので、極低温環境以外では単体のセルフサポート試料を作成するのは難 しい。そのために何らかの化合物としてか、ガスのまま利用するしかない。ガス状での利用は、その封 じ込めに試料原子量より大きな分離膜を想定する必要があり機械的に非常に難しい。そこで化合物での 利用を念頭に試料の作成を行った。用いられる化合物については、以下の条件が勘案される。(1)安定で あること、(2)酸素、窒素と同程度以下の核破砕片生成断面積を持つこと、(3)酸素、窒素と1:1 程度の組 成比であること、(4)核破砕片のエネルギーロスが小さいこと。このうち(2),は重元素を指向し、(3)軽元 素を指向している。本研究ではこれらの条件から Al₂O₃、AlN を選定し、薄膜試料作成の検討を行った。 Al₂O₃、AlN はどちらもセラミクスであり、それ自体の薄膜化は容易ではない。そこで、シリコン試料 で用いたタンタル製バッキングフォイルにスパッタリング法で成膜する手法を選定した。スパッタリン グ厚みは 1 µm とした。スパッタリング中に Al と O または N の比が変化してないことを、生成膜とバ ルク試料との X 線蛍光分析の比較で確認した。

組織等価プラスチック(A150)は通常数 cm 厚みのブロックとして供される。このままでは核破砕片測 定用の試料とならないので、薄板に切り出し、加熱、圧延を行い薄膜試料を作成した。A150 の物性上、 薄膜化する際の条件で穴があいたり、ちぎれたりすることがあるが、条件を工夫し、11 µm 厚の A150 試料を得た。

これらの試料はサンプルチェンジャにマウントされ散乱チェンバー内に設置される。図7にサンプル チェンジャにマウントした試料の写真を示す。

図7 使用した試料の写真。サンプルチェンジャに設置してある。写真左側より、ブランク、 ビームプロファイラ(蛍光板)、タンタル、A150人体組織等価プラスチック、炭素、アルミニウ ム、酸化アルミニウム、窒化アルミニウム

図8に測定された組織等価試料(A150)、アルミニウム、酸化アルミニウム、タンタルに70 MeV 陽子 を入射した場合の核破砕片のブラックピークとエネルギーの相関図を示す。図から明らかなように核破 砕片がブラックピーク高さ毎にきれいに分離して測定されている。酸素の断面積の導出には、アルミニ ウムとタンタルからの核破砕片の生成量が酸化アルミニウムの生成量より少ないことが必要であるが、 図から明らかなように、タンタルについてはリチウムの突き抜け成分を除き、ベリリウム、ボロン、炭 素については、影響が無視できることが確認できた。アルミニウムと酸化アルミニウムの差については、 原子数補正が必要であることから、図9に詳しく述べる。

図 8 組織等価試料(A150)、アルミニウム、酸化アルミニウム、タンタルに 70 MeV 陽子を入射した場合の核破砕片のブラックピークとエネルギーの相関図。

図9にアルミニウム原子数比、照射陽子数比を考慮したアルミニウムと酸化アルミニウムの核破砕片 収量の比較を示す。酸化アルミニウムとアルミニウムの収量比はアルミニウム原子数あたり約2倍異常 となっており、差し引きは問題ない。タンタルはリチウムの高エネルギー部分を除いて酸化アルミニウ ムの寄与約1/10以下となっており、寄与は小さい。リチウムの高エネルギー部分の寄与は酸化アルミ ニウムの収量に迫るものがあり、ちょうどへリウムの突き抜け成分と分離が難しい領域であることか ら、今後の検討課題である。

生体構成元素である炭素、酸素、窒素については PHITS コードによる ISOBAR と GEM モデルを用 いた理論計算も行った。計算に用いたバージョンは 2.23 である。このバージョンは核内カスケード過 程および蒸発過程を経た反応の前後に於いて Q 値が保存するようになっている。試料として半径 1µm の ¹²C の球を設定し、生成する核破砕片を 100 cm 離れたリング上の領域で 1MeV のエネルギービン毎 に計数した。リング領域は設定角度の±2.5 度の領域をカバーしている。計数値は試料原子数、立体角で 規格化し、二重微分断面積とした。

実験値と計算値の結果を比較した例を図 10 に示す。この図は入射粒子エネルギー70 MeV で 45 度方向に放出された Li, Be, B, C の二重微分断面積を炭素、酸素、窒素について示している。実験値は、酸素、窒素にたいするリチウムの高エネルギー側での統計が悪くなっているが、その他の点については十分な統計精度で値が得られている。計算値は実験値の傾向をよく再現している。ベリリウム、ボロン、炭素の高エネルギー側については過小評価であるが、酸素が他の核種に比ベリチウムの放出が少ない様子などをきちんと再現している。これらの放出は主に GEM コードによる蒸発過程から来ており、そのために低エネルギー部分に関しての再現性は良いと言える。一方、高エネルギー側の粒子放出では炭素

の例に見られるように、計算値が過小評価する傾向にある。次年度の入射エネルギーをあげた実験結果 が得られるにつれ、実験と計算の乖離の程度が明らかになると期待される。現在 30 度、60 度、90 度、 135 度について同様のデータを解析中である。

図 9 アルミニウム原子数比、照射陽子数比を考慮したアルミニウムと酸化アルミニウムの核破砕 片収量の比較。入射陽子エネルギー70MeV、45度での結果

3. まとめ

数 10 MeV 領域での核破砕片生成二重微分断面積データの取得のためにブラックカーブカウンターを 中心とした測定システムを作成し、放射線医学総合研究所サイクロトロンにおいて、(1)炭素入射に対す る炭素からの核破砕片測定、(2)陽子入射に対する酸素、窒素からの核破砕片測定、を行った。

炭素入射によるデータからは反応機構入射エネルギーに伴う変化を示唆するデータが得られ、データ を再現するために必要なモデルについて検討することができた。陽子入射による測定では、試料の問題 からこれまでデータの無かった酸素と窒素について核破砕片の二重微分断面積を測定することができ た。PHITS コードとの比較から計算値は酸素窒素についても核破砕片生成をよく再現していることが確 認できた。

次年度は核破砕片測定をより高いエネルギーで行うとともに、陽子、重陽子、三重陽子、ヘリウム原 子核などの核破砕片より軽い粒子についても測定を開始し、数10から数100 MeV 領域における核反応 生成物の実験データの拡充を図ることにする。

参考文献

 T.Sanami, M.Hagiwara, T.Oishi, M.Baba, M.Takada, Nucl. Instrm. Meth. A Vol 589/2 pp 193-201 (2008)
M. Hagiwara, T. Sanami, T. Oishi, M. Baba, M. Takada, *Nucl. Instrm. Meth.* A Vol 592 pp 73-79 (2008)
T.Sanami, M.Hagiwara, M.Takada, M.Baba: RECENT PROGRESS OF FRAGMENT MEASUREMENT FROM TENS OF MeV PROTON INDUCED REACTION USING BRAGG CURVE COUNTER, Proceedings of the 2008 Symposium on Nuclear Data [4] T.Sanami, M.Hagiwara, M.Takada, M.Baba: IMPROVEMENT OF LOWER ENERGY THRESHOLD OF FRAGMENT MEASUREMENT FROM TENS OF MeV PROTONS USING BRAGG CURVE COUNTER, Proceedings of the Radiation Detectors and their uses, 2009

[5] M. Hagiwara, T. Oishi, S. Kamada, M. Baba, T. Sanami, M. Takada and N. Miyahara, "Measurements of Double Differential Fragment Production Cross Sections of Silicon for 70 MeV Protons", Proceedings of 2005 Symposium on Nuclear Data (JAEA-Conf 2006-009)

[6] H.Iwase et al., J.Nucl.Sci.Technol., 39 (2002) 1142

[7] T.Sanami, M.Hagiwara, M.Takada, M.Baba: Measurement of fragment production DDX of 72 and 144 MeV ¹²C beam induced reaction on carbon using Bragg Curve Counter, Proceedings of the 2009 Symposium on Nuclear Data

[8] T. Sanami, M. Hagiwara, T. Oishi, M. Hosokawa, S. Kamada, Su. Tanaka, Y. Iwamoto, H. Nakashima, M. Baba, Nucl. Instrm. Meth. A Vol 610 pp 660-668 (2009)

図 10 入射粒子エネルギー70 MeV、炭素、酸素、窒素から 45 度方向に放出された Li, Be, B, C の 二重微分断面積。点は実験値、線は PHITS(ISOBAR+GEM)コードでの計算値を示す。

¹H(¹³C, n) 反応からの中性子線測定による PHITS コードの検証

遠藤 暁^a、早川陽祐^a、森宗佑樹^a、高田真志^b、靜間 清^a

[®]広島大学大学院工学研究科、[®]放射線医学総合研究所

[目的]

現在、逆反応を用いた重粒子線とBNCTの新しい複合治療法を行うために、重粒子線の輸送計算可能のPHITSモンテカルロコード[1]を利用した検討を開始している。この検討に用いるPHITSコードでは、断面積データの不足から、QMDモデル断面積[2]を使用しており10MeV/核子以下のエネルギーに対する精度が必ずしも確かめられていない。そこで、計算に使用するPHITSコードの低エネルギー中性子過剰核ビーム計算精度の検証が必要である。

新しい重粒子・中性子補足反応の混合療法の可能性を検討するための第一歩として、まず PHITS コードの信頼性を検証することが目的である。PHITS コードの中でも、特に中性子過剰核ビームの低エネルギー計算の精度を確認する必要がある。そのため、放射線医学総合研究所サイクロトロンからの¹³C と 生体透過物質であるアクリル標的との¹H(¹³C,n)反応で生成される中性子線の収量を測定する。この測定 値と PHITS コードを用いた計算を比較・検討することである。昨年度は¹³C エネルギー11MeV/核子に おいて実験の行ったが、本研究年度は 8MeV/核子において実験を行い断面積データを追加する。

[実験]

放射線医学総合研究所サイクロトロン[3]からの8MeV/核子¹³Cを生体透過物質であるアクリル標的へ 入射し、¹H(¹³C,n)反応で生成される中性子線の収量を測定した。測定セットアップを図1に示す。標的 として厚さ3mmのアクリル板を用い、標的から~210cmの飛行距離において、ヴェトカウンターおよび 液体シンチレーションカウンターを用いて測定を行った。更に、アクリル中の炭素で生成される中性子 線分を評価するため、炭素ターゲットにおいても実験を行った。測定は散乱角0度、6、12、24、30、

60度で行なった。また、散乱線量を見積もるためにシャドウバーを用いた測定を0度で行った。

[データ解析]

測定データは、波高弁別法を用いて中性子成分を抽出し、飛行時間法を用いて中性子エネルギー分布 を導出する。図 2(a)、(b)に測定された事象の分布を示す。(a)は液体シンチレータ波高と TDC の相関、 (b)は液体シンチレータ波高とヴェトシンチレータ波高の相関である。(a)では、900ch 付近に γフラッシ ュが観測されており 0-400ch にかけてその他の粒子が確認できる。(b)においてヴェトカウンター波高は、 100ch 付近に中性子と γ線事象が確認され、200、900、1200、1500ch 付近の事象は、それぞれ電子、フ ラグメント陽子、フラグメント重陽子、フラグメント 3 重陽子の事象と考えられる。このうち 100ch 付 近の事象のみを取り出し、液体シンチレータ波高と TDC を作成しなおしたものを図 2 に示す。(c)より ヴェトカウンターのセレクションで中性子と γ線事象が抽出できていることがわかる。中性子領域を再 度抽出し、更に液体シンチレータ波形の速い成分と遅い成分による波形弁別を行なうことで、他のビー ムバンチからの γ線の成分を落とした。図 3 に波形弁別の例を示す。

得られた中性子事象に対し、γフラッシュの計測時間 7ns(飛行距離/光速=210(cm)/30(cm/ns)=7ns)を時間の基準とし、中性子の飛行時間を決定し運動エネルギーを求めた。

図 3. 液体シンチレータ波形 の速い成分(Peak)と遅い成分 (Tail)の相関. 3 つの成分がわ かる。Tail 成分の波高の小さ いクラスターより、γ線、中 性子線による反跳陽子、中性 子線による反跳へリウムと考 えられる。

[結果およびまとめ]

得られた中性子エネルギースペクトル生データを図4に示す。(a)はアクリルターゲット、(b)は炭素タ ーゲットの結果を表す。アクリルターゲットと炭素ターゲットからの中性子は、傾向が異なり中性子発 生の機構が違うことがわかる。更に、中性子の生成断面積を求めるため、入射¹³C 電流と SCINFL コー ドを利用し決定した測定効率で補正した結果を図5に示す。アクリルターゲットからの中性子スペクト ルでは、20MeV 近傍に顕著なバンプ構造が見られる。2 体反応である¹H(¹³C,n)¹³N 反応を仮定し、運動 学から発生中性子エネルギーを計算するとおおよそ 20MeV が得られる。また、このバンプ構造は放出 角が大きくなると共に急激に減少していく。これらのことから、図4 中のバンプ構造は、¹H(¹³C,n)¹³N 反応からの中性子に由来すると考えられる。今後エネルギー点を追加し、更に断面積データを蓄積し、 PHITS 計算用の¹H(¹³C,n)¹³N 反応や¹H(⁷Li,n,)⁷Be 反応などの中性子過剰核ビーム入射に対する反応断面 積ライブラリーの構築を目指す。

[謝辞]

今回の実験を行なうにあたり、放医研サイクロトロン室員の方の協力が不可欠であった。また、実験時には AEC の方々による安定した運転のおかげでスムーズなデータ収集が行なえた。この場を借りて感謝する。

[参考文献]

 Iwase, H., Niita, K. and Nakamura, T., "Development of General-Purpose Particle and Heavy Ion Transport Monte Carlo Code", J. Nucl. Sci. Tech., 39 (11), 1142–1151 (2002).
Chiba, S., Chadwick, M. B., Niita, K., Maruyama, T., Maruyama, T. and Iwamoto, A., Nucleon-induced preequilibrium reactions in terms of the quantum molecular dynamics, Phys Rev. C, 53,1824-1832, (1996).
Honma, T., Hojo, S., Miyahara, N., Nemoto, K., Sato, Y., Suzuki, K. Takada, M. and Yamada, S., Improvements and applications at NIRS cyclotron facility, Cyclotrons and Their Applications 2001, Sixteenth International Conference, edited by F. Marti, CP600, (2001)

図 4 (a)アクリルターゲットからの中性子エネルギー分布、(b)炭素ターゲットからの中性子 エネルギー分布

図 5 (a)アクリルターゲットからの中性子生成断面積、(b)炭素ターゲットからの中性子生成 断面積

硼素中性子捕捉療法用加速器中性子源のための 16MeV 陽子による ベリリウムターゲットからの中性子スペクトル測定

田中浩基[®]、高田真志^b、櫻井良憲[®]、鈴木実[®]、増永慎一郎[®]、丸橋晃[®]、小野公二[®]、 [®]京都大学原子炉実験所、^b放射線医学総合研究所

概要

京都大学原子炉実験所では 30MeV サイクロトロン陽子加速器とベリリウムターゲットを用いた中性 子捕捉療法用熱外中性子源の開発を行ってきた[1]。実機のインストールを平成 20 年 12 月に終了し、 中性子発生試験を平成 21 年 3 月より開始した。治療に必要な熱外中性子強度 10⁹ (n/cm²/s)を達成し、 動物照射試験を実施している。ターゲットの健全性などを考慮し、陽子エネルギー30MeV を採用して いるが、減速体やその他システムの構造体の放射化、ターゲット冷却水中のトリチウム生成などを考え ると陽子エネルギーは小さい方が望ましい。特に病院に併設を目指したシステムではメインテナンスを 考慮する必要がある。冷却水中のトリチウム生成断面積は 16MeV を境に増加することから、16MeV 近 傍のエネルギーによるシステムを設計する必要がある。

システム設計に際し、16MeV 陽子によるベリリウムターゲットからの中性子スペクトルの角度分布 が必要であるが、軽核に対する物理モデルは実験値を再現しないことが分かっており、また、Be(p,n) 反応の核データライブラリは ENDF-B/VII にしか存在せず、ENDF-B/VII を用いるには実験的検証が 必要である。そこで本研究では 16MeV 陽子による厚いベリリウムターゲットからの中性子スペクトル の角度分布を飛行時間法によって測定した。

1. 16MeV 陽子による厚いベリリウムターゲットからの中性子スペクトル測定 1-1 実験方法

実験は放射線医学総合研究所サイクロトロン施設の汎用照射室内に設置された C8 コースにて行った。入射粒子は16MeV に加速された陽子であり、ベリリウムターゲットは飛程が1.9mmの16MeV 陽子が完全に止まる厚さとした。実験体系及び検出器配置写真を図1に示す。測定角度は0,15,30,60,90の5点とした。中性子検出器には時間分解能がよく、n-γ弁別能に優れた、NE213有機液体シンチレータを用いた。16MeV 陽子とベリリウムとの反応によって生成される中性子エネルギーは16MeV より小さいため、直径2インチ×厚さ2インチのNE213シンチレータを用いた。

TOF 法ではベリリウムターゲットで発生した中性子が NE213 シンチレータに入射するまでの飛行時間から中性子エネルギー情報を得る。本実験ではサイクロトロンからの陽子ビームラインには飛行時間のスタート信号となり得るチョッパー信号が無いため、AVF サイクロトロンの RF 周波数である 19MHz ごとに中性子が発生することになる。

図1 実験セットアップ概略図

測定回路を図2に示す。NE213からのアノード信号はディバイダ(DIV)によって三つに分割される。 そのうち二つの信号は中性子とガンマ線の波形弁別を行うために用いられる。パルス全体がゲートの中 に入るように調整された total 成分と、波形の減衰成分のみがゲートに入るように調整された slow 成分 として電荷積分型波高分析器(ADC)に入力される。

もう一つのアノード信号はコンスタントフラクションディスクリミネータ(CFD)でタイミング信号に 変換される。このタイミング信号を基準にして、ゲートジェネレータ(GG)において total,slow 成分のゲ ート信号を作り、ADC に入力する。また、飛行時間を検出するためのスタート信号として TDC に入力 される。一方飛行時間のストップ信号は AVF サイクロトロンからの RF 信号を用いた。

図2 測定回路図

1-2 データ解析

図3に NE213の波形の total 成分と slow 成分の相関関係を示す。一定の total 成分に対して中性子 入射に起因する a 粒子、重陽子、陽子の発光量は、ガンマ線起因の電子による発光よりも大きくなるた め、図3のように弁別して測定可能となる。中性子イベントのみにゲートをかけてガンマ線のイベント を除去することにより、中性子のイベント情報を取得する。

図3 NE213 からの光出力の total 成分と slow 成分の関係

図4にTDCで取得した飛行時間とtotal 成分の波高分布の相関関係を示す。本測定ではサイクロトロンのRF信号をストップ信号、NE213からの信号をスタート信号としているため、逆TOFとなっており、TDCのチャンネルが高いほどエネルギーが高い。図4より、前の周期の遅い中性子成分が、着目しているサイクルの高エネルギー成分に重なっていることが分かる。このイベントを除去するために、total 成分のバイアスを1.1MeVee に設定した。このときの2インチのNE213の検出効率を図5に示す。検出効率はSCINFUL モンテカルロコードによるNE213の応答関数より導出した。

エネルギー分解能は飛行時間の時間分解能と距離の不確かさから導出される。時間分解能は RF のパルス幅、ターゲットからの中性子放出時間のばらつき、測定回路の時間分解能に起因し、距離の不確か さはターゲットの厚さ及び、検出器の厚さによって決まる。これらの不確かさはターゲットにおけるガンマフラッシュの測定値から導出でき、本測定では 1.5ns であった。エネルギー分解能は中性子エネル ギー16MeV で約 8%であった。

図4 NE213 からの光出力の total 成分と TDC の時間応答の関係

図5 バイアスが 1.1MeVee の時の 2 インチ NE213 の検出効率

1-3 結果と考察

各測定角度における中性子スペクトルは図6のように示される。比較のために、MCNPXのBertini物 理モデル及びENDF-B/VIIの計算値を示す。ENDF-B/VIIは前方方向でよく実験値を再現できていること が分かる。また、60、90度広角になるに従って実験値はENDF-B/VIIよりも過小評価となる。

一方 Bertini 物理モデルではほぼ全エネルギー領域にわたって過小評価となっている。また、広角になるほど実験値をさらに過小評価することになる。また高エネルギーになるに従い実験値と計算値の差異が大きくなる。これは Bertini モデルが直接過程を再現できないためであると考えられる。以上のように16MeV 陽子の厚いベリリウムターゲットからの中性子スペクトルは ENDF-B/VII がよく再現出来ていることを実験的に確認することができた。中性子捕捉療法用の熱外中性子場の設計では、患者の皮膚線量及び全身被ばくに高エネルギー中性子の寄与が大きくなるため、高エネルギー領域を再現しているENDF-B/VII を使用する必要があることが分かった。

2 まとめと今後の予定

16MeV 陽子による厚いベリリウムターゲットからの中性子スペクトルの角度分布を飛行時間法によって測定した。Bertini 物理モデル及び ENDF-B/VII と比較したところ、Bertini 物理モデルは実験値を再現しないことが分かり、一方 ENDF-B/VII は実験値をよく再現することから、中性子捕捉療法用熱外中性子源の設計に有用であることを確認した。

本研究で得られた中性子スペクトルを元に 16MeV 陽子入射ベリリウム反応を用いた中性子捕捉療法 用熱外中性子源の設計を行う予定である。

図 6 中性子エネルギースペクトル角度分布の実験値と計算値の比較(左 ENDF-B/VII、 右 Bertini 物理モデル)

謝辞

放射線医学総合研究所のサイクロトロン施設のスタッフの方々に深く感謝申し上げます。

参考文献

[1] H. Tanaka, et.al., Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy, Nuclear Instruments and Methods in Physics Research B 267 (2009) 1970-1977

高エネルギーガンマ線照射場の特性評価

高田真志(放医研)

概要)

これまでのガンマ線照射には、安定したガンマ線放出量、容易な照射量評価のメリットの ため、Co60, Cs137のガンマ線源が広く用いられた。このCo60とCs137からは、1.17324, 1.33250 MeVと0.66165 MeVのガンマ線が放出されている。また中性子検出器のエネルギー校正は、以下 のガンマ線源、Cs137, Mn57 (0.83483 MeV), Co60, Na22 (0.511, 1.27454 MeV)、と中性子線源 Am241-Beが用いられた。Am241-Be 中性子源から、Be(α,n)C*->C 反応時に放出される 4.4 MeVの ガンマ線が用いられる。また、従来の放射線被ばくは、原子炉施設がメインであり、高いエネル ギーのガンマ線からの被ばくを考慮する必要がなかったが、航空機高度、宇宙飛翔体中、粒子線 治療、BNCT(ホウ素中性子捕獲療法)では、1 MeV 以上のガンマ線に被ばくする可能性があり、 使用される検出器、線量計のより高いエネルギーのガンマ線に対する特性を評価する必要も出て くる。

これらを踏まえて、本研究では、2つの高いエネルギーのガンマ線場の特性評価を行い、 検出器校正などを行うことができるのかどうかの可能性を調べた。

- 1. 加速器実験で中性子検出器のエネルギー校正を行うために、2 MeV 以上のガンマ線エネル ギーの照射場を加速器からのビームを用いて、核反応から得ることができるのか。付随し て発生するガンマ線、中性子の寄与により、ガンマ線計測が阻害されないのか
- 2. ガンマ線6MeV以上の照射場を冷却水の放射化を用いて得ることができるかを調べた

このような高いエネルギーのガンマ線は、原子力機構の550 keV 中性子照射場での、有機 液体シンチレーターを用いた中性子応答関数計測時に確認された(文献1)。この中性子ビームの ターゲットは、LiFメタルターゲットが用いられており、F(p,y)反応により6.129 MeV ガンマ線が 発生する。そのガンマ線に対する計測された応答特性は、MCNPX コードでの計算と良い一致を示 した。さらに2.2 MeV ガンマ線の成分も計測し、計算により再現ができている。このことから、 高いエネルギーのガンマ線の照射場を作ることができれば、2 MeV 以上のガンマ線を用いた中性 子検出器のエネルギー校正ができる。従来の1 MeV 近辺のガンマ線だけを用いて行ったエネルギ ー校正では、エネルギー決定精度がそのままエネルギー校正に大きな不確定要因を与えたが、よ り高いエネルギーのガンマ線を用いることでその不確定要因を小さくできる。

実験結果-1)

高いエネルギーのガンマ線は、放射線医学総合研究所のサイクロトロン AVF930 でプロトン 10 MeV を加速し、汎用照射室内の C6 コースにビームを輸送して、真空エンドにさまざまな物質を置き発生させた。ターゲットは、ハーバーフォイル 10 µm を介して、大気中に置かれている。照射時のビーム電流は、0.1 nA 前後である。使用したターゲットは、Graphite (10 mm), SF₆ gas (2.5, 3 atm), Aluminum (4 mm), LiF (1 mm), CaF₂ (1 mm), Teflon (1 mm), AlLi (1.6 mm), SiN, AlN, Be (1 mm) であり、以下の核反応から放出されるガンマ線を期待した、C12(p,p'γ)C12 から 4.439 MeV、

F19(p,αγ)O16 から 2.741, 6.129, 6.917, 7.116 MeV、Li7(p,γ)Be8 から 14.74, 17.64 MeV。

放出されるガンマ線のエネルギー計測は、高純度ゲルマニウム半導体検出器(63.6 mm in diam. 90.3 mm in length) と、BC501A 有機液体シンチレーター(127 mm in diam. 127 mm in length) を、 ターゲットから1 mの距離に置いて、同時に計測した。ゲルマニウム検出器からの信号は、プリ アンプ、メインアンプで波形整形して、MCA で波高分布を取得して、光電ピークから放出された ガンマ線を識別した。測定系のエネルギー校正は、複数のガンマ線源で行った。ゲルマニウム検 出器は、中性子損傷により分解能が劣化することが報告されているため、本研究では、真空劣化 を起こしているゲルマニウム検出器を、実験ごとに回復させて使用することにした。ゲルマニウ ム検出器は、ガンマ線のエネルギーを高精度に決定することができるが、中性子検出事象を弁別 することができないため、中性子による成分もMC A 波高分布に混在する。今回の実験では、中 性子由来の成分により計測のバックグラウンドになることと、分解能の劣化は確認されなかった。 中性子成分の寄与を評価するために、有機液体シンチレータで波形弁別を行い、ガンマ線計測時 に、どの程度、中性子検出事象が阻害するのかを調べた。有機液体シンチレーターは、中性子と ガンマ線由来で、異なる減衰時間の信号を放出するので、波形の異なる時間領域の電荷積分する ことで中性子とガンマ線の識別を行った。

ゲルマニウム検出器で検出されたガンマ線のエネルギー分布を以下に示す。グラファイト ターゲットからは、炭素の励起レベルから放出されたガンマ線 4.4 MeV、そのシングル(3.9 MeV)、 ダブルエスケープピーク(3.4 MeV)を確認でき、テフロンターゲット(フッ化炭素樹脂)からは、 炭素からのガンマ線とフッ素からの 6.1 MeV のガンマ線とそのシングル(5.6 MeV)、ダブル (5.1 MeV) エスケープのガンマ線を確認できる。スペクトル中のガンマ線で、1.4, 2.6 MeV のガンマ線 は、環境中の自然放射線(K40, Tl208)によるものである。炭素からの放出ガンマ線のピークが相 対的に広くなっているのは、Doppler 効果によるためである。その他のフッ素を含むターゲット LiF と CaF₂から放出されたガンマ線のエネルギー波高分布も示した。スペクトル中には、フッ素 から核反応により発生したガンマ線 6.1 MeV を確認できている。これらのターゲットを組み合わ せることで、バックグラウンドガンマ線、中性子により 4.4 MeV と 6.1 MeV のガンマ線計測を阻 害されずにエネルギー校正、応答特性評価ができることが分かった。より精度を上げた評価をす るには、検出されるバックグラウンド、付随して発生するガンマ線の情報をさらに追求する必要 はある。

次に、実際にエネルギー校正に利用する有機液体シンチレーターの発光量波高分布を示した。ここでは、中性子とガンマ線を識別してあり、それぞれ両粒子、ガンマ線、中性子の波高分布をプロットしてある。LiFターゲットからはLi(p,n)反応による中性子が検出され、低い波高分布(3 MeVee以下)で大きな寄与を占めているが、6 MeVee コンプトンエッジは、きちんと確認できている。その他のターゲットは、4,6 MeVee のコンプトンエッジを確認できていることから、有機液体シンチレーターの発光量校正を十分にできることが分かり、下図に示すようにエネルギー校正(ADC チャンネルと発光量との相関)を6 MeVee まで拡張して、校正の信頼性を向上できることが分かった。

今後、このガンマ線場を検出器の応答特性評価に利用するためには、ガンマ線の絶対エネ ルギースペクトル、さらには中性子のエネルギースペクトルを評価しておく必要がある。これに より、実測と計算とを比較検討することが可能となる。

実験結果-2)

中性子により放射化した水から 7MeV 近辺のガンマ線が放出されることは知られている。 これは、O16(n,p)N16 -(β⁺)->O16*反応(半減期 7.2 秒、しきい値 10.24 MeV)により、6.165, 7.153 MeV のガンマ線が放出される。サイクロトロンで C3 コースにビーム供給をし、大強度中性子を 発生させる実験を行っている時に、発生した中性子により放射化した冷却水(窒素 16 を含む)が 生成される。この冷却水が、サイクロトロン地階の管理区域内の冷却室に送られており、その場 で、7 MeV ガンマ線の計測実験が可能である。今回は、ガンマ線のエネルギーMCA スペクトルを ゲルマニウム検出器で計測し、線量をサーベイメータでモニターした。ゲルマニウム検出器と測 定系は上記と同じである。このガンマ線場は原理的に、中性子による混在が無く、付随して発生 するガンマ線、周囲の放射化による影響も無い、きれいなガンマ線照射場である。MCA スペクト ル中には、左下写真にあるようにダクトに近づけた場合、床に置いた場合(3回計測)、バック グラウンドの MCA スペクトルがプロットしてある。床での3回の繰り返し測定は、ばらつき範囲 内でよい一致を示していることから、ビーム強度が安定な場合、ガンマ線強度が安定しているこ とを示している。スペクトルには、放出された 6.2.7.2 MeV ガンマ線による光電ピーク、そのシン グル、ダブルエスケープピークを確認できる。その他にβ+崩壊に伴う 0.511 MeV の消滅ガンマ線 ピーク、自然放射線バックグラウンドによる 1.4 MeV(K40)と 2.6 MeV(Tl208)を確認できる。電 離箱サーベイメーターでモニターした強度(Cs137 換算)は、ダクトそばで 9.3 μSv/h であった。 この放射線場は、特定のガンマ線のみが存在しており、検出器のガンマ線応答特性を計測するに は最適な場である。今後、実際の特性評価、計算との比較を行う予定である。

最後に、これまで用いられていなかった、よりエネルギーの高いガンマ線場の特性を調べ て、検出器のエネルギー校正、応答特性評価に利用できることが分かった。今後、エネルギース ペクトルを評価することで、検出器のガンマ線に応答特性評価が可能となる。

本研究を実施するに当たり、サイクロトロンオペレータースタッフ、施設スタッフに感謝いた します。ゲルマニウム検出器を貸していただいた HIMAC 実験サポートグループの方々、真空引き 回復を指導していただいた緊急被ばくユニットの結城さんに感謝いたします。

参考文献)

1. M.Takada et al., Response Functions of Phoswich-Type Neutron Detector for High-Energy Cosmic Ray Neutron Measurement, J.Nucl. Sci. Technol. In press.

5-2. 宇宙放射線の荷電粒子成分検出器の開発

宇宙放射線の荷電粒子成分検出器の開発

内堀幸夫^a、安田仲宏^a、北村尚^a、小平聡^a、Ondrej Ploc^{a, e}、Eric Benton^b、Michael Hajek^e、 Thomas Berger^d、Iva Jadrnickova^e

^a 放射線医学総合研究所、^b Oklahoma State Univ.、^c Vienna University of Technology、 ^d German Aerospace Center、^c Nuclear Physics Institute

平成21年度では、放医研大型サイクロトロンでの宇宙放射線線量計の相互比較および校正実験を開始 した。また、そのために汎用照射室の C-8コースを校正場とするための開発を続けている。本稿では以 下の二項目について報告を行う。

- I. 汎用照射室 C-8コースにおけるビーム制御
- II. 宇宙放射線の荷電粒子成分検出器の開発

汎用照射室 C-8 コースにおけるビーム制御

北村尚^a、内堀幸夫^a、小平聡^a、Ploc, Ondrej^a、 金澤光隆^b、杉浦彰則^b、鈴木直方^b、北條 悟^b、 岡田高典^c、小松克好^c、神谷 隆^c

概要

放射線医学総合研究所のサイクロトロンの汎用照射室の C-8 コースには、ワブラー磁石が設置されて おり、広い照射野のビームが作成可能である。その広照射野のビームを用いて、線量計等の校正、生物 実験などに使用するため機器の整備を進めている。照射線量測定用のビームモニタとしての電離箱や、 高速でビームの ON/OFF を制御するためのクイックシャッターなどを設置し、それらを制御するソフ トウェアの開発を行い、与えられた線量のビームを照射可能にするような系を構築した。

1. 背景

線量計の校正は主に X 線照射設備や放射線源を用いて行われてきたが、宇宙放射線の様に、多種の線 質や広いエネルギー領域を持つ放射線場での線量の評価を行うためには、線量計が線質やエネルギー付 与に対してどのようなレスポンスをするかを検証する必要がある。宇宙放射線には高いエネルギーの物 が存在し、そのような領域の放射線に対する線量計の校正には加速器ビームを用いる必要がある。しか しながら、加速器のビームは局在化しているために、線量のような場を表す物理量に直すのが困難なの で、生物実験や治療用に作成された直径 10 cm 程度に広げたビームを用いて校正実験を行う必要があ る。放医研の医療用重粒子加速器 HIMAC には、そのような広いビームの照射が可能な実験施設である 生物照射室があり、生物実験だけでなく物理計測や材料工学などに使われており、近年では、高エネル ギー・高電荷粒子での線量計の校正場の標準として用いられるようになってきている[1,2,3]。HIMAC のシンクロトロンで加速できる粒子のエネルギー領域は 100 MeV/u から 800 MeV/u (核子による)であ るので、80 MeV まで加速可能な放医研の大型サイクロトロンは HIMAC で供給できないエネルギーの ビームに対する校正場として用い得る可能性を持っている。サイクロトロン汎用照射室の C-8 にはワブ ラー磁石などビームサイズを広げるための設備があり、蛍光板やファラデーカップなど、ビームの形状 や強度の確認も整備されつつある。平成 21 年度から、照射場の線量評価と計画線量に沿った照射を可 能とする照射系の開発を進めている。

2. 装置の概略

C・8 コースには上流から、高速にビームを停止 させるクイックシャッター、その下流にビーム電 流を調整するためのファラデーカップが設置さ れている。ここまでは、加速器まで共通になって いる高真空中に設置されている。ビームはその下 流側で一旦大気中に取り出され、散乱体で散乱さ せた後に、再度、真空槽に入れられる。この真空 槽の上流端に設置されたワブラー磁石で円状に 方向を変化させられ、約3mの真空領域を通過 する。真空槽の下流側には大口径の大気開放型の 電離箱(応用技研製 AE-175)を設置し、ビームを ターゲットに照射している間にもビームをモニ タリングできるようにした(図1)。

計画線量を正確に照射するためには、ビームモ ニタ用電離箱の指示値と線量の関係の校正、ビー ムモニタ電離箱の指示値によるビームシャッタ

図 1 ビームモニタ電離箱(写真中央)。写真右側が ビームの取り出し窓で、左側に照射場がある。

ーの開閉制御、の二点が重要であり、以下の項でそれ らについての説明を記述する。

2.1 線量の評価

照射場の線量測定は、HIMAC の生物照射室を参考 に行っている。まず、標準線量計として PTW 社製の Type 23343 Markus 型電離箱(以下、標準線量計と記 述)、その電荷量測定用に Keithley 社製のエレクトロ メータ(Model 6715A)を用いた(図2)。この線量計を、 放医研のガンマ線照射施設コバルト第1照射室に於い て、⁶⁰Coを用いて「標準測定法 01」[4]に沿って校正 を行った。これによって、エレクトロメータで測定さ れた電荷量から水吸収線量への変換係数を得た。以降、 特に明記する場合を除き、線量(率)は水吸収線量(率)を表している。

図 2 標準線量計として使用している Markus型線量計(PTW 社製 Type23343)

⁶⁰Coの照射場での校正は、水吸収線量率が 0.60 Gv/min 線量率の条件下で行ったので、標準線量計の 線量率に対する線形性の確認は、C-8 コースで散乱体及びワブラー磁石を用いて広げた陽子 70MeV の ビーム[5]を用いて行った。図3は、陽子 70MeV のビームについて、ファラデーカップで測定したビー ム電流と、標準線量計に1分間照射した場合の指示値から求めた線量の相関を示している。ビーム電流 の強度は、直接、線量率を表すので、標準線量計がビーム電流にして 0.01nA から 10nA の領域に対し て、約 0.1Gy/min から 100Gy/min を示し、その範囲で良い線形性を持つことは、線量率に対しても良 い線形性を持つことを示している。同様に、ビームモニタ電離箱の指示値とビーム電流の値を比較し、 線形性を示したものが図4である。ビームモニタ電離箱の出力はラボラトリ・イクイップメント社製 DN-9000 I/F コンバータを使用し、出力パルス数として計測した。ビームモニタもビーム電流に対して 良い線形性をもっており、標準線量計の結果と合わせると、ビームモニタの指示値と照射線量には比例 関係があることが確認できた。0.01nA以下の強度のビームに関しては、ファラデーカップによるビー ム強度の測定も標準線量計による線量率の測定でも周囲のノイズやバックグランドの影響で正確に測 定するのが困難であるために、1cm角のシンチレータでビームモニタを確認しながら、ビームモニタ電 離箱の線形性を測定したが、10mGy/min 以下では、バックグランド、または I/F コンバータの限界に よって、線形性が悪くなる傾向が見られたことから、ビームのモニタが可能な線量率の下限は10 mGv/min としておく。

図3 標準線量計のビーム強度に対する線形性 の確認。1分間線量計に照射した際に線量計の 指示値から求まる水吸収線量とその照射前にフ ァラデーカップで測定したビーム電流をプロッ トしている。

図4 ビームモニタのビーム強度に対する線形 性の確認。ビームモニタがビーム電流(線量率) に対して良い線形性を持っていることがわか る。

2.2 クイックシャッター制御

C-8 コースに設置されているクイックシャッターは、サイクロトロン計測室の実験者が制御できるシ ャッターで、手動スイッチによる開閉と、リレーによる外部機器を用いた開閉が可能である。そのリレ ーの開閉のための回路として、NIM モジュールを用いて図3に示すような回路を組んだ。ラボラトリ・ イクイップメント社製の C-2000 高速タイマースケーラは、カウントダウンクロックとその間に入力さ れたパルス数を計測する機能や、計数中は TTL が on 状態、計数が終了すると off 状態になる指令信号 出力を持っている。そのカウントダウンクロックは外部クロックで動作させることも可能で、I/F コン バータ出力パルスをクロックとして用いて、プリセット値として計画線量に対応するモニタ電離箱の計 測数を入力すれば、計測開始時に TTL を on に移行し、計測終了時に TTL が off となるので、この信号 でリレーを制御し、クイックシャッターの開閉を行わせた。しかしながら、C-2000 では、クイックシ ャッターの閉信号が出た後、実際に閉まるまでの間の超過線量が記録されないので、I/F コンバータか らの出力パルスは別途独立して動作するスケーラによって計測し、その数値から実際に照射された線量 を導出している。

2.2.1 クイックシャッターの開閉速度

クイックシャッターを閉じる際の遅延時間は、計画線量からの超過線量に対して影響があるため、その指令パルス出力からのシャッターが閉まるまでの時間の推定を行った。計画線量 D_N と実際に照射された線量 D_A、また、ビーム照射スタートからストップまでの時間を T、ビームの開閉にかかる時間は同じとしてその時間を t と置くと、t=T(D_A-D_N)/D_A という関係がある。ビームの強度や照射線量を様々に変化させ試行した結果、開閉にかかる時間 t~200msec 程度であった。

図3 クイックシャッター制御用回路のブロック図

2.2.2 コンピュータによる制御

C-2000 モジュールは、ヒューマンインターフェイスのための入力キーと、7 素子 LED 数値表示器を 持っているので直接オペレーション可能であるが、計画線量からビームモニタの計画計測数へ変換、さ らにその数値の手入力を行うのは非効率なので、コンピュータからの制御を行うソフトウェアの開発を 行った。コンピュータの OS は Windows を用い、ソフトウェアは.NET Framework 2.0 の環境で構築 した。C-2000 モジュールとはシリアルポート(RS-2322C)で接続している。制御方法として3種のモー ドを実装した。測定時の気温気圧と計画線量を入力する「線量モード」、C-2000 の内部クロックを用い た「時間モード」、電離箱出力信号をシンチレータ等に置き換えての「計数モード」である。「線量モー ド」を使用する際には、サンプル照射前に、標準線量計によってビームモニタ電離箱を校正し、変換定 数を得た値を使用している。

3. まとめ

放医研サイクロトロン C-8 では、広い照射屋を持つ放射線検出器の校正場の構築を進めている。これ までに、ビームのプロファイルなどのビーム特性の評価を行い、同時に、自動ステージを用いたサンプ ルチェンジャーの導入といった照射実験のためのインフラ整備を進めている。今回の研究では、計画線 量に応じてビームを自動的に停止させるような系を開発することで、より効率的で簡単な照射を行うこ とを目標とした。実際、平成 21 年 1 月 29 日および 2 月 5 日に行った、受動型検出器の国際比較実験[6] では、合計 200 回以上もある照射を正確に行うことができた。また、照射と各照射のための検出器の設 置に要した時間は合計約 10 時間で、約 3 分に 1 回の割合で照射することができたことはその能力の高 さを示したと言えよう。

今後は、クイックシャッターとサンプルチェンジャーを連動させるなど、システム制御の簡易化をす すめて、広くユーザーに開放する予定である。

参考文献

1. N. Yasuda, et. al, "The InterComparison of Cosmic rays with Heavy Ion Beams at NIRS (ICCHIBAN) project.", Radiation Protection Dosimetry, 120 1-4 (2006) 414-420

2. E. Yukihara, et. al, "Application of the optically stimulated luminescence (OSL) technique in space dosimetry.", Radiation Measurements, 41 (2006) 1126-1135

3. M. Hajek, et. al, "LET dependence of thermoluminescent efficiency and peak height ratio of CaF₂:Tm.", Radiation Measurements, 43 2-6 (2008) 1135-1139

4. 日本医学物理学会編、「外部放射線治療における吸収線量の標準測定法(標準測定法01)」、通商産業研究社、2002年、ISBN97484860450212

5. 内堀幸夫、他、「宇宙放射線の荷電粒子成分検出器の開発」、平成 20 年度サイクロトロン利用報告書、 NIRS-M-224

6. 内堀幸夫、他、「宇宙放射線の荷電粒子成分検出器の開発」、本誌、pp50-54

宇宙放射線の荷電粒子成分検出器の開発

内堀幸夫^a、安田仲宏^a、北村尚^a、小平聡^a、Ondrej Ploc^{a, e}、Eric Benton^b、Michael Hajek^e、 Thomas Berger^d、Iva Jadrnickova^e ^a 放射線医学総合研究所、^{b.} Oklahoma State Univ. 、^{e.} Vienna University of Technology、 ^{d.} German Aerospace Center 、^{e.} Nuclear Physics Institute

概要

放射線医学総合研究所のサイクロトロンからの陽子線ビームを利用して、各国宇宙関連機関が所有す る宇宙放射線線量計の相互比較および校正実験を開始した。これは、HIMAC等の加速器ビームを利用 して行ってきた、ICCHIBAN プロジェクトの第2フェーズの実験の一部である。ここでは、今回行っ た実験について紹介する。

研究概要

各国宇宙機関等が使用している宇宙放射線線量計は、主として、地上における放射線環境において使 用されることを念頭に開発され、十分に宇宙環境に対応したものでもなく、よって、ガンマ線等の線源 により校正され、利用されてきた。また、相互には線量評価結果を十分に比較されておらず、宇宙環境 における線量評価の相違に対して、十分な情報がなかった。そこで、放医研のHIMAC を利用して、宇 宙環境において、線量当量への寄与が大きく、十分に校正されていなかった名重粒子線を中心に比較・ 校正実験を実施する ICCHIBAN プロジェクトが 2002 年から開始された。HIMAC のみならず、HIMAC では出せないビームを照射できる世界各地の加速器も利用した約5年間の研究の結果、各線量計につい て、かなり理解が進んだ。しかしながら、2004 年から開始された、宇宙環境における相互比較実験(国 際宇宙ステーションロシアサービスモジュールにおける)において、大きな相違が見られるケースがあ った。これは、主として、ルミネッセンス線量計の低 LET 領域における感度の上昇(あるいは低下) が十分に理解されていないことが理由と考えられる。ルミネッセンス線量計には、Super Linearity(高 LET 領域において感度が下がる現象)が良く知られ、ICCHIBAN プロジェクトの中でも、その理解に 力が注がれた。しかし、1~10 keV/um の領域におけるデータ点が十分ではなく、さらなる照射実験の 必要性が、国際ワークショップにおいて推奨された。それを受けて、放医研のサイクロトロンを利用し た実験が計画され、まず、広く一様な照射野の構築、および、線量評価方法の開発が行われた。[1]

実験概要

平成 22 年 1 月 29 日、および、2 月 5 日に、サイクロトンの 70MeV および 40MeV の陽子線ビーム を利用した実験が各国からの実験者の参加も得て実施された。(図 1)

図1.2月5日の実験の参加者

それに先立ち、11 ヶ国の14 宇宙機関等から、使用されている放射線線量計が送付され、放医研に集められた。これらは、現在、地上で個人線量評価等に使われているほとんどのルミネッセンス線量計が 網羅されている。例えば、約 10 種類の熱ルミネッセンス線量計(TLD)、光刺激ルミネッセンス線量計 (OSL)、ルクセル線量計、蛍光ガラス線量計等である。その他にも、Emulsion や MOSFET 等の検出 器も照射された。当グループにおいて準備した様々な形状の穴を空けたホルダーに、それらの線量計を ホルダー番号と位置とシリアル番号とを注意深く照合しながら詰めた。(図 2、3)

図 2. 左のホルダーが放医研が用意した照射用ホルダー。右は、ある機関が各種 TLD を詰め て送ってきた容器。TLD の位置と線量計のシリアル番号が記録されている。

図 3. 放医研が用意した照射用ホルダーに線量計を詰めているところ。

後に示すように、1つの陽子線ビームのエネルギーに対して、7条件で照射を行ったために、6種類 のホルダーを7セットずつ用意した。(図4)

照射においては、新たに大型 X ステージ (シグマ光機 SGSP46-800(X)、800mm ストローク)を準備 し、その上に、300mm 角のアクリルプレートを 3 枚取り付けられる照射台を設置することで、HIMAC の BIO コースと同様な連続照射が可能な系を構築した。(図 5) X ステージは、ステージコントローラ (シグマ光機 SHOT-204MS) によりドライブされ、このステージコントローラは USB 接続により Windows PC とつながれ、自作のソフトウェアによりコントロールされる。この Windows PC は、イ ンターネットにつながっており、外部の PC から、VNC によりコントロールされる。(図 6)

図 4. 線量計を詰めた照射用ホルダー6 種類×7 セットとその他の線量計や検出器。

図 5. 連続照射ステージ。

図 6. ステージコントロール画面。

実験においては、1,10,50,100 mGy の照射と、5mm あるいは 3mm のアルミニウムプレートを直前 に設置して 50 mGy の照射、および、照射線量(および線質)を参加者に知らせない Blind 照射等の 条件を設定して照射を行った。各ホルダーを1個ずつ、アクリルのプレートの中央に貼り付けて、最大 3 枚のアクリルプレートを同時にセットに対して、照射を実施した。実験後、放医研のホルダーから線 量計を戻して、各国の宇宙機関等へ国際宅配便にて返送した。線量計は、各機関において現在解析され ており、近々、ICCHIBAN プロジェクト・ワーキンググループに対して報告される予定であり、それ らがまとめられて、国際宇宙ステーションにおける放射線モニタリングに関する国際ワークショップ (WRMISS) において議論される予定である。

これらの一連の実験によって、各種のルミネッセンス線量計の低 LET 領域における応答についての 貴重な知見が得られ、これまで長年の間、議論されてきたこの問題の本質的な解決につながり、宇宙環 境における放射線線量評価のみならず、地上における個人線量評価の信頼性の向上にもつながると考え られる。

謝辞

当研究は、サイクロトロンの陽子線ビームを利用した実験であり、サイクロトロンの運転に関わる 方々の努力による安定な供給によって、初めて可能となった。ここに感謝します。 照射系の構築は、科研費 基盤(B) 21310042 のサポートによる。

参考文献

[1] 北村尚、et al., 汎用照射室 C-8 コースにおけるビーム制御,本誌, pp 46-49

5-3.光学機器の耐放射線性能に関する研究
滝澤慶之^a、川崎賀也^a、小川貴代^a、榊直人^b、北村尚^c、内堀幸夫^c ^a理化学研究所、^b青山学院大学、^c放射線医学総合研究所

ISS 環境において曝露されたとき、10年間に陽子によって付与される線量は、Al 1mmの厚さのシールディングの条件で1krad (電子では30krad)と推定している。この照射量に対して、JEM-EUSOで使用する部品に対する70MeV陽子線ビームの照射による放射線耐性のテストを実施した。

同ビームを使い、過去に、以下の試験を行い、十分な体制があることを確認している。

- ・ 光電子増倍管用高圧電源モジュール
 - ▶ DC-HVDC コンバータ(EMCO Q10N-5、CA12N-5)
 - ➢ DAC (AD5320)
 - ➢ OP-Amp
 - ► FET
- 光電子增倍管硝材
 - ▶ 浜松ホトニクス MAPMT UV ガラス
- ・ 光電子増倍管用印可電圧反転用フォトMOSリレー
 - ▶ 松下電工 AQV258
- 紫外線LED(JEM-EUSO 軌道上較正用光源)
 - ➤ 340nm Seoul Optodevice 社 T9B34C GaN 系
 - ➤ 360nm Roithner 社 RLT360-1.0-15 InGaN
 - ▶ 385nm Roithner 社 RLS-UV385 GaN 系
- 多層膜フィルタ(空気シャワーの窒素輝線選択用フィルタ)
 紫外線バンドパスフィルタ
- ・ 結晶(大気及び雲モニタ用レーザー部品)
 - ▶ レーザー 光学結晶

今回、照射したサンプルは、次である。

- 結晶(大気及び雲モニタ用レーザー部品)
 ・Nd: YAG セラミックス結晶
 - •Nd3+添加濃度依存性評価
- 2) プラスチックレンズ素材
 - •PMMA
 - •CYTOP
- 3) ASIC

・フロントエンド読出用 Q-T 変換 ASIC

次に各項目の実験結果を示す。

1) 結晶(大気及び雲モニタ用レーザー部品)

・ Nd:YAG セラミックス結晶の放射線耐性評価

Nd:YAG セラミックス結晶は、Nd:YAG 単結晶と全く同等の光学特性を持ち、優れた均質性により損傷閾値が高い。ま た単結晶に比べ価格も大幅に低いため、近年非常に注目を集めているレーザー結晶である。しかしながらこれまで放 射線耐性を測定した例がなく、本測定は非常に重要である。今回我々は、3krad、10krad、30krad の強度の放射線を 照射し、その後の光透過率の変化を測定した。図 1)は、1064nm での透過率を測定した結果である。30krad までの照 射線量でも、透過率の変化は1%程度にとどまった。

・ 放射線耐性の Nd3+添加濃度依存性評価

レーザー結晶において、活性イオン濃度はレーザーの発振効率やパルス特性などを左右する、吸収断面積、誘導 放出断面積、上準位寿命など様々なパラメーターに影響を与える。そのため通常、レーザーの要求仕様に合う Nd3+ 濃度を設定することとなる。また濃度が高くなるに従い、活性イオン間、あるいはホスト結晶との相互作用により、光学 特性、熱特性に大きな影響が表れることが知られている。そこで今回、レーザー結晶の活性イオンとなる Nd3+の添加 濃度を変化させ、放射線照射試験を行った。実験には Nd3+添加濃度 0.5at.%、2 at.%、5 at.%、10 at.%の 4 種類の Nd:GdVO4 結晶を用い、30krad の放射線を照射した。図 2 に照射前 (0krad) と照射後 (30krad) の結晶の 1064nm での 光透過率を示す。すべての添加濃度の結晶で、光透過率の変化は 2%未満であった。この値は、測定に用いた 1064nm 光の変動を考慮すると、ほぼ誤差範囲内であり、Nd Nd3+添加濃度による大きな差異は見られなかった。

まとめ:レーザーのキーデバイスとなるレーザー結晶について、ISS 暴露部に設置予定の JEM-EUSO 用ライダー光源 への実際の搭載を想定した Nd:YAG セラミックス結晶の放射線耐性を評価した。その結果、30krad までの照射線量で も、レーザー発振波長である 1064nm での光透過率の低下は起こらないことが確かめられた。また、レーザー結晶の放 射線耐性について、レーザー結晶の光学的・熱的特性にも大きく影響する活性イオン濃度依存性の評価を行った。そ の結果、活性イオンである Nd3+を 10at.%もの高い濃度で添加しても光透過率の変化は起こっていないことが確かめら れた。30krad の放射線量は、ISS 環境で 1mm 厚のアルミニウムで遮蔽された場合の被ばく量の 30 年分に相当する。 したがって今回評価したすべての結晶において、現在想定している数年程度の宇宙利用に問題なく使用できると考え られる。セラミックス結晶の放射線耐性及び Nd 濃度依存性についての報告は我々が知る限りこれが初めてである。こ れらの結晶は宇宙利用だけでなく、医療用その他、汎用性の高いレーザー結晶として現在注目を集めており、今後の レーザー開発及び基礎研究において非常に重要なデータが得られた。

参考文献:

1) T. Ogawa, Y. Kawasaki, Y. Takizawa, T. Ebisuzaki, N. Sakaki, M. Higuchi, Y. Uchihori, H. Kitamura, S. Wada: "Radiation Resistance of Nd-Doped Laser Crystals for Space Application" Jpn .J. Appl. Phys, 48, 088001/1-2 (2009)

2) プラスチックレンズ素材

JEM-EUSO 望遠鏡は、3枚のプラスチックフレネルレンズで構成される光学系である。宇宙空間へ暴露するフロントレンズの放射線耐性を確認が本実験の目的で、レンズ素材の失透を 3krad(10 日分)、10krad(1 ヶ月分)、30krad(3 ヶ月分)、100krad(1 年分)、300krad(3 年分)と照射して調べた。括弧内は、軌道上で陽子によって付与される線量の時間換算である。2種類のプラスチック素材が検討されている。PMMA-000 (三菱レイヨン社)とCYTOP (AGC 社) である。PMMA-000 は、近紫外線透過タイプのアクリルで、アクリル素材一般としては、宇宙使用実績がある素材である。一方、CYTOP は、アモルファスフッ素樹脂で、耐化学性に優れた新素材で、JEM-EUSO 望遠鏡の観測波長である近紫外線領域(330nm~400nm)での光学特性は、PMMA-000 よりも優れるが、宇宙使用実績がないため、本試験の結果は重要な指針となる。

それぞれの照射後の透過率(表面反射を含む)の変化を図3に示す。結果は、CYTOPは、PMMA-000に比べ、 JEM-EUSO 観測波長領域での失透の程度が少ない事がわかった。どちらの素材もレンズ素材として使用できるこ とがわかったが、CYTOPの方が、放射線耐性及び光学物性の面で優れている事を確認した。300 k rad 以上を照 射したサンプルは、現在解析中のため、その結果は、次回の報告する予定である。

CYTOP & PMMA-000

図 3) CYTOP 及び PMMA-000 の透過率変化(表面反射を含む)。グラフ内の ハッチの部分が JEM-EUSO の観測波長領域である。CYTOP は、300krad まで 照射した。PMMA-000 は、100krad までの照射を行った。

3) ASIC

・ フロントエンド読出用 Q-T 変換 ASIC

JEM-EUSO 望遠鏡焦点面検出器のフロントエンド読み出しに用いる、入力アナログ信号の電荷量をデジタル信号のパルス幅に変換する ASIC の放射線耐性試験を行った。ASIC の基本仕様は以下の通りである。

- ・ プロセス: TSMC CM025 プロセス、アルミ5層、ポリ1層
 - チップサイズ: 3mm×3mm
- ・ パッケージ: 80pin CQFP (京セラ QC-080388-WZ)
- ・ 電源電圧: ±1.25V

通電状態で15k rad、及び30k radの照射を行ったが、電流、リニアリティ、ノイズ特性等の有為な変化は見られなかった。

<u>まとめ</u>

JEM-EUSOで使用する部品に対する70MeV 陽子線ビームの照射による放射線耐性のテストを実施し、ISS 曝露環境において、10年間の陽子よる線量は、Al 1mmの厚さのシールディングの条件で1 k rad となる。レーザーセラミック結晶、プラスチッ

クレンズ素材、フロントエンド ASIC は、それぞれ 30 k rad、300 k rad、30 k rad まで耐性が有り、JEM-EUSO 用として使用できることを確認した。

謝辞

放射線医学総合研究所 医用サイクロトロンを用いて、本試験の行う機会を得、有益な実験結果を得ることが出来ました。サ イクロトロンの運転にたずさわる方々に感謝致します。 5-4. 高高度環境での携行使用に適した環境放射線モニタの開発研究

高高度環境での携行使用に適した環境放射線モニタの開発研究

保田 浩志^a 矢島 千秋^a 高田 真志^b

^a放射線医学総合研究所放射線防護研究センター、^b放射線医学総合研究所基盤技術センター

概要

固体シンチレータを組み合わせて携行性に優れたフォスウィッチ型シンチレーション検出器を新た に製作し、放医研サイクロトロン及び他の加速器施設で応答試験を行った。その結果、高高度での被ば くで主要な粒子:陽子、Heイオン、中性子について、良好な粒子弁別能を有することが確認できた。

1. 目的

我々のチームでは、航空機乗務員や宇宙飛行士の宇宙線被ばくを任意の場所でリアルタイムに監視す るための宇宙線専用の粒子弁別測定装置の開発研究に独自に取り組んでいる。具体的には、宇宙線に含 まれる粒子(中性子や荷電粒子)を弁別して測定し、そのエネルギースペクトルと線量を精度よく評価 できる可搬型の測定装置の開発に取り組んでいる。

本実験では、今般新たに製作したプロトタイプ装置について、高エネルギー陽子に対する応答を実験 で評価・検証し、他の加速器施設で得られた中性子や He イオンに対する結果と併せて、高高度環境で の被ばくにおいて主要な成分であるそれらの粒子に対する弁別能を明らかにすることを狙いとした。

2. 実験方法

本モニタのプローブには、発光時間の短いスチルベンを素材とする円筒形シンチレータ(減衰時間 3.5ns、φ50mm×50mm)を発光の長いプラスチックシンチレータ(減衰時間 320ns、15mm 厚)で覆 ったものを独自に製作して用いた。これに2インチの光電子増倍管を接続し、アルミニウムでハウジン グしてフォスウィッチ型のシンチレーション検出部を構成した。さらに、小型の高圧電源(-720V 固定)、 独自に設計した AD 変換出力機能を持つデータロガー及びノート PC を一体化して、図1に示すような 携行可能な測定システムとした。

図 1. プロトタイプ測定装置の外観.

この測定システムについて、放医研のサイクロトロンで生成・供給される 78MeV の陽子線ビームにより応答試験を行った。照射野は、プローブの上面(φ8cm)ができるだけ一様に照射されるように拡 げ、ビーム強度は本装置のカウントレートで 300 s⁻¹以下になるように調整した。

各イベントについて-20~400nsの範囲で 2ns 間隔の信号波形データ(255 階調)を取得し、ROI を 任意に変えて積分発光量を求め、その結果を基に粒子弁別の技法について解析した。具体的には、発光 ピーク付近の信号と、プラスチックシンチレータから発する比較的長い減衰の信号とを区分して積分 し、それらの比率から荷電粒子と中性子を識別した。ディスクリレベルは⁶⁰Coのγ線(1.17MeV 及び 1.33MeV)を検出しない高さに設定した。

並行して、放医研 HIMAC の p 230MeV 及び大阪大学核物理研究センター(RCNP)の p 392MeV、 中性子については日本原子力機研究開発機構の放射線標準施設(FRS)の15MeV 中性子及び高崎量子 応用研究所イオン照射研究施設(TIARA)の75MeV 中性子、HIMAC の He 230MeV/u のビームを用 いた応答試験を行い、これらの粒子に対する弁別能を確認した。

3. 実験結果

円筒形プローブの平面に対してビームを垂直入射した場合について、放医研サイクロトロン、HIMAC (p,He)、RCNP (p)、FRS (n)、TIARA (n) で得られた結果を併せて図2に示す。ここで、横軸はトリガ時点を0とした-20~50nsの信号積分値(早い蛍光成分)、縦軸は100~200nsの範囲における信号積分値(遅い蛍光成分)である。

同図より、今回応答試験に用いたビームのエネルギー/入射条件においては、陽子とHeイオンは明瞭に区別でき、これらの荷電粒子と中性子の弁別についても良好に行えると考えられる。

ただし、スチルベンの特性とプラスチックシンチレータの厚み(15mm)があること等から、相当の 角度依存性が観られた。高高度の宇宙線については等方的な放射線場と仮定して解析を行うことが一般 的であるが、その仮定がエネルギー同定にもたらす影響については今後検討すべき課題である。

Signal integral from -20 to 50 ns

図 2. 垂直ビーム照射により得られた応答 ; 横軸(X) は早い蛍 光成分の積算値、縦軸は遅い蛍光成分の積算値 ; He イオ ンや陽子、中性子が明瞭に区別できている.

4. まとめ

次年(平成22年)度には、検出部(シンチレータ厚)の改良・試験を行う一方、解析部(ソフトウェア)の機能や装置全体の携行性等の向上を図る。そして、アンフォールディングによるスペクトル解 析技法の検討ならびに高山や航空機等フィールドでの機能検証へと進めたい。

本実験の遂行にあたり、いつも懇切にサポートして頂いた放医研サイクロトン運転室の皆様に深く感 謝の意を表します。

参考文献

[1] Hiroshi Yasuda, Kazuaki Yajima, Masashi Takada, Tatsuhiko Sato, Takashi Nakamura. Development of Cosmic Radiation and Energetic Particle Analysing system :CREPAS. J. Nucl. Sci. Technol., 2010, in press..

[2] 保田浩志、矢島千秋、高田真志、佐藤達彦、福田光宏、中村尚司:宇宙探査用放射線サーベイメー タの開発. Space Util. Res. 26, 239-240, 2010. 6. 超伝導線材ならびにコイル構成材料の耐放射線性に関する研究

超伝導線材ならびにコイル構成材料の耐放射線性に関する研究

石山敦士^a、植田浩史^a、陸旭東^a、青木徹^a、神林佑^a、宮原信幸^b ^a 早稲田大学、^b 放射線医学総合研究所

I.研究成果の概要

本研究は、重粒子線治療装置の小型化・高効率化のための各種機器の超伝導化を目的としている。 高温超伝導線材を加速器へ応用することを考えると、放射線環境中での利用となるため、超伝導特性 や機械特性の耐放射線性を調べておく必要がある。また、このような放射線環境中で用いる機器の放 射化はメンテナンス時の装置運用や被ばく管理上好ましくない。さらに機器廃棄時にも高レベル廃棄 物となる可能性を考慮する必要がある。そこで 2009 年度は、イットリューム(YBCO)系超伝導線 材とビスマス系(Bi-2223)超伝導線材の放射線環境中での適用可能性を調査するために、AVF930 サイクロトロンを用いて中性子照射実験を実施し、照射前後の超伝導特性の比較を行った。また、14 MeV 中性子照射による生成核種を調査した。 さらに、中性子照射後の機械的歪みが超伝導特性に及 ぼす影響を調査するための実験装置の設計・製作を行い、未照射線材での歪み-臨界電流の関係を調べ た。

Ⅱ.研究内容と成果

1. 中性子照射実験

1-1. 試料線材緒元

試料線材として Bi-2223 線材と YBCO 線材の測定を行った。サンプル線材の諸元を表1に、線材の 断面構成を図1に示す。

	Sample 1	Sample 2	
material	Bi-2223	YBCO	
	DI-BSCCO	344 Super	
manufacturer	(Type H)	conductors	
process	CT-OP	RABiTS/MOD	
width	4.4 mm	4.4 mm	
length	90 mm	150 mm	
thickness	0.22 mm	0.22 mm	
<i>I</i> _C (nominal)	140 A	Min 70 A	

表1 高温超伝導試料線材の諸元 Table. 1 Specification of HTS Samples

(b) YBCO Conductor (AMSC)

図1 (a)ビスマス線材断面図(b)HTS の構造 Fig. 1 (a) Cross-sectional view and (b) structure of HTS

1-2. 実験方法

(1) RI 検出方法

照射終了後、線材の放射線レベルが減衰したことを確認し、Ge 検出器により YBCO 超伝導線材中 に生成した RI を Ge ガンマ線スペクトルより推定した。

今回は、照射線量が大きいので、NaI シンチレーター等による表面線量減衰曲線の測定を行っていない。

(2) 中性子線照射方法

放医研サイクロトロン (図.2) からの 14 MeV 中性子を Bi-2223 線材および YBCO 線材に照射した。 Be ターゲット上の電流は 20 μA (d 30 MeV) でターゲットからの距離 10 cm で照射野直径 5 cm であ る。この位置では、中性子のフラックスが高すぎて直接測定できないので、ターゲットから 2 m 離れ た位置での中性子フラックスならびに線量率から推定した。

照射位置より2m下流の線量率は0.46 Gy/min であるので、逆二乗則より、照射線量率は約11 kGy/h である。Bi-2223 線材とYBCO線材の超伝導コーティング面を入射方向として照射を約7時間(合計約77 kGy)を行った。これを3回繰り返し照射し、合計約231 kGyの中性子の照射試験を行い、各回毎に超伝導特性(I-V 特性)を評価した。

図 2 AVF930 サイクロトロン Fig. 2 AVF930 Cyclotron Accelerator (NIRS)

1-3. 中性子照射実験結果

(1) RI 生成物

3回目の照射後、13日経過してから検出器により RI 生成物を計測した。表 2 に Bi-2223 線材内と YBCO線材内に生成したガンマ線放射性核種およびその由来元素をガンマ線スペクトルから推定した 結果を示す。

表2を見るとBi線材において110Ag(半減期約250日)と207Bi(半減期約11500日)が生成しているが、 全体量が少なく、表面線量に大きな寄与はない。また、YBCO線材から発生する RI に 110Ag(半減期 約250日)、54Mn(半減期約312日)、60Co(半減期約1923日)があるが、これも Bi 同様に生成物の総量 が少ないため、表面線量レベルが低く問題がなかった。以上、全体的にさまざまな RI 生成物があった が、半減期の短いものが多く、また生成量も少ないため、約2週間ほどで人間が手にとって実験でき るレベル(10 μSv/h以下)にまで放射線レベルは減少した。

表 2 中性子線照射後(231 kGy)の RI 生成物(a)Bi-2223 (b) YBCO Table. 2 RI after Irradiation of Neutron Beam (a)Bi2223(b) YBCO

半減期(日)	核種	エネルギー (keV)	放出確率	エリアカウント	測定光子数	測定時間(sec)	放射能(Bq)	
6.24	206Bi	803.1	98.9	8.12E+05	988.65	1.00E+05	999.62	
8.46	106Ag	1045.83	29.6	1.48E+06	2258.35	1.00E+05	7629.24	
41	105Ag	344.5	41.4	1.29E+06	778.57	1.00E+05	1880.61	
249.79	110Ag	657.75	94.4	3.59E+06	3688.35	1.00E+05	3907.08	
11515.75	207Bi	569.7	97.7	7.79E+03	7.09	1.00E+05	7.26	

(a)Bi2223

(h)	VRCO
(υ)	

半減期(日)	核種	エネルギー (keV)	放出確率	エリアカウント	測定光子数	測定時間(sec)	放射能(Bq)
8.46	106Ag	1045.83	29.6	6.40E+04	97.66	1.00E+05	329.93
11.5	113Sn	391.69	64	5.50E+04	36.77	1.00E+05	57.46
13.6	117Sn	158.56	86.4	2.70E+06	925.79	1.00E+05	1071.51
41	105Ag	344.5	41.4	5.96E+04	35.97	1.00E+05	86.89
44.5	59Fe	1099.22	56.5	8.49E+03	13.52	1.00E+05	23.93
70.92	58Co	810.76	99.4	7.58E+06	9304.16	1.00E+05	9360.32
77.27	56Co	846.75	99.9	6.90E+04	87.90	1.00E+05	87.98
106.65	88Y	1836.6	99.2	5.05E+03	12.38	1.00E+05	12.48
249.79	110Ag	657.7	94	3.02E+05	310.25	1.00E+05	330.06
271.79	57Co	122.06	85.6	6.86E+06	1995.73	1.00E+05	2331.47
312.12	54Mn	834.8	100	4.18E+04	52.60	1.00E+05	52.60
1923.55	60Co	1332.5	100	4.85E+04	90.95	1.00E+05	90.95

(2) 超伝導特性

中性子の照射が超伝導特性にどのような影響を与えるのかを調べるために、放射線照射前の I-V 特性(4端子法により測定した電流-電圧特性)評価に基づく臨界電流 Ic 測定(液体窒素中・77 K)と、室温で中性子線を照射した後の Ic 測定(液体窒素中・77 K)結果を比較した。測定に際し、図4のように電圧タップを取り付け、超伝導線材をいくつかの区間にわけ I-V 特性を評価した。

今回の実験で行った一回あたりの照射量が、約77 kGy(約11 kGy/h×7 時間)、中性子フラックスが、 1.74×10¹⁵ n/s・cm² である。これからどれくらいのサイクロトロンの運転時間に相当するのかを見積も ると、放医研 HM-18 サイクロトロンを例とすると、コイル周辺の最も高い中性子フラックスは 777.5 n/(cm2・µA・min)であるので、100 µA で1日24 時間運転を行うと考えると、今回の中性子照射フ ラックスは、約4.25×10⁶年の運転に相当する。したがって、今回テストした超伝導線材は通常の加速 器のコイルとして十分利用可能であると判断できる。

	表 3	放射化実験前後の Ic と n 値 (a)ビスマス(b) YBCO
Table 3.	Ic an	d n-value Before Irradiation, After Irradiation(a)Bi2223(b) YBCO

Section	Before Irradiation		After Irradiation		After Irradiation		After Irradiation	
			(77kGy)		(154kGy)		(231kGy)	
	Ic	n 値	Ic	n 値	Ic	n 値	Ic	n 値
1	146.9	17	150	23	148.53	17	150.03	19
2	145.4	15	150	16	149.19	17	152.08	20
3	146.7	14	150.5	17	151.78	17	148.12	17
End to	146	16	150 17	16	140.50	10	150.52	10
End	140	10	130.17	10	149.39	19	130.32	18

(a) Bi2223

(b) YBCO

Section	Before Irradiation		After Irradiation		After Irra	diation	After Irradiation	
			(77kGy)		(154kGy)		(231kGy)	
	Ic	n 値	Ic	n 値	Ic	n 値	Ic	n 値
1	93.8	29	98	30	98.72	28	98.38	29
2	89.9	27	92	26	93.25	35	93.31	25
3	89.1	25	91.5	24	92.48	27	92.83	26
4	90.3	26	93.5	40	93.72	30	95.61	32
5	90	28	93	29	93.36	29	94.08	32
End to	90	00 25	02	26	03 75	27	93.65	24
End		90	90 23 93	20	75.15			

図 5 に照射前と照射後(231 kGy)の I-V 特性を、表 3 に照射前と照射後(77 kGy-231 kGy)の Ic と n 値 を示す。ここで臨界電流 Ic は電界が 1 μ V/cm 発生した時の電流値とした (1 μ V/cm 基準)。図 6 は 3 回の照射毎の Ic の変化を照射前の初期 Ic により正規化して示したものである。以上の結果から見る と、Bi、YBCO ともに照射前よりも照射後の方がわずかに Ic が上昇しているように見えるが、上昇値 はきわめて微量であり、測定誤差の範囲内である。また、n 値にも変化はほとんど見られなかった。

3. 機械特性評価実験

(1)実験装置・方法

高温超伝導コイルの加速器応用においては、中性子照射による超伝導線材の機械特性を明確にして おく必要がある。そこで、超伝導コイルの運転時(励磁・減磁)に超伝導線材に加わる機械的ひずみ を模擬して試料線材のひずみ特性を評価するために、図 7 のような装置を製作した。試料線材は、 Stainless Steel (SUS304) 製のU字型サンプルホルダの底面に半田で接着し、図中のa点を上下に動か すことによってU字型サンプルホルダが変形し試料線材にひずみが印加される仕組みとなっている。 ひずみは、ハステロイ層表面に接着したひずみゲージで測定した。なお測定には、サンプルホルダの 素材と同程度の線膨張係数を有するひずみゲージを使用し、3 線式を採用した。また、サンプルホル ダ全体を液体窒素に浸漬した状態で実験を行った。

Fig.7 U-shaped sample holder for mechanical property measurements

試料線材を用いて実験を行う前に、サンプルホルダのみを試験装置に取り付けてひずみを印加し、治 具底部のうち均一にひずみが加わっている区間を探した。その結果、サンプルホルダの中心約10 mmの 区間では、印加ひずみが0.65%以下であれば均一にひずんでいることが明らかとなった。そこで、*I-V*特 性の測定にはその区間を使用した。はじめに1 μ V/cm基準で初期*Ic*を測定し、これを初期臨界電流*Ica*とする。 次に線材にひずみ ϵ を印加し、この状態で*Ic*測定を行う。このひずみを除去せずにさらに大きくして、再び*Ic*測 定を行う。この作業をひずみを大きくしながら繰り返し行い、ひずみと*Ic*の関係(*Id Ia*・ ϵ 特性)を求めた。

(2) 実験結果

今回は、製作した試験装置の妥当性評価のための予備実験を実施した。表1に諸元を示した YBCO 線材を試料として液体窒素中でひずみ特性を評価した。結果を図8に示す。

図8 ひずみ特性

本実験において試料線材には、下式に示すような機械的ひずみと冷却に伴う熱ひずみが加わる。

$$\mathcal{E}_{total} = \mathcal{E}_{mechanical} + \mathcal{E}_{thermal}$$

(1)

現在、図8の測定結果に対して、機械的ひずみと熱応力によるひずみについて校正を行っている。

4. まとめ

高温超伝導線材の加速器応用を目的をして、超伝導特性および機械特性の耐放射線性に関する評価 実験を実施した。以下のその成果をまとめる。

- ・ AVF930 サイクロトロンを用い、YBCO 超伝導線材と Bi-2223 線材を試料として 14 MeV 中性子照 射実験を実施し、照射前後の超伝導特性の比較を行った。その結果、77 kGy×3 回(合計 231 kGy) の照射に対して、超伝導特性の明確な劣化は観測されなかった。
- ・サイクロトロンからの 14 MeV 中性子を照射し放射化による生成核種を調査した。その結果、Bi 線材においては、110Ag(半減期約 250 日)と 207Bi(半減期約 11500 日)の生成が観測されたが、全体 量が少なく、照射 2 週間後の表面放射線レベルは低かった。また、YBCO 線材については、110Ag(半 減期約 250 日)、54Mn(半減期約 312 日)、60Co(半減期約 1923 日)が生成されたが、これも Bi 同様 に総量が少なく、照射 2 週間後の表面放射線は問題の無いレベルであった。
- ・中性子照射後の機械的歪みが超伝導特性に及ぼす影響を調査するための実験装置の設計・製作を 行い、未照射線材での歪み-臨界電流の関係を調べ、製作装置の妥当性を確認した。

なお本研究は、科学研究費補助金(基盤研究B:「普及型重粒子線癌治療装置用超伝導コイルシステム開発のための基礎的研究」、課題番号:20360130)により実施したものである。

7. 陽子線照射における大気下ならびに低酸素下での細胞致死効果

陽子線照射における大気下ならびに低酸素下での細胞致死効果

平山亮一^a、古澤佳也^a、松本孔貴^a、北村尚^a、内堀幸夫^a、 鵜澤玲子^a、小池幸子^a、高瀬信宏^{a,b} ^{a.}放射線医学総合研究所、^{b.} 医用原子力技術研究振興財団

研究成果の概要

X線やγ線などの低LET 放射線は、酸素の存在下では無酸素の時より生物学的効果は大き くなり、3 倍程度の増感がある。これは酸素効果と呼ばれ、放射線生物学の大きな特徴の 一つである。また、重粒子線などの高LET 放射線では酸素効果が小さくなることが知られ ている[1]。低酸素下での照射実験を行うには酸素のコンタミが無いガラス製のシャーレを 用いるのが一般的ではあるが、光子放射線ではガラスからの後方散乱の影響を受ける為、 高LET 放射線の対照線源として用いることができない。そこで後方散乱の影響がない、粒 子線である陽子線が高LET 放射線の対照線源として適当な低LET 放射線であるかを検証 した。

研究内容と成果

CHO 細胞を用いて C-8 コースで供給される 陽子線(70MeV)の細胞致死効果を調べた。照 射 1 時間前に低酸素置換装置にて細胞を低酸 素状態(N₂:95%/CO₂:5%)に置換し、低酸素状 態のまま照射を行った。照射後はコロニー形成 法にて細胞の生存率を調べた。H21年度は7/28 の1度だけのマシンタイムで2本の生存率曲線 を作成した。Fig.1 から 10%細胞生存率を示す D₁₀線量を求め、CHO細胞の低酸素下陽子線照 射における D₁₀値は 17.35±0.01 であることがわ かった。X線大気下照射でのCHO細胞のDu 値は 5.80±0.15 であるので、酸素増感比(OER: Oxygen Enhancement Ratio) は 2.99 (17.35/5.8) となった。低LET 放射線のOER は約3である ことから、低酸素実験における標準線源として 陽子線が適切な線源であると考える。また、粒 子線の最小粒子が陽子線であることを考える と、高 LET 放射線の標準線源として陽子線が 非常に有効であると言える。

Fig.1 低酸素下での陽子線照射における CHO細胞の生存率曲線

今後の予定

CHO 細胞の大気下での D₁₀ 値を求め、陽子線としての OER を算出する予定である。

参考文献

[1] Y. Furusawa et al., Radiat. Res., 154, 485-496(2000)

8. 研究成果一覧

2. サイクロトロンの運転維持

<学会及び研究会口頭発表等>

- 杉浦彰則、金澤光隆、北條悟、鈴木直方、本間壽廣、村松正幸、坂本幸雄、岡田高典、 神谷隆、小松克好、野田耕司,放医研サイクロトロン施設の現状報告(2008年度). 第11 回応用加速器・関連技術研究シンポジウム.東京都目黒区.2009,6
- 北條悟、本間壽廣、金澤光隆、村松正幸、坂本幸雄、杉浦彰則、鈴木直方、野田耕司.,11C ビーム加速のための液体Ar冷却トラップによるガス分離.. 第11回応用加速器・関連技術 研究シンポジウム.東京都目黒区.2009,6
- 3. 杉浦彰則、金澤光隆、北條悟、鈴木直方、本間壽廣、村松正幸、坂本幸雄、岡田高典、 神谷隆、小松克好、野田耕司,放医研サイクロトロン施設の現状報告. 第6回加速器学会 年会. 茨城県那珂郡. 2009,8
- 北條悟、本間壽廣、金澤光隆、村松正幸、坂本幸雄、杉浦彰則、鈴木直方、野田耕司.,陽 電子放出核の粒子線治療適用研究の現状.第6回加速器学会年会.茨城県那珂郡.2009,8

3. サイクロトロンのRI製造への利用状況

<原著論文等>

- 1. Ryuji Nakao, Takehito Ito, Kazutaka Hayashi, Toshimitsu Fukumura, Kazutoshi Suzuki: Rapid and efficient purification of positron emission tomography probes by hydrophilic interaction chromatography, Journal of Chromatography A, 1216(18), 3933-3940, 2009
- Ryuji Nakao, Takehito Ito, Kazutaka Hayashi, Toshimitsu Fukumura, Masatoshi Yamaguchi, Kazutoshi Suzuki: 1-Minute quality control tests for positron emission tomography Radiopharmaceuticals, Journal of Pharmaceutical and Biomedical Analysis, 50(2), 245-251, 2009
- 3. Ryuji Nakao, Kenji Furutsuka, Toshimitsu Fukumura, Masatoshi Yamaguchi, Kazutoshi Suzuki: Quality Control of PET Radiopharmaceuticals by High-Performance Liquid Chromatography with tris(2,2'-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Detection., Biomedical Chromatography
- Ryuji Nakao, Takehito Ito, Kazutaka Hayashi, Toshimitsu Fukumura, Kazutoshi Suzuki: Ultra-Fast LC Method for Purification and Metabolite Analysis of PET Probes., Nuclear Medicine and Biology
- Koichi Kato, Ming-Rong Zhang, Katsuyuki Minegishi, Kazutoshi Suzuki: Synthesis of ¹¹C-labeled 2-Aminoethanol via a Nitroaldol Reaction Using Nitro[¹¹C] methane, Bioorganic & Medicinal Chemistry Letters, 19(13), 3439-3441, 2009
- **6.** Koichi Kato, Ming-Rong Zhang, Kazutoshi Suzuki: Synthesis of (R,S)-[4-¹¹C]baclofen via Michael addition of nitromethane labeled with short-lived ¹¹C, Bioorganic & Medicinal Chemistry Letters, 19(21), 6222-6224, 2009
- 7. Tomoteru Yamazaki, Katsushi Kumata, Kazuhiko Yanamoto, Akiko Hatori, Makoto Takei, Ikuo Nakamura, Sachiko Koike, Koichi Ando, Kazutoshi Suzuki, Ming-Rong Zhang: Imaging of peripheral-type benzodiazepine receptor in tumor: in vitro binding and in vivo biodistribution of

N-benzyl-N-[¹¹C]methyl-2-(7-methyl-8- oxo-2-phenyl-7,8- dihydro -9H-purin-9-yl)acetamide, Nuclear Medicine and Biology, 36(7), 801-809, 2009

- 8. Tomoteru Yamasaki, Sachiko Koike, Akiko Hatori, Kazuhiko Yanamoto, Kazunori Kawamura, Joji Yui, Katsushi Kumata, Koichi Ando, Ming-Rong Zhang: Imaging of Peripheral-type Benzodiazepine Receptor in Tumor:Carbon Ion Irradiation Reduced the Uptake of a PositronEmission Tomography Ligand [¹¹C]DAC in Tumor, Journal of Radiation Research
- 9. Ming-Rong Zhang, Katsushi Kumata, Akiko Hatori, Nobuhiko Takai, Jun Toyohara, Kazuhiko Yanamoto, Tomoteru Yamasaki, Jyoji Yui, Kazunori Kawamura, Sachiko Koike, Koichi Ando, Kazutoshi Suzuki: [¹¹C]Gefitinib ([¹¹C]Iressa): Radiosynthesis, In Vitro Uptake and In Vivo Imaging of Intact Murine Fibrosarcoma, Molecular Imaging and Biology
- 10. Toshimitsu Okamura, Tatsuya Kikuchi, Kiyoshi Fukushi, Toshiaki Irie: Reactivity of
 6-Halopurine Analogs with Glutathione as a Radiotracer for Assessing Function of Multidrug
 Resistance-Associated Protein 1, Journal of Medicinal Chemistry, 52(22), 7284-7288, 2009
- **11.** Toshimitsu Okamura, Tatsuya Kikuchi, Kiyoshi Fukushi, Yasushi Arano, Toshiaki Irie, et.al: A radiotracer method to study efflux transport of iodide liberated from thyroid hormones via deiodination metabolism in the brain, Life Sciences, 84(23-24), 791-795, 2009
- 12. Kazuhiko Yanamoto, Fujiko Konno, Chika Odawara, Tomoteru Yamasaki, Kazunori Kawamura, Akiko Hatori, Joji Yui, Hidekatsu Wakizaka, Nobuki Nengaki, Makoto Takei, Ming-Rong Zhang: Radiosynthesis and evaluation of [¹¹C]YM-202074 as a PET ligand for imaging the metabotropic glutamate receptor type 1, Nuclear Medicine and Biology
- 13. Kazuhiko Yanamoto, Tomoteru Yamasaki, Katsushi Kumata, Jyoji Yui, Chika Odawara, Kazunori Kawamura, Akiko Hatori, Osamu Inoue, Masatoshi Yamaguchi, Kazutoshi Suzuki, Ming-Rong Zhang: Evaluation of N-Benzyl-N-[¹¹C]Methyl- 2-(7-Methyl-8-oxo-2- Phenyl -7,8-Dihydro-9H-Purin-9-yl)Acetamide ([¹¹C]DAC) as a Novel Translocator Protein (18 kDa) Radioligand in Kainic Acid-Lesioned Rat, Synapse, 63(11), 961-971, 2009
- 14. Masayuki Fujinaga, Katsushi Kumata, Kazuhiko Yanamoto, Kazunori Kawamura, Tomoteru Yamasaki, Joji Yui, Akiko Hatori, Masanao Ogawa, Yuichiro Yoshida, Nobuki Nengaki, Jun Maeda, Ming-Rong Zhang: Radiosynthesis of Novel Carbon-11-Labeled Triaryl Ligands for Cannabinoid-type 2 Receptor, Bioorganic & Medicinal Chemistry Letters
- 15. Masanao Ogawa, Yuuki Takada, Hisashi Suzuki, Kazuyoshi Nemoto, Toshimitsu Fukumura: Simple and effective method for producing [¹¹C]phosgene using an environmental CCl₄ gas detection tube, Nuclear Medicine and Biology
- **16.** Vanessa Gomez, Koichi Kato, Masayuki Hanyu, Katsuyuki Minegishi, Jordi Loop: Efficient system for the preparation of [¹³N]labeled nitrosamines, Bioorganic & Medicinal Chemistry Letters, 19(7), 1913-1915, 2009.
- 17. Maki Okada, Ryuji Nakao, Rie Hosoi, Ming-Rong Zhang, Toshimitsu Fukumura, Kazutoshi Suzuki, Osamu Inoue: In vivo monitoring of extracellular 13N-glutamine derived from blood-borne ¹³N-ammonia in rat striatum using microdialysis with radio-LC method, Journal of Neuroscience Methods, 184(1), 37-41, 2009
- 18. Kazunori Kawamura, Tomoteru Yamazaki, Jyoji Yui, Akiko Hatori, Fujiko Konno, Katsushi Kumata, Toshiaki Irie, Toshimitsu Fukumura, Kazutoshi Suzuki, Iwao Kanno, Ming-Rong Zhang: In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [¹¹C]gefitinib, Nuclear Medicine and Biology, 36(3), 239-246, 2009

- 74 -

- 19. Kazunori Kawamura, Fujiko Konno, Joji Yui, Tomoteru Yamasaki, Akiko Hatori, Kazuhiko Yanamoto, Hidekatsu Wakizaka, Makoto Takei, Nobuki Nengaki, Toshimitsu Fukumura, Ming-Rong Zhang: Synthesis and evaluation of [¹¹C]XR9576 to measure the function of P-glycoprotein using PET, Annals of Nuclear Medicine
- **20.** Kazunori Kawamura, Tomoteru Yamasaki, Fujiko Konno, Joji Yui, Akiko Hatori, Kazuhiko Yanamoto, Hidekatsu Wakizaka, Makoto Takei, Yuichi Kimura, Toshimitsu Fukumura, Ming-Rong Zhang: Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using [¹¹C]GF120918 by positron emission tomography in mice, Molecular Imaging and Biology
- 21. Katsushi Kumata, Makoto Takei, Masanao Ogawa, Koichi Kato, Kazutoshi Suzuki, Ming-Rong Zhang: One-pot radiosynthesis of [¹³N]urea and [¹³N]carbamate using no-carrier-added [¹³N]NH₃, Journal of Labelled Compounds & Radiopharmaceuticals, 52(5), 166-172, 2009
- 22. Katsushi Kumata, Makoto Takei, Jyoji Yui, Masanao Ogawa, Akiko Hatori, Kazutoshi Suzuki Ming-Rong Zhang,: Radiosynthesis of ¹³N-Labeled Thalidomide Using No-carrier-added [¹³N]NH₃, Journal of Labelled Compounds & Radiopharmaceuticals
- 23. Takuya Arai, Fujiko Konno, Masanao Ogawa, Ming-Rong Zhang, Kazutoshi Suzuki: The first synthesis of [¹¹C]oseltamivir: a tool for elucidating the relationship between Tamiflu and its adverse effects on the central nervous system., Journal of Labelled Compounds & Radiopharmaceuticals, 52(9), 350-354, 2009
- 24. Takuya Arai, Koichi Kato, Ming-Rong Zhang: Synthesis of [carbonyl-¹¹C]acetophenone via the Stille cross-coupling reaction of [1-¹¹C]acetyl chloride with tributylphenylstannane mediated by Pd2(dba)₃/P(MeNCH₂CH₂)₃N HCl, Tetrahedron Letters, 50(33), 4788-4791, 2009
- 25. Joji Yui, Akiko Hatori, Kazuhiko Yanamoto, Makoto Takei, Nobuki Nengaki, Katsushi Kumata, Kazunori Kawamura, Tomoteru Yamasaki, Kazutoshi Suzuki, Ming-Rong Zhang: Imaging of the translocator protein in rat brain after ischemia using ¹¹C-DAC with ultra-high specific Activity., Synapse
- **26.** Tatsuya Kikuchi, Toshimitsu Okamura, Ming-Rong Zhang, Kiyoshi Fukushi, Toshiaki Irie: In vivo evaluation of N-[¹⁸F]fluoroethylpiperidin-4ylmethyl acetate in rats compared with MP4A as a probe for measuring cerebral acetylcholinesterase activity, Synapse, 64(3), 209-215, 2010
- 27. Chisato Yoshida, Chizuru Sogawa, Atsushi Tsuji, Hitomi Sudou, Aya Sugyou, Tomoya Uehara, Okio Hino, Yukie Yoshii, Yasuhisa Fujibayashi, Toshimitsu Fukumura, Mitsuru Koizumi, Yasushi Arano, Tsuneo Saga: Development of Positron Emission Tomography Imaging by 64Cu-labeled Fab for Detecting ERC/mesothelin in Mesothelioma Mouse Model, Nuclear Medicine Communications
- 28. Michie Miyoshi, Hiroshi Ito, Ryosuke Arakawa, Hidehiko Takahashi, Harumasa Takano, Makoto Higuchi, Masaki Okumura, Tatsui Otsuka, Fumitoshi Kodaka, Mizuho Sekine, Takeshi Sasaki, Saori Fujie, Chie Seki, Jun Maeda, Ryuji Nakao, Ming-Rong Zhang, Tetsuya Suhara, et.al: Quantitative Analysis of Peripheral Benzodiazepine Receptor in the Human Brain Using PET with 11C-AC-5216, Journal of Nuclear Medicine, 50(7), 1095-1101, 2009, doi:10.2967/jnumed.109.062554(2009-06-12)
- **29.** Chizuru Sogawa, Atsushi Tsuji, Hitomi Sudou, Aya Sugyou, Chisato Yoshida, Kenichi Odaka, Tomoya Uehara, Yasushi Arano, Mitsuru Koizumi, Tsuneo Saga: C-kit-targeted imaging of

gastrointestinal stromal tumor using radiolabeled anti-c-kit monoclonal antibody in mouse tumor model, Nuclear Medicine and Biology

- **30.** Tatsui Otsuka, Hiroshi Ito, Christer Halldin, Hidehiko Takahashi, Harumasa Takano, Ryosuke Arakawa, Masaki Okumura, Fumitoshi Kodaka, Michie Miyoshi, Mizuho Sekine, Chie Seki, Ryuji Nakao, Kazutoshi Suzuki, Tetsuya Suhara, Lars Farde, et.al: Quantitative PET Analysis of the Dopamine D₂ Receptor Agonist Radioligand ¹¹C-(R)-2-CH₃O-N-n-Propylnorapomorphine in the Human Brain, Journal of Nuclear Medicine, 50(5), 703-710, 2009, doi: 10.2967/jnumed.108.058503(2009-04-16)
- 31. Atsushi Tsuji, Chizuru Sogawa, Aya Sugyou, Hitomi Sudou, Mitsuru Koizumi, Okio Hino, Yoshinobu Harada, Takako Furukawa, Kazutoshi Suzuki, Tsuneo Saga, et.al: Comparison of Conventional and Novel PET Tracers for Imaging Mesothelioma in Nude Mice with Subcutaneous and Intrapleural Xenografts, Nuclear Medicine and Biology, 36(4), 379-388, 2009, doi:10.1016/j.nucmedbio.2009.01.018(2009-03-26), 379-388
- **32.** Takeaki Saijo, Jun Maeda, Takashi Okauchi, Kazutoshi Suzuki, Makoto Higuchi, Tetsuya Suhara, et.al: Utility of small animal positron emission tomographic imaging of rats for preclinical development of drugs acting on serotonin transporter, The International Journal of Neuropsychopharmacology, 12(8), 1021-1032, 2009
- 33. Khaled Mohamed Saleh Ibrahim El Azony, Kazutoshi Suzuki, Toshimitsu Fukumura, Szelecsenyi Ferenc, Zoltan Kovacs: Excitation functions of proton induced reactions on natural selenium up to 62 MeV, Radiochimica Acta, 97(2), 71-77, 2009

<学会及び研究会口頭発表等>

- 若井 篤志、土田 一輝、福村 利光、鈴木 和年::ヨウ化メチルの多光子電離にお ける二光子励起準位のアイソトープシフト計測、日本応用物理学会(第70回応用物理 学会学術講演会)、富山市、2009.09
- 2. 羽鳥 晶子、由井 譲二、河村 和紀、柳本 和彦、山崎 友照、武井 誠^{*}、鈴木 和 年、張 明栄: 生後 1~6 週令ラットにおける[11C]Oseltamivir の体内動態、第 49 回日本 核医学会学術総会、旭川市、2009.10
- 3. 岡田 真希、中尾 隆士、細井 理恵、張 明栄、入江 俊章、福村 利光、鈴木 和 年、井上 修: In vivo マイクロダイアリシス radio-LC を用いたラット線条体細胞外液中 13N-アンモニアの動態計測、第49回日本核医学会学術総会、旭川市、2009.10
- 4. 岡田 真希、中尾 隆士、細井 理恵^{*}、入江 俊章、福村 利光、鈴木 和年、井上 修^{*}: グリア細胞代謝阻害時における 11C-Benzyl Acetate および 13N-NH3 ラット線条体マ イクロダイアリシス in vivo 動態計測、日本薬学会第 129 年会、京都市、2009.03
- 5. 鈴木 寿、荒井 拓也、小川 政直^{*}、高田 由貴、福村 利光、鈴木 和年: 多核種対 応型多目的装置による [¹¹C] アセチルクロライド及び [¹¹C] ホスゲンの合成、第49 回日本核医学会学術総会、旭川市、2009.10
- 6. 由井 譲二、羽鳥 晶子、柳本 和彦、念垣 信樹、武井 誠、河村 和紀、鈴木 和 年、張 明栄: 超高比放射能を有する末梢性ベンゾジアゼピン受容体 PET プローブ [11C]DAC の応用、第49回日本核医学会学術総会、旭川市、2009.10
- 7. 由井 譲二、前田 純、熊田 勝志、柳本 和彦、岡内 隆、羽鳥 晶子、山崎 友照、 河村 和紀、樋口 真人、張 明栄:新規末梢性ベンゾジアゼピン受容体PETリガン ドの評価と応用、分子イメージング研究シンポジウム2010、東京、2010.01

- 8. 林 和孝、中尾 隆士、吉田 勇一郎、武藤 正敏、鈴木 和年:臨床使用のための [18F]FMISOの製造法と品質検査法の検討、第49回日本核医学会学術総会、旭川市、 2009.10
- 9. 林 和孝、土田 一輝、中尾 隆士、鈴木 和年、福村 利光、その他: マイクロ波加 熱措置を用いた 18F 標識放射性薬剤の合成検討、第3回日本電磁波エネルギー応用学会 シンポジウム、東京都、2009.11
- **10.** 熊田 勝志、武井 誠、小川 政直、由井 譲二、羽鳥 晶子、鈴木 和年、張 明栄: [13N]サリドマイドの標識合成、日本薬学会 第129年会、京都市、2009.03
- 11. 熊田 勝志、羽鳥 晶子、由井 譲二、念垣 信樹、柳本 和彦、山崎 友照、河村 和 紀、張 明栄: セロトニン 5-HT1B 受容体の PET イメージング剤 [11C] PFM の合成と PET 薬剤としての評価 、日本薬学会第 130 年会(岡山)、岡山市、2010.03
- 12. Kazunori Kawamura, Fujiko Konno, Makoto Takei, Ikuo Nakamura, Jyouji Yui, Tomoteru Yamazaki, Akiko Hatori, Kazuhiko Yanamoto, Toshiaki Irie, Toshimitsu Fukumura, Kazutoshi Suzuki, Iwao Kanno, Ming-Rong Zhang: SYNTHESIS AND EVALUATION OF A NOVEL C-11 LABELED I2 IMIDAZOLINE BINDING SITE LIGAND AS A PET PROBE, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 13. Kazunori Kawamura, Fujiko Konno, Tomoteru Yamazaki, Jyouji Yui, Akiko Hatori, Kazuhiko Yanamoto, Toshiaki Irie, Toshimitsu Fukumura, Kazutoshi Suzuki, Iwao Kanno, Ming-Rong Zhang: SYNTHESIS AND EVALUATION OF C-11 LABELED DUAL MODULATOR FOR P-GP AND BCRP AS A PET PROBE, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 14. 河村 和紀、昆野 富士子、長縄 美香、由井 譲二、山崎 友照、羽鳥 晶子、柳本 和彦、武井 誠、吉田 勇一郎、脇坂 秀克、坂口 和也、木村 裕一、福村 利光、 張 明栄: イミダゾリン 12 受容体リガンドの PET 用プローブとしての評価、日本薬学 会第 130 年会(岡山)、岡山市、2010.03
- 15. 河村 和紀、昆野 富士子、山崎 友照、由井 譲二、羽鳥 晶子、入江 俊章、福村 利光、菅野 巖、張 明栄: P-gp 及び BCRP 両阻害剤 GF120918 の C-11 標識合成及び PET 用分子プローブとしての評価、日本薬学会 第 129 年会、京都市、2009.03
- 16. 河村 和紀、山崎 友照、昆野 富士子、由井 譲二、脇坂 秀克、柳本 和彦、羽鳥 晶子、武井 誠、中村 行雄、福村 利光、張 明栄: PET 用プローブとしての2つの P-gp 阻害剤(GF120918、XR9576)の脳移行性評価、第49回日本核医学会学術総会、 旭川市、2009.10
- 17. Kanno, Ming-Rong Zhang: SYNTHESIS AND EVALUATION OF A NOVEL C-11 LABELED I2 IMIDAZOLINE BINDING SITE LIGAND AS A PET PROBE, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 18. Koichi Kato, Ming-Rong Zhang, Kazutoshi Suzuki: SYNTHESIS OF [11C]BACLOFEN VIA MICHAEL ADDITION OF NITRO[11C]METHANE, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 19. Koichi Kato, Ming-Rong Zhang, Katsuyuki Minegishi, Kazutoshi Suzuki: SYNTHESIS OF [11C]ETHANOLAMINE VIA NITROALDOL REACTION, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07

- 20. Koichi Kato, Ming-Rong Zhang, Ryuji Nakao, Kazutoshi Suzuki: SYNTHESIS OF [11C]TRIS VIA FLUORIDE ASSISTED RAPID NITROALDOL REACTION, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 21. 加藤 孝一、張 明栄: 2-アミノ-[3-11C]イソ酪酸の簡便な合成法の開発(放医研分子イ メージング研究センター)、日本化学会第 90 春季年会、東大阪市、2010.03
- 22. Ming-Rong Zhang, Katsushi Kumata, Kazuhiko Yanamoto, Tomoteru Yamazaki, Jyouji Yui, Kazunori Kawamura, Akiko Hatori, Kazutoshi Suzuki: [11C]DAC: SYNTHESIS AND EVALUATION AS A NOVEL PERIPHERAL BENZODIAZEPINE RECEPTOR PET LIGNAD IN KAINIC ACID-LESIONED RAT, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 23. Ming-Rong Zhang, Katsushi Kumata, Kazuhiko Yanamoto, Tomoteru Yamazaki, Jyouji Yui, Kazunori Kawamura, Akiko Hatori, Kazutoshi Suzuki: [18F]FEAC AND [18F]FEDAC: TWO NOVEL POSITRON EMISSION POMOGRAPHY LIGANDS FOR PERIPHERAL-TYPE BENZODIAZEPINE RECEPTOR IN THE BRAIN, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 24. 張 明栄: [11C]オセルタミビル及びその活性代謝体[11C]Ro 64-0802 の合成、体内動態と 代謝、第3回分子イメージング研究センターシンポジウム 脳科学における分子イメー ジングの将来像、千葉市、2009.01
- 25. Ming-Rong Zhang: [18F]Ligands for PET Imaging of Peripheral-type Benzodiazepine Receptors, 1st Research Coordination Meeting on Development of 18F-labelled Radiopharmaceuticals (beyond [18F]FDG) for Use in Oncology and Neurosciences, ウィーン, 2009.03
- **26.** 張 明栄: 1.ISRS2009Edmonton から、18F-標識法の総括 2.高比放射能[11C]CH3I: 製造、 標識及び応用-放医研の取り組みについて、PET化学ワークショップ 2010、神戸市灘 区、2010.02
- 27. 張 明栄、河村 和紀、由井 譲二、中熊 映乃、羽鳥 晶子、柳本 和彦、山崎 友 照、菅野 巖: α2C アドレナリン受容体選択的 PET プローブの開発、日本薬学会 第129 年会、京都市、2009.03
- **28.** 張 明栄: 分子イメージングプローブ・マイクロドージング、セメスター3年 画像診 断薬物学の授業、仙台市、2009.02
- 29. 張 明栄: 画像診断薬物学、第2学期学部授業、仙台市青葉区、2009.11
- 30. 張 明栄: 画像診断薬物学 2回目、第2学期学部授業、仙台市青葉区、2009.11
- 31. 張 明栄: 画像診断薬物学 3回目、第2学期学部授業、仙台市青葉区、2009.11
- 32. 張 明栄: 画像診断薬物学 4回目、第2学期学部授業、仙台市青葉区、2009.11
- 33. 土田 一輝、若井 篤志、福村 利光、鈴木 和年: [C-11]ヨウ化メチルの質量分離用高 効率イオン源の開発、第70回日本応用物理学会、富山市、2009.09
- 34. 永津 弘太郎、深田 正美、鈴木 寿、福村 利光、山崎 浩道^{*}、鈴木 和年: 垂直ビ ームによるヨウ素-124の製造-全自動照射・回収装置の開発、分子イメージング研究シ ンポジウム 2010、東京都千代田区、2010.01
- **35.** Kazutoshi Suzuki: Integrated system for the automatic production of high quality PET-radiopharmaceuticals, 2nd Asian Congress of Radiation Research, Seoul, 2009.05
- **36.** Kazutoshi Suzuki: Radiation Exposure at PET-Radiopharmaceutical Production, FNCA医療 用PET・サイクロトロンワークショップ, クアラルンプール, 2010.02

- **37.** 大矢 智幸、福士 清、入江 俊章、菊池 達矢、岡村 敏充、張 明栄、福村 利光: irreversible 型プローブの動態特性選択に関するヒトからラットへの retrospective validation、第 49 回日本核医学会学術総会、旭川市、2009.10
- 38. 小高 謙一、青木 伊知男、Kershaw Jeffrey、菊池 達矢、福村 利 光、菅野 巖、田所 裕之、森谷 純治、舘野 馨、南野 徹*、小室 一成*:移植細 胞の動態評価法の開発:急性心筋梗塞ラットにおけるマンガン標識とインジウム 111標 識の比較、第 32 回千葉大学循環病態医科学・循環器内科懇話会、千葉市、2009.12
- **39.** 菊池 達矢、岡村 敏充、福士 清、入江 俊章: Ellman 法のための新規アセチルコリ ンエステラーゼ特異基質、日本薬学会第 129 年会、京都市、2009.03
- 40. Tatsuya Kikuchi, Toshimitsu Okamura, Kiyoshi Fukushi, Toshiaki Irie: Feasibility of using C-14 labelled MP4A for the assessment of acetylcholinesterase inhibitor in tissue samples with minimal dilution, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 41. 菊池 達矢、岡村 敏充、岡田 真希、脇坂 秀克、福士 清、入江 俊章、福村 利 光: 脳内グルタチオン S-トランスフェラーゼ活性のインビボ定量測定法の開発研究、日 本薬学会第130年会(岡山)、岡山市、2010.03
- 42. 相良 雅史、辻 厚至、曽川 千鶴、須藤 仁美、須尭 綾、菊池 達矢、小高 謙一、 國領 大介、青木 伊知男、河野 健司^{*}、小泉 満、佐賀 恒夫: 温度感受性多機能リ ポソームによる SPECT/蛍光イメージング、第4回日本分子イメージング学会、東京、 2009.05
- 43. Toshimitsu Okamura, Tatsuya Kikuchi, Kiyoshi Fukushi, Toshiaki Irie: EVALUATION OF THE CONVERSION RATE OF 6-HALOGENOPURINE DERIVATIVES AS A PROBE FOR ASSESSING MRP1 FUNCTION, 18th International Symposium on Radiopharmaceutical Sciences, Edmonton, 2009.07
- 44. Toshimitsu Okamura, Tatsuya Kikuchi, Maki Okada, Hidekatsu Wakizaka, Kiyoshi Fukushi, Toshiaki Irie: 6-Bromo-7-[11C]methylpurine is a Specific Probe for the ABC Transporter Mrp1, but not for Mrp2, Pgp, and Bcrp, Annual Congress of the European Association of Nuclear Medicine, バルセロナ, 2009.10
- 45. 山崎 友照、小池 幸子、張 明栄、羽鳥 晶子、安藤 興一: NFSa 担癌マウスを用い た腫瘍イメージング:炭素線照射後における PBR の変化、H20 年度 HIMAC 共同利用研 究成果発表会、千葉市、2009.04
- 46. 山崎 友照、河村 和紀、昆野 富士子、柳本 和彦、羽鳥 晶子、由井 譲二、福村 利光、張 明栄: [11C]GF120918 を用いた腫瘍イメージング、第 49回日本核医学会学術 総会、旭川市、2009.10
- **47.** 藤永 雅之、熊田 勝志、柳本 和彦、河村 和紀、山崎 友照、由井 譲二、羽鳥 晶 子、小川 政直、吉田 勇一郎、張 明栄: 脳内における CB2 受容体の新規 PET イメ ージング剤の開発、日本薬学会第 130 年会(岡山)、岡山市、2010.03
- **48.** 福村 利光: 初心者のためのわかる合成装置入門、PET化学ワークショップ 2009、神 戸市、2009.02
- **49.** 福村 利光: 62 Z n/62 C u ジェネレーターの所外への供給について、C u A T S M 共同研究成果報告会、千葉市、2009.10
- **50.** 福村 利光: 分子イメージングの基盤の整備、分子イメージング研究シンポジウム20 10、東京、2010.01

- 51. 福村 利光: 高品位標識薬剤製造の実際、分子イメージングサマースクール、神戸市、 2009.08
- 52. Kyosan Yoshikawa, Seiya Ohashi, Sachiko Toubaru, Mitsuhiko Hasebe, Hiroyuki Ishikawa, Kenji Sagou^{*}, Katsumi Tamura, Katsuyuki Tanimoto, Hiroki Kiyohara, Shingo Kato, Susumu Kandatsu, Toshimitsu Fukumura, Tsuneo Saga, Hirohiko Tsujii: Usefulness of methionine PET for response evaluation and predicting prognosis of uterine cervical cancer treated by carbon-ion beam radiotherapy, The 2009 EANM Congress, Barcelona, 2009.10
- 53. 高田 由貴、小川 政直、福村 利光: ガス検知管を利用した簡便な[11C]ホスゲン合成 法の開発、第49回日本核医学会学術総会、旭川市、2009.10
- 54. 高田 由貴、小川 政直、福村 利光::[11C]ホスゲンを用いた[11C]ダントロレンの合 成、第49回日本核医学会学術総会、旭川市、2009.10
- **55.** Mitsuru Koizumi, Tsuneo Saga, Masayuki Inubushi, Kyosan Yoshikawa, Toshimitsu Fukumura, Masayuki Baba: Evaluation of Bone Marrow Activity after Carbon-Ion Radiotherapy by PET/CT Using a Proliferative Tracer, FLT, Annual Congress of the European Association of Nuclear Medicine 2009, バルセロナ, 2009.10
- 56. Tsuneo Saga, Mitsuru Koizumi, Masayuki Inubushi, Kyosan Yoshikawa, Toshimitsu Fukumura, Masayuki Baba: FLT-PET/CT for Lung Cancer Patients Receiving Carbon-Ion Radiation Therapy: Prognostic Significance, Annual Congress of the European Association of Nuclear Medicine 2009, バルセロナ, 2009.10
- 57. Seiya Ohashi, Kyosan Yoshikawa, Sachiko Toubaru, Mitsuhiko Hasebe, Hiroyuki Ishikawa, Kenji Sagou^{*}, Katsumi Tamura, Katsuyuki Tanimoto, Susumu Kandatsu, Junetsu Mizoe, Toshimitsu Fukumura, Tsuneo Saga, Koji Kawaguchi^{*}, Hirohiko Tsujii: Diagnostic capability of C-11 methionine PET/CT for neck lymphnode metastasis from head and neck cancers versus trunk cancers, The 2009 EANM Congress, Barcelona, 2009.10
- 58. Sachiko Toubaru, Kyosan Yoshikawa, Seiya Ohashi, Mitsuhiko Hasebe, Hiroyuki Ishikawa, Kenji Sagou^{*}, Katsumi Tamura, Katsuyuki Tanimoto, Susumu Kandatsu, Masayuki Baba, Toshimitsu Fukumura, Tsuneo Saga, Koji Kawaguchi^{*}, Hirohiko Tsujii: Usefulness of C-11 methionine PET/CT for predicting recurrence, metastasis and prognosis of patients with lung cancer treated by carbon ion radiotherapy, The 2009 EANM Congress, Barcelona, 2009.10

4. 重粒子線の生物効果初期過程における基礎物理研究

く学会及び研究会口頭発表>

1. 岡田豊史、大澤大輔、俵博之、曽我文宣、村上健、本間壽廣、野田耕司. 炭素線衝撃に よる水蒸気からの二次電子放出とトラック構造解析., 第 11 回応用加速器・関連技術研 究シンポジウム ARTA 2009

<修士論文>

1. 岡田豊史. 炭素線衝撃による水蒸気からの二次電子放出とトラック構造解析., 千葉大学 院 理学研究科 基礎理学専攻 物理学コース 2009

5-1. 中性子検出器の開発とその特性評価

<Proceedings 等>

 T.Sanami, M.Hagiwara, M.Takada, M.Baba: IMPROVEMENT OF LOWER ENERGY THRESHOLD OF FRAGMENT MEASUREMENT FROM TENS OF MeV PROTONS USING BRAGG CURVE COUNTER, Proceedings of the Radiation Detectors and their uses, 2009 p142-149

- T.Sanami, M.Hagiwara, M.Takada, M.Baba: Measurement of fragment production DDX of 72 and 144 MeV ¹²C beam induced reaction on carbon using Bragg Curve Counter, Proceedings of the 2009 Symposium on Nuclear Data, in print
- 3. Hiroki Tanaka, Yoshinori Sakurai, Minoru Suzuki, Shinichiro Masunaga, Toshinori Mitsumoto, Satoru Yajima, Hiroshi Tsutsui, Takemi Sato, Tomoyuki Asano, Genro Kashino, Yuko Kinashi, Yong Liu, Koji Ono, Akira Maruhashi : Measurement of the Thermal Neutron Distribution in a Water Phantom Using a Cyclotron Based Neutron Source for Boron Neutron Capture Therapy, 2009 IEEE nuclear Science Symposium Conference Record (2009), J02-5

<学会及び研究会口頭発表等>

- 佐波俊哉、萩原雅之、高田真志、馬場護、: Measurement of fragment production DDX of 72 and 144 MeV ¹²C beam induced reaction on carbon using Bragg Curve Counter, 2009 核デー 夕研究会、2009 年 11 月 26,27 日 テクノ交流館リコッティ
- 田中浩基、櫻井良憲、丸橋晃、鈴木実、増永慎一郎、菓子野元郎、劉勇、木梨友子、小野公二、密本俊典、矢島暁、筒井裕士、佐藤岳美、高田真志、浅野智之: 硼素中性子 捕捉療法のためのサイクロトロンベース熱外中性子源のビーム特性, 原子力学会 2010 年春の年会
- 3. 田中浩基、櫻井良憲、鈴木実、増永慎一郎、木梨友子、菓子野元郎、劉勇、三澤毅、八木貴宏、川端祐司、丸橋晃、小野公二、密本俊典、矢島暁、筒井裕士、佐藤岳実、浅野智之:石英ファイバーを用いた中性子モニターのBNCT中性子源への適応,平成21年度京大炉専門研究会「研究炉及び加速器中性子源を用いた中性子捕捉療法の高度化に関する研究会」
- 4. 田中浩基、櫻井良憲、鈴木実、増永慎一郎 木梨友子、菓子野元郎、劉勇、藤井孝明、 丸橋晃、小野公二、密本俊典、矢島暁、筒井裕士、佐藤岳実、浅野智之:京大原子炉に おけるサイクロトロンベース熱外中性子源の中性子発生に関する実験的検証,第6回日 本中性子捕捉療法学会
- 5. 田中浩基、櫻井良憲、鈴木実、増永慎一郎 丸橋晃、小野公二、密本俊典、矢島暁、佐藤岳実 、浅野智之:京大原子炉における加速器ベース中性子捕捉療法について(IV),第 98回医学物理学会
- 6. 田中浩基:ホウ素中性子捕捉療法:学際的展開と将来展望:照射装置の新展開,第22 回日本放射線腫瘍学会シンポジウム

5-2.宇宙飛翔体搭載型放射線検出器の開発

<学会及び研究会口頭発表等>

- Yukio Uchihori, et al., "Intercomparison project of space radiation detectors: ICCHIBAN", The 5th International Workshop on Space Radiation Research, 6-10 July 2009, in Cologne, Germany
- Yukio Uchihori, et al., "Preparation of Proton Irradiation System for Intercomparison Experiments of Luminescence Detectors (Proton-ICCHIBAN-2)", 14th WRMISS, 8–10 September 2009 in Dublin, Ireland
- 3. 北村尚、内堀幸夫、「サイクロトロンでの線量制御型照射系の開発」、第五回技術と安全 の報告会、平成22年3月17日、放射線医学総合研究所、千葉市

5—3.光学機器の耐放射線性能に関する研究 <原著論文等>

 T. Ogawa, Y. Kawasaki, Y. Takizawa, T. Ebisuzaki, N. Sakaki, M. Higuchi, Y. Uchihori, H. Kitamura, S. Wada: "Radiation Resistance of Nd-Doped Laser Crystals for Space Application" Jpn .J. Appl. Phys, 48, 088001/1-2 (2009)

<学位論文>

1. 小川貴代、" Study on physical and lasing properties of Nd-doped vanadate crystals grown by the floating zone method"、 博士論文、東京理科大学大学院理学研究科

5—4. 高高度環境での携行使用に適した環境放射線モニタの開発研究 <原著論文等>

 Hiroshi Yasuda, Kazuaki Yajima, Masashi Takada, Tatsuhiko Sato, Takashi Nakamura. Development of Cosmic Radiation and Energetic Particle Analysing System :CREPAS. J. Nucl. Sci. Technol., 2010, in press.

<Proceedings 等>

1. 保田浩志、矢島千秋、高田真志、佐藤達彦、福田光宏、中村尚司:宇宙探査用放射線サ ーベイメータの開発. Space Util. Res. 26, 239-240, 2010.

<学会及び研究会口頭発表等>

- 1. 保田浩志:航空飛行高度における宇宙線中性子強度の検証、平成 21 年度太陽圏シンポ ジウム・研究集会、名古屋大学, 2010.1.27.
- 2. 保田浩志、矢島千秋、中村尚司他:宇宙探査用放射線サーベイメータの開発、第 26 回 宇宙利用シンポジウム、JAXA 相模原キャンパス, 2010.1.26.
- 3. 保田浩志、矢島千秋、鳥居建男:高高度宇宙線被ばくのリアルタイム推定、平成 21 年 度富士山測候所利活用に関する成果報告会、東京大学、2010.1.24.
- 4. 保田浩志、佐藤達彦、矢島千秋、米原英典: 航路線量計算の方法と課題、第1回宇宙天 気ユーザーズフォーラム、情報通信研究機構本部、2009.12.21.
- 5. Hiroshi Yasuda, Kazuaki Yajima, Satoshi Yoshida: Dosimetry of cosmic radiation in the upper atmosphere based on the measurements at the summit of Mt.Fuji, 4th Asia-Pacific Smposium on Radiochemistry '09 (APSORC '09), Napa, 2009.12.1.
- **6.** Hiroshi Yasuda, Kazuaki Yajima: Verification of cosmic radiation dose rates at the summit of Mt.Fuji, 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11), Cape Town, 2009.10.15.
- Kazuaki Yajima, Hiroshi Yausda: Measurement of Cosmic Neutron Energy Spectrum at the Summit of Mt. Fuji, 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11), Cape Town, 2009.10.15.
- Masashi Takada, Hiroshi Yasuda, Kazuaki Yajima et al.: High Energy Neutron Measurement onboard AirCraft, 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11), Cape Town, 2009.10.15.
- Hiroshi Yasuda, Kazuaki Yajima, Masashi Takada et.al: Development of Cosmic Radiation and Energetic Particle Analyzing System: CREPAS, The 5th International Symposium on Radiation Safety and Detection Technology (ISORD-5), Kitakyushu International Conference Center, 2009.7.16.
- **10.** 保田浩志、矢島千秋、鳥居建男他:富士山頂における宇宙線観測: 実験の概要、日本 保健物理学会第43回研究発表会、大阪市、2009.6.3.
- 11. 矢島千秋、保田浩志、鳥居建男他:富士山頂における宇宙線観測: 高エネルギー中性 子の寄与、日本保健物理学会第43回研究発表会、大阪市、2009.6.3.
- **12.** Hiroshi Yasuda: Radiation Dosimetry in Space and in Aviation, The 2nd Asian Congress of Radiation Research (ACRR), Seoul, 2009.5.20.

6. 超伝導線材ならびにコイル構成材料の耐放射線性に関する研究 <原著論文等>

 H. Ueda, A. Ishiyama, N. Miyahara, N. Kashima, S. Nagaya, "Radioactivity of YBCO and Bi-2223 Tapes Under Low Energy Neutron Flux", IEEE Trans. Appl. Superoncd., no.19, vol.3, pp.2872-2876, 2009.

<学会及び研究会口頭発表等>

- X. Lu Xudong, H. Ueda, A. Ishiyama N. Miyahara, N. Kashima, S. Nagaya, "Characteristics of HTS under radiation environment", 21st International Conference on Magnet Technology (MT-21)
- 陸 旭棟,青木 徹,神林 佑,植田浩史,石山敦士,鹿島直二,長屋重夫,宮原信幸, 「粒子線がん治療用加速器応用を想定した高温超電導線材の中性子照射実験」,電気学 会超電導応用電力機器研究会資料,ASC-10-008,2010
- 3. 青木 徹,陸 旭棟,植田 浩史,石山 敦士,鹿島 直二,長屋 重夫,宮原 信幸,「高温 超電導線材の中性子照射実験」,2009 年度秋季低温工学・超電導学会講演概要集,1P-p20
- 4. 青木 徹,陸 旭棟,神林 佑,植田 浩史,石山 敦士,鹿島 直二,長屋 重夫,宮原 信 幸,「高温超電導線材の中性子照射実験」 平成 22 年電気学会全国大会講演論文集,5-117, p.177

<学位論文>

- 1. 陸 旭棟:「粒子線がん治療用加速器応用を想定した高温超電導線材の中性子照射評価と 球状バルク超電導体のアクティブ磁気浮上」、修士論文、早稲田大学大学院先進理工学 研究科
- 2. 神林 佑:「粒子線がん治療用加速器応用を想定した高温超電導線材の中性子照射実験」、 卒業研究、早稲田大学先進理工学部

9. 関連資料

平成21年度第Ⅰ期・Ⅱ期マシンタイム予定表

	小型サイクロトロン	大型サイ	· クロトロン		小型サイ	クロトロン	大型サイ	· クロトロン
月日	午前午後	午前	午後	月日	午前	午後	午前	午後
3月23月 (月)	メンテナンス	メンテサンス	RI生産 <u>管野</u> P40MeV.etc/25.p.A C1.C2,C4,C9	4月13日 (月)	メンテ	ナンス	メンテ	ナンス
3月24日 (火)	メンテナンス	R&D	RI生産 <u></u> <u>菅野</u> F40MeV;etc/25µ.A C1,C2,C4,C9	4月14日 (火)	RI	生産	RI4 萱 P40MeV,e C1,C2	生産 ′ <u>野</u> tc/25μA ,C4,C9
3月25日 (水)	R&D	R&D	RI生産 <u> 着野</u> P40MeV.ptc/25.µ A C1.C2.C4.C9	4月15日 (水)	RI	主産	RI生産 <u> 菅野</u> P40MeV,etc/25μA C1.C2.C4.C9	
3月26日 (木)	R&D	R&D	RI生産 <u> 蒼野</u> P40MeV.etc/25µ.A. C1.C2.C4.C9	4月16日 (木)	RI	生産	RI4 萱 P40MeV,e C1,C2	生産 デ <u>野</u> tc/25μA ,C4,C9
3月27日 (金)	R&D	R&D	RJ生産 <u>着野</u> P40MeV.etc/25.µA C1.C2.C4.C9	4月17日 (金)	RI	生産	重粒子線の生物効: 基礎物理 C ^{4+,6+} 72Me C	果初期課程における 研究 大澤 AV / 500 nA 10
3月28日				4月18日				
(土) 3月29日				<u>(土)</u> 4月19日				
(日)				(日)				
3月36日 (月)	メンテナンス	メンテ	ナンス	4月20日 (月)	R&D	RI生産	R&D 放射線安全測定 (本体、汎用照射 室)	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9
3月31日 (火)	R&D	R&D	RI生産 <u>首野</u> P40MeV.etc/25ヵA. C1.C2.C4.C9	4月21日 (火)	RI	生産	K1生座 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9	
4月1日 (水)	RI生産	RI4 萱 P40MeV,e C1,C2	生産 ⁵ 野 htc/25µA h,C4,C9	4月22日 (水)	RI	生産	RI4 萱 P40MeV,e C1,C2	生産 ^学 野 tc/25μA ,C4,C9
4月2日 (木)	RI生產	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9		4月23日 (木)	RI	主産	光学機器の耐放射 北 P70MeV C	線性能に関する研究 対 / 100 pA C8
4月3日 (金)	RI生産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9		4月24日 (金)	RI生産		超電導線材ならいにコイル構成材料の 耐放射線性に関する研究 宮原 D30MeV / 10 μA C3	
4月4日				4月25日				
(土)				(土)				
(日)				(日)				
4月6日 (月)	メンテナンス RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	4月27日 (月)	メンテナンス	RI生産	メンテナンス	R&D
4月7日 (火)	RI生產	RI4 査 P40MeV,e C1,C2	生産 * <u>野</u> +tc/25 µ A +,C4,C9	4月28日 (火)	RI	生産	RI4 萱 P40MeV,e C1,C2	生産 「 <u>野</u> tc/25µA ,C4,C9
4月8日 (水)	RI生産	RI4 萱 P40MeV,e C1,C2	生産 * <u>野</u> +tc/25μA +,C4,C9	4月29日 (水)			昭和の日	
4月9日 (木)	RI生產	RI生産 ^査 野 P40MeV,etc/25 μ A C1,C2,C4,C9		4月30日 (木)	RI	主産	RI4 萱 P40MeV,e C1,C2	生産 " <u>野</u> tc/25μA ,C4,C9
4月10日 (金)	RI生産	C1,C2,C4,C9 宇宙放射線粒子の電子デバイ 家響に関する研究 JAXA P70MeV / 1e8~9 pr C6		5月1日 (金)	RI	生産	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	
4月11日				5月2日				
(上) 4月12日 (日)		(上) 5月3日 (日)			憲法記念日			

	小型サイクロトロン	大型サイクロトロン		小型サイ	クロトロン	大型サイ	·クロトロン
月日	午前午後	午前二午後	月日	午前	午後	午前	午後
5月4日 (月)		みどりの日	5月25日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9
5月5日 (火)		子供の日	5月26日 (火)	RI生	上産	RI 萱 P40MeV,e C1,C2	生産 デ <u>野</u> tc/25μA ,C4,C9
5月6日 (水)		振替休日	5月27日 (水)	RI生	主産	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	
5月7日 (木)	RI生産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9	5月28日 (木)	RI生	上産	RI生産 <u> 菅野</u> P40MeV,etc/25µA C1 C2 C4 C9	
5月8日 (金)	RI生産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9	5月29日 (金)	RI生	主産	重粒子線の生物効: 基礎物理 C ^{4+,6+} 72M C	果初期課程における 研究 大澤 eV / 500nA 10
5月9日 (土) 5月10日			5月30日 (土) 5月31日				
(日)			(日)				
5月11日 (月)	メンテナンス	メンテナンス	6月1日 (月)	メンテナンス	RI生産	メンテナンス	R&D
5月12日 (火)	RI生産	RI生産 <u> 菅野</u> P40MeV,etc/25μA C1,C2,C4,C9		RI生産		R1生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	
5月13日 (水)	RI生産	RI生産 <u> 菅野</u> P40MeV,etc/25µA C1,C2,C4,C9		RI生	主産	中性子検出器の関 高田 P16MeV	引発とその特性評価 (田中) / ~5nA C8
5月14日 (木)	RI生産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9	6月4日 (木)	RI生	主産	RI 萱 P40MeV,e C1,C2	生産 ѓ <u>野</u> tc∕25µA ,C4,C9
5月15日 (金)	RI生産	 重粒子線の生物効果初期課程における 基礎物理研究 大澤 C^{4+,6+} 72MeV / 500nA C10 		RI生産		RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	
5月16日			6月6日				
<u>(土)</u> 5月17日			(土) 6月7日				
(日)			(日)				
5月18日 (月)	メンテナンス RI生産	メンテナンス R&D	6月8日 (月)	メンテ・	ナンス	メンテ	ナンス
5月19日 (火)	RI生産	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	6月9日 (火)	RI生	上産	RI4 査 P40MeV,e C1,C2	生産 ^Ξ <u>野</u> tc/25μA ,C4,C9
5月20日 (水)	RI生産	中性子検出器の開発とその特性評価 高田 P30, 18MeV / ~5nA C6	6月10日 (水)	RI生	主産	重粒子線の生物効: 基礎物理 C ^{4+,6+} 72M C	果初期課程における 研究 大澤 eV / 500nA 10
5月21日 (木)	RI生産	RI生産		RI生	主産	RI/ 萱 P40MeV,e C1,C2	生産 " <u>野</u> tc/25µA ,C4,C9
5月22日 (金)	RI生産	重粒子線の生物効果初期課程における 基礎物理研究 大澤 C ^{4+,6+} 72MeV / 500 nA C10	6月12日 (金)	RI生	主産	中性子検出器の開 高田 P16MeV	発とその特性評価 (田中) / ~5nA C8
5月23日			6月13日				
5月24日 (日)			6月14日 (日)				

	小型サイ	クロトロン	大型サイ	クロトロン		小型サイ	クロトロン	大型サイ	·クロトロン
月日	午前	午後	午前	午後	月日	午前	午後	午前	午後
6月15日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25μA C1.C2.C4.C9	7月6日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25µA C1.C2.C4.C9
6月16日 (火)	RI <u></u>	主産	高高度での環境放 適したサーベイメー P80MeV / 10 C	射線モニタリングに ーターの開発 保田 00~1000 pps C6	7月7日 (火)	RI	主産	RI 置 P40MeV,e C1,C2	生産 「 <u>野</u> tc/25µA ,C4,C9
6月17日 (水)	RI <u>∕</u>	主産	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9		7月8日 (水)	RI生産		RI4 置 P40MeV,e C1,C2	生産 「 <u>野</u> tc/25μA ,C4,C9
6月18日 (木)	RI生産		RI生産		7月9日 (木)	RI生産		中性子検出器の 高田 P70MeV (月発とその特性評価 (佐波) 7 / 50nA C6
6月19日 (金)	RI生産		RI4 萱 P40MeV,e C1,C2	生産 " <u>野</u> tc/25μA ,C4,C9	7月10日 (金)	RI生産		中性子検出器の関 高田 P70MeV	発とその特性評価 (佐波) / / 50nA C6
6月20日					7月11日				
(土) 6月21日 (日)					<u>(土)</u> 7月12日 (日)				
6月22日 (月)	メンテナンス	RI生産	メンテナンス	R&D	7月13日 (月)	メンテ	ナンス	メンテ	ナンス
6月23日 (火)	RI生産		RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9		7月14日 (火)	RI生産		RI生産 <u>管野</u> P40MeV,etc/25µA C1,C2,C4,C9	
6月24日 (水)	RI生産		RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9		7月15日 (水)	RI	主産	RI4 置 P40MeV,e C1,C2	生産 野 tc/25µA ,C4,C9
6月25日 (木)	RI <u>∕</u>	主産	半導体素子の放射線の影響に関する研究 JAXA (河原) P70MeV / 1e10 pps C8		7月16日 (木)	RI	主産	中性子検出器の 高田 ¹³ C 104M (引発とその特性評価 (遠藤) feV / 5nA C8
6月26日 (金)	RI <u></u>	主産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9		7月17日 (金)	RI	主産	RI4 置 P40MeV,e C1,C2	生産 ^Ξ 野 tc/25μA ,C4,C9
6月27日					7月18日				
(土) 6月28日 (日)					(土) 7月19日 (日)				
6月29日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9	7月20日 (月)			海の日	
6月30日 (火)	RI <u></u>	主産	RI4 萱 P40MeV,e C1,C2	圭産 Ξ <u>野</u> tc/25μA ,C4,C9	7月21日 (火)	メンテナンス	RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9
7月1日 (水)	RI生産		RI4 萱 P40MeV,e C1,C2	生産 野 tc/25μA ,C4,C9	7月22日 (水)	RI	主産	RI 萱 P40MeV,e C1,C2	生産 学 <u>野</u> tc/25μA ,C4,C9
7月2日 (木)	RI生産		宇宙放射線の荷電粒子成分 検出器の開発 内堀 P70MeV / 1pA C8		7月23日 (木)	RI	主産	RI 萱 P40MeV,e C1,C2	主産 野 tc/25μA ,C4,C9
7月3日 (金)	RIź	主産	宇宙放射線の 検出器の P40Me' C	荷電粒子成分 開発 内堀 V / 1pA C8	7月24日 (金)	RI	主産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9	
7月4日					7月25日				
(<u>土</u>) 7月5日 (日)					(<u>土</u>) 7月26日 (日)				

	小型サイ	クロトロン	大型サイ	クロトロン		小型サイクロトロン	大型サイクロトロン
月日	午前	午後	午前	午後	月日	午前午後	午前午後
7月27日 (月)	メンテナンス	RI生産	メンテナンス	R&D	8月17日 (月)	長	期メンテナンス
7月28日 (火)	RI <u></u>	主産	陽子線照射におけ 低酸素下での細胞 P70Me ^v C	^{ける} 大気下ならびに 泡致死効果 平山 V / 1nA 28	8月18日 (火)	長	期メンテナンス
7月29日 (水)	RI4	主産	RI4 萱 P40MeV,e C1,C2	±産 <u>野</u> tc/25μA ,C4,C9	8月19日 (水)	長	期メンテナンス
7月30日 (木)	RI	主産	RI生産 <u>菅野</u> P40MeV,etc/25µA C1,C2,C4,C9		8月20日 (木)	長	期メンテナンス
7月31日 (金)	RIź	主産	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9		8月21日 (金)	長	期メンテナンス
8月1日					8月22日		
(上) 8月2日 (日)					(上) 8月23日 (日)		
8月3日 (月)	メンテナンス	RI生産	メンテナンス	R&D	8月24日 (月)	長	期メンテナンス
8月4日 (火)	RI生産		重粒子線の生物効果者 基礎物理研究 C ^{4+,6+} 72MeV C10		8月25日 (火)	長	期メンテナンス
8月5日 (水)	RI生産		超電導線材ならびにコイル構成材料 耐放射線性に関する研究 宮原 D30MeV / 10 µ A C3		8月26日 (水)	長	期メンテナンス
8月6日 (木)	RIź	光学機器の耐放射線性能に関する研究 北村 P70MeV / 100 pA C8		8月27日 (木)	長	期メンテナンス	
8月7日 (金)	RI生産	メンテナンス	RI生産 <u>菅野</u> P40MeV,etc/25μA C1,C2,C4,C9	メンテナンス	8月28日 (金)	長	期メンテナンス
8月8日					8月29日		
(王) 8月9日 (日)					(工) 8月30日 (日)		
8月10日 (月)		長	期メンテナ	ンス	8月31日 (月)	II	期マシンタイム
8月11日 (火)	長期メンテナンス		ンス	9月1日 (火)	ΠĘ	期マシンタイム	
8月12日 (水)	長期メンテナンス		9月2日 (水)	II	期マシンタイム		
8月13日 (木)	長期メンテナンス		ンス	9月3日 (木)	II	期マシンタイム	
8月14日 (金)		長	期メンテナ	ンス	9月4日 (金)	ΠĘ	期マシンタイム
8月15日 (土)					9月5日 (土)		
8月16日 (日)					9月6日 (日)		

	小型サイ	クロトロン	大型サイ	クロトロン		小型サイ	クロトロン	大型サイ	クロトロン
月日	午前	午後	午前	午後	月日	午前	午後	午前	午後
8月24日 (.月.)		長	期メンテナ	ンス	9月14日 (月)	メンテ	ナンス	メンテ	ナンス
8月25日 (火)		長	期メンテナ	ンス	9月15日 (火)	RI	主産	RI4 福 P40MeV etc、C1	±産 <u>村</u> /15μA ,C2,C4
8月26日 (水)		長	期メンテナ	ンス	9月16日 (水)	RI	主産	RI生産 <u>福村</u> P40MeV/15µA etc、C1.C2.C4	
8月27日 (木)		長	期メンテナ	ンス	9月17日 (木)	RI生産 R&D			èD
8月28日 (金)	長期メンテナンス				9月18日 (金)	光学機器の耐放射線性能に関いれた RI生産 北村 P70MeV / 100 nA C8			泉性能に関する研究 村 / 100 nA 28
8月29日					9月19日				
(王) 8月30日 (日)					(土) 9月20日 (日)				
8月31日 (月)	メンテナンス RI生産 R&D		zD	9月21日 (月)	敬老の日				
9月1日 (火)	RI生産 R&D		żD	9月22日 (火)		国民の休日			
9月2日 (水)	RI生産		RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4		9月23日 (水)			秋分の日	
9月3日 (木)	RI	主産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4		9月24日 (木)	RI	主産	Rð	ЪD
9月4日 (金)	RIź	主産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4		9月25日 (金)	RI生産		R&D	
9月5日					9月26日				
(土) 9月6日					(土) 9月27日				
(日)					(日)				
9月7日 (月)	メンテナンス	RI生産	メンテナンス	R&D	9月28日 (月)	R&D	RI生産	R&D (放射線安全測定)	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4
9月8日 (火)	RI	主産	重粒子線の生物効 基礎物理 C ^{4+,6+} 48,72M C	県初期課程における 研究 大澤 leV / 500 nA l0	9月29日 (火)	RI	主産	重粒子線の生物効: 基礎物理 C ^{4+,6+} 48,72M C	果初期課程における 研究 大澤 feV / 500 nA 10
9月9日 (水)	RI生産		RI生 福 P40MeV etc、C1	έ産 村 ∕15μA ,C2,C4	9月30日 (水)	RI	主産	光学機器の耐放射 北 P70MeV C	線性能に関する研究 村 7/10 nA 28
9月10日 (木)	RI生産		RI生産 重粒子線の生物効果初期課程における 基礎物理研究 大澤 C ^{4+,6+} 48,72MeV / 500 nA C10		10月1日 (木)	RI	主産	重粒子線の生物効果初期課程における 基礎物理研究 大澤 C ^{4+,6+} 48,72MeV / 500 nA	
9月11日 (金)	RI4	主産	RI生 福 P40MeV etc、C1	E産 村 ∕15μA ,C2,C4	10月2日 (金)	RI	主産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	
9月12日					10月3日				
9月13日 (日)					10月4日				

	小型サイクロトロン	/ 大型サイ	·クロトロン		小型サイ	クロトロン	大型サイ	クロトロン
月日	午前午後	午前	午後	月日	午前	午後	午前	午後
10月5日 (月)	メンテナンス	メンテ	ナンス	10月26日 (月)	メンテナンス	RI生産	メンテナンス (停電復旧)	RI生産 <u>福村</u> P40MeV/15μA etc. C1.C2.C4
10月6日 (火)	RI生産	人工衛星搭載 シングルイベン P70MeV /	用電子デバイス ☆評価試験 中村 10e6-10e7 C8	10月27日 (火)	RI生産		RI4 福 P40MeV etc、CI	±産 <u>村</u> /15μA ц,C2,C4
10月7日 (水)	RI生産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4		10月28日 (水)	RI生産		中性子検出器の開発とその特性評価 高田(遠藤) ¹³ C 104MeV / 10nA C8	
10月8日 (木)	RI生産	RI生産 <u>福村</u> P40MeV/15μA etc、C1,C2,C4		10月29日 (木)	RI生産		中性子検出器の開 高田 ¹³ C 182M (1発とその特性評価 (遠藤) eV / 10nA X8
10月9日 (金)	RI生産	RI生産 <u>福村</u> P40MeV/15μA etc、C1,C2,C4		10月30日 (金)	RI生産		RI4 福 P40MeV etc、CI	生産 <u>村</u> √15μA ι,C2,C4
10月10日				10月31日				
(上) 10月11日 (日)				<u>(工)</u> 11月1日 (日)				
10月12日 (月)		体育の日		11月2日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4
10月13日 (火)	RI生産	超電導線材ならび 耐放射線性に D30MeV	にコイル構成材料の 引する研究 宮原 / 20 μA C3	11月3日 (火)			文化の日	
10月14日 (水)	RI生産	RI生産 <u>福村</u> P40MeV/15μA etc、C1,C2,C4		11月4日 (水)	RI	主産	RI4 福 P40MeV etc、C1	生産 村 /15μΑ I,C2,C4
10月15日 (木)	RI生産	光学機器の耐放射線性能に関する研究 北村 P70MeV / ~20 nA C8		11月5日 (木)	RI	主産	RI4 福 P40MeV etc、C1	生産 村 /15μA I,C2,C4
10月16日 (金)	RI生産	光学機器の耐放射線性能に関する研究 北村 P70MeV / ~20 nA C8		11月6日 (金)	RI生産		RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	
10月17日				11月7日				
(日) (日)				(日) (日)				
10月19日 (月)	メンテナンス RI生産	メンテナンス	R&D	11月9日 (月)	メンテ	ナンス	メンテ	ナンス
10月20日 (火)	RI生産	RI 猛 P40MeV etc、C	生産 5 <u>村</u> 7/15μA 1,C2,C4	11月10日 (火)	RIź	主産	シリコン半導体部品 劣化評価 P70Me ³ (のプロトン照射による HIREC V / 1nA 28
10月21日 (水)	RI生産	RI 福 P40MeV etc、C	生産 <u>活村</u> 1,C2,C4	11月11日 (水)	RI	主産	Rð	фD
10月22日 (木)	RI生産	RI生産 福村 P40MeV/15μA etc、C1,C2,C4		11月12日 (木)	RI	主産	RI 福 P40MeV etc、CI	<u></u> <u>村</u> /15μA I,C2,C4
10月23日 (金)	RI生産 メンテナン:	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	メンテナンス (停電準備)	11月13日 (金)	¹ RI生産		人工衛星搭載 シングルイベン P70MeV / (用電子デバイス ·評価試験 中村 10e6-10e7 X8
10月24日		停電		11月14日				
(日)				(上) 11月15日 (日)				

	小型サイ	クロトロン	大型サイ	クロトロン		小型サイ	クロトロン	大型サイ	·クロトロン
月日	午前	午後	午前	午後	月日	午前	午後	午前	午後
11月16日 (月)	メンテナンス	RI生産	メンテナンス	R&D	12月7日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc, C1.C2.C4
11月17日 (火)	RI4	上産	宇宙放射線の 検出器の P70MeV C	荷電粒子成分 開発 内堀 7/10nA 28	12月8日 (火)	RI生産		半導体素子の放射線 JAXA (P70MeV	えの影響に関する研究 久保山) / ~10nA C8
11月18日 (水)	³ RI生産		RI生産 <u>福村</u> P40MeV/15μA etc、C1,C2,C4		12月9日 (水)	RI生産		RI生産 <u>福村</u> P40MeV/15μA etc、C1,C2,C4	
11月19日 (木)	RI4	上産	RI生産 <u>福村</u> P40MeV/15µA etc. C1.C2.C4		12月10日 (木)	RI生産		RI4 福 P40MeV etc、C1	生産 <u>活村</u> 1,C2,C4
11月20日 (金)	RI∕	上産	宇宙放射線の 検出器の P70MeV C	荷電粒子成分 開発 内堀 7 / 10nA 28	12月11日 (金)	RI≜	主産	中性子検出器の開 高 P70Me\ (発とその特性評価 田 / / 50nA C6
11月21日 (土) 11月22日					12月12日 (土) 12月13日				
(日)					(日)				
11月23日 (月)		Timit	勤労感謝の	日	12月14日 (月)	メンテ	ナンス	メンテ	ナンス
11月24日 (火)	RI生産 R&D ^{12月15日} RI生産 P40		RI4 福 P40MeV etc、C1	生産 <u>活村</u> 1,C2,C4					
11月25日 (水)	- RI生産		RI生産 RI生産 P40MeV/15µA etc、C1,C2,C4		12月16日 (水)	RI	上産	RI4 福 P40MeV etc、C1	生産 <u>時村</u> 7/15μA 1,C2,C4
11月26日 (木)	RI生産		中性子検出器の開 高 P10Me ^v C	発とその特性評価 田 V / 1nA 26	12月17日 (木)	RI生産		RI4 福 P40MeV etc、CI	生産 <u>新村</u> 1,C2,C4
11月27日 (金)	RI	上産	RI4 福 P40MeV etc、C1	生産 <u>村</u> /15μA ,C2,C4	12月18日 (金)	RI生産		宇宙放射線粒子の智 影響に関する研 P70Me ⁱ	電子デバイスに与える 「究 JAXA(高島) V / 1nA C6
11月28日					12月19日				
(上) 11月29日 (日)					(上) 12月20日 (日)				
11月30日 (月)	メンテ	ナンス	メンテ	ナンス	12月21日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4
12月1日 (火)	RI	上産	超電導線材ならび 耐放射線性に関 D30MeV C	Cコイル構成材料の する研究 宮原 /20μA 23	12月22日 (火)	RI≛	主産	RI4 福 P40MeV etc、C1	生産 <u>料</u> 7∕15µA 1,C2,C4
12月2日 (水)	RI	上産	RI4 福 P40MeV etc、C1	E産 <u>村</u> /15μA ,C2,C4	12月23日 (水)			天皇誕生日	3
12月3日 (木)	RI	上産	RI4 福 P40MeV etc、C1	±産 村 ∕15μA ,C2,C4	12月24日 (木)	RIź	主産	RI4 福 P40MeV etc、C1	生産 <u>活村</u> 1,C2,C4
12月4日 (金)	RI4	主産	中性子検出器の開 高田 C72Me ⁱ C	発とその特性評価 (佐波) V / 1nA 26	E評価 12月25日 (金) RI生産 P40Me etc、		RI4 福 P40MeV etc、C1	生産 活 <u>村</u> 1,C2,C4	
12月5日 (土)					12月26日 (土)				
12月0日 (日)					12月27日 (日)				

	小型サイ	クロトロン	大型サイ	クロトロン		小型サイ	クロトロン	大型サイ	クロトロン
月日	午前	午後	午前	午後	月日	午前	午後	午前	午後
12月28日 (月)	メンテ	ナンス	メンテ	ナンス	1月18日 (月)	メンテ	ナンス	メンテ	ナンス
12月29日 (火)					1月19日 (火)	RI	主産	重粒子線の生物効: 基礎物理 C ^{4+,6+} 48,72M C	果初期課程における 研究 大澤 4eV / 500 nA 10
12月30日 (水)					1月20日 (水)	RIź	主産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	
12月31日 (木)					1月21日 (木)	RI生産		RI4 福 P40MeV etc、C1	生産 i村 I/C2,C4
1月1日 (金)			元日		1月22日 (金)	RI	主産	宇宙放射線の 検出器の P70MeV	⁴ 荷電粒子成分 開発 内堀 7 / 10nA C8
1月2日					1月23日				
(土) 1月3日 (日)					(土) 1月24日 (日)				
1月4日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	1月25日 (月)	メンテナンス	RI生産	メンテナンス	R&D
1月5日 (火)	RI生産		R1生産 <u>福村</u> P40MeV/15μA etc, C1,C2,C4		1月26日 (火)	RI	主産	RI4 握 P40MeV 	±産 社 1/15μA 1,C2,C4
1月6日 (水)	RI生産		RI生産 中性子検出器の開発とその特性評価 高田(佐波) C 72,144MeV / 30nA C6		1月27日 (水)	RI	主産	宇宙放射線の 検出器の P30MeV (荷電粒子成分 開発 内堀 7 / 10nA 28
1月7日 (木)	RI生産		中性子検出器の開発とその特性評価 高田(佐波) P70MeV / 50nA C6		1月28日 (木)	RI	主産	RI4 福 P40MeV etc、C1	生産 <u>;村</u> 1∕/15μA 1,C2,C4
1月8日 (金)	RI	主産	中性子検出器の開発とその特性評価 高田(佐波) P70MeV / 50nA C6		1月29日 (金)	RI生産		手宙放射線の何電粒子成分 検出器の開発 内堀 P70MeV / 10nA C8	
1月9日					1月30日				
(土) 1月10日 (日)					<u>(土)</u> 1月31日 (日)				
1月11日 (月)			成人の日		2月1日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4
1月12日 (火)	RI	主産	RI4 福 P40MeV etc、C1	生産 村 /15μA ,C2,C4	2月2日 (火)	RI	主産	Rð	èD
1月13日 (水)	RI生産		甲性子検出器の開 高 C144Me ^v C	発とその特性評価 田 V / 10nA 26	2月3日 (水)	RI	主産	RI4 P40MeV etc、CI	±産 <u>汁</u> 1∕15μA 1,C2,C4
1月14日 (木)	RI生産		中性子検出器の開発とその特性評価 高田(佐々木) He40MeV / 1000pps C6		2月4日 (木)	RIź	主産	RI 握 P40MeV etc、CI	生産 浜村 1,C2,C4
1月15日 (金)	RI	主産	中性子検出器の開 高田(C120MeV C	発とその特性評価 左々木) / 1000pps 26	2月5日 (金)	RI	主産	宇宙放射線の 検出器の P70Me\ (荷電粒子成分 開発 内堀 7 / 10nA 28
1月16日 (土)					2月6日 (土)				
1月17日 (日)					2月7日 (日)				

	小型サイ	クロトロン	大型サイ	クロトロン	小型サイクロトロン		大型サイクロトロン		
月日	午前	午後	午前	午後	月日	午前	午後	午前	午後
2月8日 (月)	メンテナンス	RI生産	メンテナンス	R&D	3月1日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4
2月9日 (火)	RI生	三産	RI4 <u>福</u> P40MeV etc、C1	İ産 村 /15μA .,C2,C4	3月2日 (火)	RI	生産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	
2月10日 (水)	RI生	三産	RI <u>4</u> 福 P40MeV etc、C1	±産 <u>村</u> ∕15μA .,C2,C4	3月3日 (水)	RI生産		RI生 福 P40MeV etc、C1	±産 <u>村</u> ∕15μA ,C2,C4
2月11日 (木)			建国記念の日		3月4日 (木)	RI生產		宇宙放射線粒子の電 影響に関する研 P70Me ^v C	電子デバイスに与える 究 JAXA(高島) √/1nA %
2月12日 (金)	RI生産		RI4 福 P40MeV etc、C1	生産 <u>村</u> /15μA .,C2,C4	3月5日 (金)	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	メンテナンス
2月13日					3月6日				
(土) 2月14日 (日)					(土) 3月7日 (日)				
2月15日 (月)	メンテナンス	RI生産	メンテナンス	RI生産 <u>福村</u> P40MeV/15µA 	3月8日 (月)		長	期メンテナ	ンス
2月16日 (火)	RI生産		RI生産		3月9日 (火)		長期メンテナンス		
2月17日 (水)	RI生産		RI4 福 P40MeV etc、C1	主産 村 √15μA .,C2,C4	3月10日 (水)		長	期メンテナ	ンス
2月18日 (木)	RI生	三産	光部品の放射線の影響に関する研究 JAXA(石島) P18-70MeV / ~1E10pps C8		3月11日 (木)		長	期メンテナ	ンス
2月19日 (金)	RI生	三産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4		3月12日 (金)		長	期メンテナ	ンス
2月20日		全直	所停電(9:30~	9:40)	3月13日				
(土) 2月21日 (日)		,			(土) 3月14日 (日)				
2月22日 (月)	メンテ・	ナンス	メンテ	ナンス	3月15日 (月)		長	期メンテナ	ンス
2月23日 (火)	RI生	三産	RI4 福 P40MeV 	挂産 村 /15μA ,C2,C4	3月16日 (火)	長期メンテナンス		ンス	
2月24日 (水)	RI生	三産	R14 福 P40MeV etc、C1	±座 村 /15μA .,C2,C4	3月17日 (水)		長	期メンテナ	ンス
2月25日 (木)	RI生	三産	RI4 福 P40MeV etc、C1	±産 村 ∕15μA ,C2,C4	3月18日 (木)		長	期メンテナ	ンス
2月26日 (金)	RI生	三産	光部品の放射線の JAXA P18-70MeV C	影響に関する研究 (石島) / ~1E10pps C8	3月19日 (金)		長	期メンテナ	ンス
2月27日 (土)					3月20日 (土)				
2月28日 (日)					3月21日 (日)				

	小型サイクロトロン	大型サイクロトロン		小型サイクロトロン 大型サイクロトロン
月日	午前午後	午前午後	月日	午前午後 午前 午後
3月22日 (月)	長	期メンテナンス	4月12日 (月)	来期マシンタイム
3月23日 (火)	長	期メンテナンス	4月13日 (火)	来期マシンタイム
3月24日 (水)	長	期メンテナンス	4月14日 (水)	来期マシンタイム
3月25日 (木)	長	期メンテナンス	4月15日 (木)	来期マシンタイム
3月26日 (金)	長	期メンテナンス	4月16日 (金)	来期マシンタイム
3月27日			4月17日	
(土) 3月28日 (日)			(土) 4月18日 (日)	
3月29日 (月)	メンテナンス RI生産	R&D	4月19日 (月)	来期マシンタイム
3月30日 (火)	RI生産	宇宙放射線の荷電粒子成分 検出器の開発 内堀 P30MeV / 10nA C8	4月20日 (火)	来期マシンタイム
3月31日 (水)	RI生産	RI生産 <u>福村</u> P40MeV/15µA etc、C1,C2,C4	4月21日 (水)	来期マシンタイム
4月1日 (木)	来	期マシンタイム	4月22日 (木)	来期マシンタイム
4月2日 (金)	来	期マシンタイム	4月23日 (金)	来期マシンタイム
4月3日			4月24日	
(上) 4月4日 (日)			(上) 4月25日 (日)	
4月5日 (月)	来	期マシンタイム	4月26日 (月)	来期マシンタイム
4月6日 (火)	来	期マシンタイム	4月27日 (火)	来期マシンタイム
4月7日 (水)	来	期マシンタイム	4月28日 (水)	来期マシンタイム
4月8日 (木)	来	期マシンタイム	4月29日 (木)	来期マシンタイム
4月9日 (金)	来	期マシンタイム	4月30日 (金)	来期マシンタイム
4月10日 (土)			5月1日 (土)	
4月11日 (日)			5月2日 (日)	

平成21年度サイクロトロン利用報告書

平成22年7月刊行

編 集	独立行政法人 放射線医学総合研究所
	重粒子医科学センター 物理工学部
郵便番号	263-8555
住 所	千葉県千葉市稲毛区穴川4丁目9番1号
連絡先	独立行政法人 放射線医学総合研究所
	重粒子医科学センター 物理工学部
	TEL:043-206-3173 FAX:043-287-6146
	メールアドレス:cyc_ope@nirs.go.jp
ホームページ	http://www.nirs.go.jp/