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Abstract

Ripple content of the HIMAC synchrotron is below ppm level at rated
excitation. This performance is mainly due to taking the measures of the
common mode fipplc and spike by the bridge resistor, the separate
connection of the coil and the mode filter system. In presence of the common
mode, where the ground line plays an essential role, the circuit is described
by the three inputs and three outputs and is not easy to evaluate in this
form. A mode separation is possible in case of a symmetric configuration
with respect to the ground line. By the mode separation, this circuit can be
reduced to a decoupled circuit of the normal mode and the common mode of
two inputs and two outputs. With this decoupling, simple formulae are
derived both in the frequency domain for the analysis of the ripple and in
the time domain for the analysis of the spike current. This analysis forms the
bases of the understanding of the low ripple performance.

I. Introduction

HIMAC synchrotron is stable and reproducible. Since the commissioning,
the power supply of the HIMAC shows low ripple contents[1] and has been
improved by an order of magnitude by now[2]. In particular, ripple content
at the flat top of the trapezoidal current is small. Relative ripple current of
the Bending magnet power supply and the Focussing Quadrupole magnet
power supply is 0.2 to 0.3 ppm in RMS when they are normalized by the
rated full current [2,3], which are estimated from the calculation of the
voltage ripple and the admittance of the load. Admittance is measured and
calculated based on the model of the six terminal ladder circuit. High
performance is due to new approaches taken in the HIMAC synchrotron
which are,

(i) mode concept of the normal and common both in the power supply and



the load,

(ii) analytical formulation for the mode analysis,

(iii) finding of a performance limiting factor in existing synchrotrons and
finding appropriate means against it,

(iv) finding of the resonance between the power supply and the load in the
modes and taking appropriate measures.

We started from the proposition that the load of the synchrotron power
supply is a ladder circuit where it is a cascaded circuit of a repeated cell of
the LCR element. Ladder circuit is originally introduced in the CPS design[4]
by Regenstreif and later in the SPS[S] by Van Der Meer as a transmission line
circuit. Characteristic feature of this ladder circuit is the capacitances
between the excitation coil and the iron yoke of the magnet. Iron yokes are
at the earth potential, and the ladder circuit forms the six terminal circuit of
three inputs and three outputs[6,7,8]. In the HIMAC, the ground line is
running along the ring with the power line so that the load is modeled by the
six terminal circuit without ambiguity. In this model, the outgoing current I
from the power supply is not identical to the incoming current J from the
load, which contrasts with the existing transmission line type models
[9,10,11,12,13,14,15]. Difference current I-J flows through the ground line.
When one defines the voltage from the ground line to the positive power line
as U, and the voltage from the negative power line to the ground line as V,
one can define two sets of voltage and current, namely U+V, I+J, U-V and I-J.
Former set is the normal mode and the latter set is the common mode.
Analysis of this six terminal circuit has not been domne in the past. A
computer simulation was avoided as it is time consuming and it has a
shortcoming of grasping a physical image of the problem. It was found that
in general the mode separation is possible by eigenvalue problem method. In
particular, when the elements connected to the positive power line and the
elements connected to the negative power line are located identically, it can
be shown that the normal mode and common mode are decoupled. Owing to
the finding of this mode decoupling, the model of six terminal circuit can be
treated as the four terminal circuit and the standard theory can be applied
[16]. Decoupled formulation is simple yet powerful to fully describe the
resonant property of the ladder circuit of both the normal and the common
modes, and the most of the quantities can be expressed by simple closed
expressions with variables of complex number. The author found the
analytic solution in the time domain by inverse Laplace transform by



decomposing into a partial fractional expression or equivalently by using the
Heaviside theorem. Spike is described as a transient response of the ladder
circuit. This analytical treatment helps to understand the nature of the
ladder circuit. To verify the validity of the present model, the frequency
characteristic of the admittance of the magnet string was measured and was
confirmed to be valid[2]. The resonance is observed in the admittance.

Three major actions are taken to cope with the resonance:

(i) Bridge resistors were connected across the coil in parallel to damp the
resonance. In the time domain, this resistor changes oscillatory spike to
exponentially decaying spike whose width is shortened. This resistor also
works to reduce logical ripples whose frequencies are beyond 1200 Hz by
bypassing the current.

(ii) Upper and the lower coils are separately connected to realize higher
symmetric configuration. In separate connection, the common mode currents
of opposite sign generate canceled magnetic field. when the hardware is not
perfectly made the normal mode and the common mode mixes. Every
hardware can not be made perfect. Mode decoupling is not perfect and the
measure against the common mode is preferable.

(iii) Common mode static filter is added. This filter is of great help to reduce
the common mode ripple beyond the fundamental logical ripple.

In this way, from the very beginning of the commissioning, the HIMAC
synchrotron is free from the logical ripple and spike except the ripple
frequencies of 50 Hz and 100 Hz[1,2]. 50 Hz a nd 100 Hz ripples are the
frequencies of illogical ripple that cannot be reduced by the static filter, by
the bridge resistor. Active filter suppresses thel00 Hz ripple. 50 Hz ripple
could be reduced by replacement of DCCI by other DCCT of better
performance[2]. Final ripple content of the focusing Quadrupole and Bending
magnet was well below ppm level[2]. In the following, the analysis of the
HIMAC synchrotron is presented.

II. Mode Analysis of the Ladder Circuit

Excitation coils of the magnet string are divided into upper and lower coil
for the Bending magnet and Quadrupole magnet as shown in Figurel. For the
Quadrupole magnet with four poles, there are several ways of combinations
to separate them into two parts. The upper and lower coils of the HIMAC
Quadrupole are grouped separately from a view point of simple connection.



It is possible and better to group the coils of north poles(N) and south
poles(S) although the way of the connection is more complicated. Impedance
of the common mode depends on the way how they are connected. The
common mode impedance of grouping into N-N poles and S-S poles in
Quadrupole is much smaller than the inductance of upper and lower coils as
the flux due to the common mode voltage cancels each other. In the HIMAC
Bending magnet, the common mode impedance is less than one percent of
that of the normal mode and in the Quadrupole magnet it is half of the
normal mode.
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FIGURE 1. Equivalent circuit of the HIMAC six terminal ladder circuit.

The upper and lower coils are magnetically coupled through magnet yoke.
N=12 for Quadrupole magnet and N=13 for Bending magnet. The solid line
represents the real physical line and the dotted line represents the line of
stray capacitance.

A unit of magnet with a stray capacitance can be represented by a six
terminal circuit of three inputs and three outputs. For the ease of the
analysis, this unit cell is treated as m type cell. Voltage across the earth and
the upper coil and the voltage across the lower coil to the earth of the n-th
cell is designated as U, and V, with a suffix n, where n represents the
location of the cell counted from the end of the magnet as shown in Figure 1.
Cable currents flowing in the upper coil (the P line) and the lower coil (the N
line) are designated as I, and J,. Elements of "symmetric" nature such as
magnet, reactor and capacitor with respect to the ground line leads to a
separation of a coupled mode into decoupled mode to a first order
approximation. They are the normal mode and the common mode. The
normal mode is designated as (Up+Vy) and (I5+Jy) and the common mode is
designated as (Up-Vy) and (In-Ju). Although mathematically, the mode



separation is possible even for the asymmetric circuit by finding an
eigenvalue and an eigenvector, a symmetric circuit is much easier to handle
and to find a remedy for suppressing harmful ripple and spike.

Mode separation enables us to treat the six terminal circuit into well
known four terminal circuit. A relation of the input and the output voltages
and those of the currents are expressed by two by two transfer matrixes for
the decoupled four terminal circuit. Expressing the elements of the matrix by
hyperbolic sinusoidal function, one can use de Moivre theorem for repeated
cells. In reality, the symmetry assumed is not perfect and is broken to some
extent due to an imbalance of the capacitances or the inductances of the
upper and the lower coils. This asymmetry causes the mode mixing.

End of the normal mode circuit, where the main excitation current of the
magnet flows, is shorted. Several choices of the termination at the end for
the common mode are possible namely, open, short and termination with
impedance. We chose an open-ended condition for the HIMAC.

Primary objective of this analysis is to derive simple expressions of the
normal and common mode to make an evaluation of the ripple and the spike
current in the HIMAC. The mode admittance of the ladder circuit is
expressed by a product of the characteristic admittance Yop, which is an
inverse of the characteristic impedance Z,, defined by the eq.(2-34) and (2-
35), and a hyperbolic sinusoidal function where the subscript p=n stands for
the normal mode and the p=c stands for the common mode. The following
equations will be derived and evaluated later as eqs.(2-41)' and (2-42)',

V,(N)=Y_, coth(NG ) (2-1)
ye(N) = Yoctanh(Ng mc) (2'2)

where N is the number of cell and G, is the phase advance per cell and is
expressed by eqs. (2-33). The formulae of the common mode depend on the
terminal condition at the end of the magnet string. The formulae of the
normal mode are the same for any type of magnet string. Equations (2-1)
and (2-2) form the bases of the present analysis in the frequency and the
time domain.

The equations above show at the output of the power supply that the
existence of N parallel and series resonances. The series resonance is excited
when the denominator of the hyperbolic tangent and hyperbolic cotangent



function takes the minimum value and the parallel resonance is excited
when the numerator of these functions takes the minimum value. The
amplitude of the admittance at the resonant frequency depends upon a
magnitude of the resistance in parallel to the inductance. Parallel resistance
is not infinite even when the bridge resistor is not connected due to an ac
loss of the magnet. Resonance of the lowest frequency appears as a parallel
resonance for the normal mode admittance. The lowest resonant frequency
of the common mode appears as the series resonance. In many synchrotrons,
where the midpoint of the magnet string is floated, the common mode
resonance is of more problem than the normal mode resonance. As they do
not provide the common mode low pass filter, the amplitude of the common
mode voltage ripple is larger than that of the normal mode voltage, and this
resulted in a non-negligible amount of ripple current in the load.

From a comparison with a measurement of the admittance of the actual
load, it is better to introduce a resistor of several kQ in parallel with the
excitation coil in the model to have good experimental fitting between the
model and the observation. This resistance is interpreted as an equivalent
AC loss of the magnet. With this parallel resistor, the amplitude of the
resonance of higher frequency is more damped than that of lower frequency.
The magnitude of the capacitance to the ground is about 1.8 nF which is
estimated from the comparison of a small signal measurement. The stray
capacitance and the bridge resistor were also conceived by Snowdon for the
Fermilab main ring magnet but not as the ladder circuit[22]. In the present
model, the magnitude of the inductance, resistance, capacitance are treated
as constant for simplicity. In reality, they may vary with frequency or
current level. This approximation causes the deviation between the
observation and the estimated value but essential property is still held to be
true.

In Figure 3, the calculated admittance of the Focussing Quadrupole of the
HIMAC is shown with no external bridge resistor. Throughout this article, the
calculation is performed using Mathcad[21]. Figure 4 shows the calculated
admittance of the Quadrupole with the external bridge resistor of 20 Q. As
the frequency increases, the resonance is gradually damped and approaches
to a constant value, which is a characteristic impedance of the ladder circuit
as shown in Figure 3. In the simplest approximation of the single lumped
element of the inductance and the capacitance, the normal mode admittance
of the magnet load decreases in proportion to the increasing frequency. In



this case, the common mode admittance increases infinitely with increasing
frequency. The measured admittance in a small signal excitation using four
channel FFT analyzer and a power amplifier and the calculation based on
this model roughly agrees[2]. These observed admittance are used to
calculate the current in the load from applied voltage to the load for
frequencies higher than 1200 Hz.

[yncf.p) | [yn( £.20) |

[ye(f.p) | [ye(£.20) |

0.01 e T 0.01 T —
) 0.001 = —
- 110 I

g

by 110-5'— - -T

-t~ " e

1°10 - 1°10 .
100 1000 110" 1°10° 100 1000  1°10° 1°10

-

f
FIGURE 3&4. The normal and common mode admittance(calculated) of the
HIMAC Quadrupole magnet without the bridge resistor(left) and with bridge
resistor(right). p= 6 kQ(equivalent resistance,Figure3). The stray capacitance

of 1.8 nF. The resistance of the bridge resistor is p=20 Q(Figure4).
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FIGURE 5. The normal and common mode admittance (calculated) of the
HIMAC Quadrupole magnet without the bridge resistor. p=6 MQ is assumed
to emphasize the resonance.

With an installment of a bridge resistor, p=20Q for the Quadrupole and
100 Q@ for the dipole, in parallel to the coil, the resonance is completely
damped as shown in Figure 4. Figure 5 shows the calculated admittance
when the external bridge resistor is high to emphasize the resonance. Three
figures above shows a marked contrast of the effect of the bridge resistor.



The magnitude of the bridge resistor chosen is less than that required to
simply damp the resonance. This is because the bridge resistor is used to
bypass the logical ripple in addition to damping the resonance of a thyristor
spike. |

In the following, we will derive the equations above to evaluate variables
such as the admittance, voltage, current etc.. Although the evaluation is
performed for the HIMAC parameter, the formulae can be applied to any
other synchrotrons. We assume the cell of the six terminal ladder circuit is
composed of two m type circuits of different elements located upper and
lower with respect to the ground line as shown in Figure 6. The upper circuit
corresponds to the upper coil and the lower circuit corresponds to the lower
coil in actual magnet string. Parallel and series resistor could be included in
the impedance Z; . Advantage of employing the =x type circuits is in its
simple treatment in the analysis: Relevant quantities such as voltage,
current, impedance or admittance of any ladder circuit of N cells can be
expressed by a combination of complex sinusoidal function or hyperbolic
sinusoidal function. The parameters of magnet string of any N cells are
expressed by simple analytic expressions in a closed form. This modal
expression also enables us to construct analytic expressions of a transient
response in time domain by using the Heaviside expansion theorem.

I4 )

J1 Ja
FIGURE 6. Model circuit of the cell of the six terminal circuit in a presence of
upper and lower asymmetry. The impedance of the upper coil Z; and the
lower coil Z, are coupled through the iron yoke of the same magnet to a

separate connection.



Ladder circuit consists of a repeated circuit of cascadely connected cells of
lumped elements. Cell consists of self inductance L; and L, and mutual
inductance Mi2 and M3y, and resistance r; and ro of the excitation coil and
capacitance C; and G assumed to be connected in parallel between the iron
core and the coil. Here Zj=sLj+ri1,Zp=sL>+rp and Y;=sC;, Y=sC;. Additional
resistor p parallel to the coil is also incorporated in the cell. This resistor p
represents the bridge resistor. In absence of the bridge resistor, p is still
necessary in the model to take into account an equivalent loss of the magnet
which is deterimined experimentally. '

Capacitance to the ground yoke can be treated as distributed element
rather than concentrated element. It may not be uniformly distributed along
the direction of the multi-layered pancake coil. Furthermore, the inductance
and the resistance are frequency dependent. To take into account all these
details may be possible at a cost of complexity. The choice of a model
depends what should one clarify by analyzing the model. If only the DC
characteristic or the low frequency illogical ripple is required to be
evaluated, the model of the concentrated circuit without the capacitance is
enough.Snowdon conceived this capacitor once but neglected in his
calculation as he is not interested in high frequency ripple or spike[22]. In
reality,the thyristor spike with frequency beyond a few kHz modulated by
lower illogical ripple is observed. The model that can allow for treating the
ignition spikes and resonances in the power supply system is required.

Transmission line model[9,10,11,12,13,14,15] is capable of treating the
circuit to very high frequency. On the other hand, it is inconvenient to mix a
lumped element of the bridge resistor with a distributed circuit. We chose
the m-type cell model of the lumped elements of constant magnitude, which
is independent on the frequency and the level of the excitation to avoid
unnecessary complexity of the analysis without a loss of essential elements.

General Formulation

We consider a model circuit of the cell of the six terminal circuit in case of
upper and lower asymmetry as shown in Figure 6. The impedance of the
upper coil Z; and the lower coil Z; are coupled through the iron yoke of the
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same magnet. Let us designate the relevant parameter of the voltage and
the current above the earth line as U and I and below as V and J with a
suffix of the input and output designated as 1 and 2. Applying the Kirchhoff
law, we have following equations to a first order approximation,

U,=Z,1,-U,Y)+Z,,,J,-V,Y,)+U, (2-3)
Vi=Z,(J,-V\Y,))+ Zy,, (I, - U, Y )+ V, (2-4)
I,=1,-U,Y,+U,Y, (2-5)
I,=1,-V,Y,-V,Y,. (2-6)

One then can write down the equations in a following form,

u,] | 1+Z,Y, Z, 2,Y, Zy U,

I, | [Y.(C+2,Y,) 1+Z,Y, Z,Y,Y, Z,Y, ||L,

v,|T|  ZwY, Z,  1+2Y, Z, ||v, (2-7)
1] L Iy Y, Y, ZwY, Y,2+Z,Y,) 1+Z,Y,] Rry

with Z,=Z,, =sM,, =Z,,=sM,, and "s" is a Laplace differential operator. Non-

zero mutual inductance Zy is due to the magnetic coupling through the yoke.
This is a characteristic feature of a separate connection of the upper and the
lower coil of the HIMAC magnet. Apparently the voltage and the current of
the = circuit of the upper coil and the lower coils are coupled by the iron
yoke in separate connected cell. The analysis needs the manipulation of four
by four matrix in this form. By intuition, eq.(2-7) is tedious to solve as one
needs to solve by four by four matrix. This equation can be transformed into
the following expression of the normal mode and the common mode
equations of the volitage and the current flowing in the P and N lines and the
ground lines. This transformation can be devised logically from the
cigenvalue method as shown in later section.

U, +V, U,+V,

l,+J L+dJ

1T Y =T 2 (2_ 8)
U1'V1 Uz'vz

l,-J, l,-Jd,
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where the transfer matrix T is written as,

1+
[Z1+ZM]Y1' 1 :
1 [Z1+ZM]Y1+ l[21"'2'(_»"'221\11] l _[21'22]
HERS AN 2zl i
Y,2+Z,Y, ;
RARCNOA 1[(2 +;M]Y+ 1242+ B el 1 [[20-2]Y;-
T= 2|Y,2+2Z,Y, Y [212+ZM]Y 2 Yz[2+22Y2+ZMY1] 2 [Z2_ZM]Y2 (2-9)
+Z,Y)) :
[Z ZM]Y 1+
1 17 17 1 1
1 —(2,-2,] 1[[Z,-Z]Y,+ —[Z,+2,-22,]
2|[2,2,]Y, 2 Al A
1 Y1[2+Z1Y1'ZMY2]' 1 [21+ZM]Y‘- 1 Y1[2+Z1Y1-ZMY2]+ [ZI;M]Y"'
- — — 1 17 1
2in2zYz] | 2| [z 2] 212+ 22N 5 g 5y ||

Due to a hardware imperfection, difference in magnitude of the inductance
and the capacitance between the upper and the lower coils is inevitable and

is expressed by AL and ACas depicted in Figure 7.

C+AC

FIGURE 6. Model circuit of the asymmetric six terminal circuit.
The inductance and the capacitance are assumed to be slightly
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different between the upper and the lower coils by AL and AC.

Then eq.(2-9) is reduced to eq. (2-10).

[ 1 s*ALC+ 1
1+sC[s(L+M)+1] sS(L+M)+r1 D) 7 SAL
s[s(L+M)+r]AC
et : jo i/ chesicl] ] A
sC 1+[s(L+M)+r|sC —— )
[s(L+M)+r]sC 2 2 |-
| +s°ALC (L-Mac
s2| ALC+ 1
5 5 SAL 1+sC[s(L-M)+r1] S(L-M)+1
(L-MAC
AC 2 2
b s“"ALC+ 2
_si(_l_ C [1+s%LC] % C[[ @ M;+ ! C} 1+[s(L-M)+r1]sC
s(L— TS
e ?ALC s[s(L+M)+r]AC

(2-10)
where Zy=sL+r, Y1=8C, Y;-Y2=sACand 7Z;-Z>=sAL are assumed.

Every component in the transfer matrix T is non-zero and has finite value.
The circuit expressed by four by four matrixes is known in a microstrip
circuit of two signal lines and one earth line, and has been extensively
studied in the field of the microwave theory where the two modes are called
"even mode" and "odd mode" [19]. The pair of the voltage and current of
(U,I) and (V,J) lead to two modes of the sum and the difference. The non-
zero component of the matrix means that the two modes are effected each
other. From the eqs.(2-10), when AL= AC=0, which is the case of a symmetry,
one can easily show that the normal mode equations and the common mode
equations are independent each other. Even in an absence of the symmetry,
there is a general method to decouple the mode known as "eigenvalue
problem". In order to extend the mode analysis of symmetry into an
asymmetric configuration, how to decouple the mode is shown in the
following

Gene.ral Treatment of Mode Separation

Let us consider an asymmetric six terminal circuit as shown in Figure 7.
For convenience, we use the transmission line equation. The transmission

12



line circuit is treated by taking L, Cand r to be per unit length of the ladder
circuit wherecas in the ladder circuit they are treated as per unit magnet.

| l+dl
— —>
'y A
u Y,'dz Y;p'dz U+dU
A L A
v V+dV
| Y,'dz +d
- <+«
J J+dJ

FIGURE 7. Equivalent circuit of the six terminal transmission line
circuit per unit length. Prime denotes quantities per unit length.

(i) Asymmetric Transfer Matrix
Applying the Kirchhoff law in the circuit of Figure 8, we have following

equations,
U=2,1dz+Z,, Tdz+ U +dU (2-11)
V=2,1dz+Z,1dz+ V+dV (2-12)
[={(U+dU)Y,' +(U+V+dU+dV)Y,,'}dz+I+dI (2-13)
I={(V+dV)Y,' +(U+V+dU+dV)Y,,' }dz+JT +dJ (2-14)

To the first order approximation, we have the following coupled transmission
equations for voltage of Uand V,

2
‘222 =AU + BV (2-15)
2

32Z=CU+DV (2-16)

where A, B, Cand D are assumed to be uniform along the coordinate z. They
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are expressed by the following equations,

A=Z.'Y,'+2Y,'(Z,"' +Z,,") (2-17)
B=Z7,'Y,'+2Y,'(Z,' +Z,,') (2-18)
C=Z,Y,'"+2(Z,' +Y,,')Y,,' (2-19)
D=Z,'Y,'+2(Z,' +Y,')Y,,’ (2-20)

where again the prime denotes the impedance and the admittance per unit
length. These equations are valid for the transmission line model and for the
ladder circuit model; "z" is regarded as a coordinate along a propagation
direction of the voltage wave for the former case and a discrete coordinate
for the ladder circuit. Similar equation holds for the current I and J. Two set
of equations show a presence of two modes of voltage and current in the
magnet string. This formulation could be extended to N mode equations of a
system of (N-1) signal lines and a single ground line. As is shown by the
equations, voltage U and V are coupled. These coupled voltage propagates
down the magnets. It is tedious to solve two simultaneous second order
differential equations. There is an established method to solve this problem
known as an eigenvalue problem. In eigenvalue problem, mode-decoupling
is done by finding a proper transformation matrix. What one need is to
transform a matrix of,

A B
M= [c D} (2-21)
to a matrix M' designated as
a0
M'=[0 d} (2-22)

i.d., the diagonalization of the transfer matrix M is required.
After some manipulations, one can find, multiplication of a following matrix
P from the right and P-1 from the left to M:

M'=P-1 MP (2-23)
with
L e
P= q (2-24)
B
where q is expressed as,
q=>(A-Dz:+(A-D)’+4BC) . (2-25)  The

14



mode separation is possible by the transformation given above. This
transformation enables us to find the analytical expression in a closed form
in case of an asymmetric configuration. In the HIMAC, the magnitude and
the location of every possible element are set to be the same as possible as
we can with respect to the earth line defined as "symmetry".In this case,
considerable simplification is possible as shown in the following.

(ii) Symmetric Transfer Matrix
In a symmetric case, where Z;3 and Z;; are equal, one obtains for M/,

'[1 1}
M=, ) - (2-26)

Equation (2-26) shows two modes of coupled voltage is reduced to the
decoupled sum and difference of the voltage. This is defined as the normal
and common mode. In this case AL=AC=0. Then, eq.(2-9) is reduced to,

(U, +V,] [ 1+Z_Y_ Z_. 0 0 N[U,+V,]

I+1] Y..R+Z_ Y ) 1+Z Y. 0 0 L+]J

17 _ 2792 (2-27)
U,-V, 0 0 1+Z_ Y, Z,. U,-V,
R 0 0 Y, 2+Z,. Y, ) 1+Z Y || ,-T, |

where Zmn, Zmc,Ymn, and Ype, mean the normal mode impedance, the common
mode impedance, the normal mode admittance and the common mode
admittance defined as,

NS S S (228
sL, p s(L+M)+r p

T TTTT T (2:29)
sL, P s(L-M)+r )

Y, -sC,=sC (2-30)

Y, =sC.=sC (2-31)

where p represents the bridge resistor or the equivalent resistance due to
the ac loss of the magnet. In the HIMAC, the common mode inductance of the
Bending magnet is less than 1% of the normal mode inductance. The common
mode inductance of the Quadrupole magnet is about half of the normal mode

15



inductance.

Due to the transformation, the original coupled mode of the variables of
(U, D), (V,]) isreduced to the normal and common mode of (U+V, I+]), (U-V,
I-J). The unit cell thus is expressed in a unified fashion as shown in Figure
9, where up stands for UV, and i, stands for [+J, with p=n for the normal
mode and p=c for the common mode.

P
N\ NN
ip(n) ip(n-1)
> ——
LtM r
up(n) :L_‘ C c —— up(n-1)
ip(n) ip(n-1)

FIGURE 9. Four terminal m type equivalent circuit reduced from the six
terminal circuit. For normal mode(p=n) inductance and capacitance are L+M
and C. For common mode(p=c), they are L-M and C.

One can write down the decoupled equations of each mode. One considers
the four terminal ladder circuits of N cascaded ladder circuit of n-type. The
number of the cells is counted from the end of the magnet string, namely
the N-th magnet is located at the input of the magnet string. It is assumed
that the end of the Positive and Negative line is terminated by the
impedance Zg to the ecarth line in order not to lose a generality. Expressing
the voltage and the current as up(0) and ip(0) at the end of the furthermost
magnet and input as up(N) and ip(N) we can define following equation,

u,(N)
i,N)

1+2,. Y, Z N u,(0)
Yep [2+2,,Y ] 1+Z, Y, | |i,(0)
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cosh(N¢_) Z,, sinh(NGump) [up(ﬂ)}
(2-32)

~ | sinh(Ng,,.) i,(0)

7 cosh(Ng,,. )

Op

where T, and Zyp are the transfer constant and the characteristic impedance

defined as,

coshC, =1+Z_ Y, (2-33)
sinh Y __ sinh
Y,, = zl - ngp RELL (2-34)
op mp coshi;mp—l
7 1
_ mp 2 -
o\ (2-33)

where Zpp, Ymp are the impedance and the admittance of the cell of the
normal mode(p=n) and the common mode(p=c). The characteristic impedance
of the admittance of the ladder circuit slightly differs from those of the
transmission line circuit by factor Zy,Yyp. This factor is small at a frequency
range below the resonance frequency. In the case of the normal and the
common mode, the normal and the common mode impedance are expressed
with suffixes with n and c and defined by (U,V) and (I,]) are,

Z, = Ii:JV (2-36)

i -
z;%{% (2-37)
Y- (2-37)’

As is shown by the definition of the common mode admittance, the common
mode inductance is very small, when the upper and the lower coils are
separately connected. The magnitude is the order of the imperfection of the
inductance of the upper coil and the lower coil.

Terminating the end of the magnet string with Zg,,
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u (0)=2,,i,(0) - (2-38)
Voltage of the n-th magnet is,

Zg,cosh(ng,, )+ Z,,sinh(ng )

u (n)=u_(N) . (2-39)
’ " 7 Zgoosh(Ng, )+ Z, sinh(Ng,, )
The input impedance 2>, of the magnet string is thus,
u_(N) Zg cosh(Ng_ )+Z, sinh(Ng_ )
2P(N)= iP(N) - o Ep . p Op mp (2_40)
P Zg,sinh(Ng,, ) + Z,,cosh(Ng,, )

These equations above are valid for the normal and the common mode. With
the termination condition of Zgp=0 at the end, the voltage is zero, and the
normal mode impedance 2>,and the admittance )/, are written as,

2n=2n(N)=Z0ntanh(NGmn) (2-41)

V., =V,(N)=Y,,coth(Ng,,)- (2-41)'

Eq.(2-1) is derived from the eq.(2-41). We have the open-ended condition,
Z.=» , the current is zero, at the end for the common mode in the HIMAC.

Thus, the common mode input impedance 2>.and the admittance )/ of the

magnet string is,
= == (N)=Z,ccoth(Ne,,) (2-42)
V.=V .(N)=Y,tanh(Ng,) . (2-42)

Eqs.(2-1) and (2-2) or Eqs.(2-41)' and (2-42)' are the most basic equations in
this analysis. When it is seen from the power supply side, any magnet string
with repeated nature can be described by these simple equations.

18



[ynC£.p) | Jyc£.p) |

[yn( £.300) | Jyc( £.300) |
lyn(£.20) | lye( £.20) |
0.01 . . 0.01 T 1
0.001 F - 0.001 -
N Y S
"l W 1
1410 F - 19107 -
141070 ' L 141070 .
100 1000  1°10° 1°10 100 1000  1°10" 1°10
F f

FIGURE10 & 11. Normal mode and common mode admittance of the HIMAC
Quadrupole magnet string for the bridge resistor of p=6 kQ,300Q and 20 Q.

As a summary of the voltage and the current of the n-th cell for the normal
and the common mode, one can write,

) (O eend) (2-43)
sinh(NG_)

i) =i, (N)ﬁj‘““mm:—nﬁiﬁ (2-44)

uc(n)=uc<N>i% (2-45)

ic(n)=uc<N)§$hhg——Z“;—))=ucm)Ym:—zh£—§; (2-46)

where the suffix n and ¢ stand for the normal and common mode. Using the
equations above, the voltage and the current are calculated and plotted in
the following.

Frequency Characteristics of Voltage

Frequency characteristic of the voltages of the typical cell of the normal
and the common mode are shown in Figure 12 and 13 without and with the
bridge resistor(p=20Q). The resonance is shown to be completely removed by

the bridge resistor.
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10 . 10 T

lvac1.0] I/AU\,\N lvac1.6)] 1

Jvn( 12, )] o lvn(12. £)] o1k

1 1
0.01 0.01
0 15010 310 0 15010 310
£ £

FIGURE 12. Normal mode frequency characteristic of the voltages of the
typical cell(n=1 and 12) of without((p=6 kQ, left) and with((p=20Q, right) the

bridge resistor. The vn(n,f) stands for the voltage of n-th cell with the
frequency of f.

100 . 10 .
Ive(1.£)] 1O ™ [ve(1.6)]
t
Ive(12.6)] /\ [ve(12. )]

-

\ I

0.1 0.1
0 15010 3°10° 0 15010% 3010
£ £

FIGURE 13. Common mode frequency characteristic of the voltages of the
typical cell(n=1 and 12) of without((p=6 kQ, left) and with((p=20Q, right) the

bridge resistor. The vc(n,f) stands for the voltage of n-th cell with the
frequency of f.

The current flowing in the coil of the magnet inp(n) of n-th cell for both

mode is obtained by dividing the applied voltage of the magnet by the
impedance of the respective coil Zyp of the magnet. The magnet coil current
imp(n) is written as,

u,(N) [Zg, [ coshng,,,) - cosh [ (n- 1)g,, ]| + Z, [ sinh(ng,,,) - sinh (- 1)5,,,]|]
e Z oy [ZEpcosh(Ngmp) +Z,, sinh(Ngmp)}

(2-47)
Eq.(2-47) is further simplified to,
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i u,(N) [[ngsinh [(n B % Vo ]+ ZOPCOSh(n_% )va] sinh(% gmp)]
fop() =27 | Z,, cosh(Ns,,,) + Zq, sinh(Ng,, ) | :

(2-48)
The normal mode and the common mode current in the coil of the magnet in
the HIMAC are thus written as,

0,00 | 0= 5 3. |

i - 2-49
fan(0) =2 v (2-49)
u (N) sinh (n—%);m]sinh[% gm]
i (1) =2 (2-30)
me cosh(N¢,.)

where Z, =0 for the normal mode and Z, =~ for the common mode.

The equations above show the series and parallel resonance for the voltage
and magnet current of the normal and common mode. The resonant
frequencies for them are derived by the resonant condition;

kn
1+ZmYm=cosh(j¥) (2-51)

. ki
1+chYm=cosh(]m) (2-52)

where the suffix n and ¢ denote the normal and common and k is a integer
from 0 to N-1. Equations (2-51) and (2-52) gives the second order equation
in "s" (Laplace differential operator). One can find the resonance frequency,
attenuation parameter, a dispersion relation from these cquétions as shown
in the next section.

Cable Current and Coil Current

Magnitude of the ripple is often evaluated by the output cable current as
in this article. This current is not directly measured but calculated from the
voltage ripple and the admittance of the magnet string for the frequency
greater than a few kHz. Below a few kHz, the admittance of the excitation

21



coil, which can be simply written as,
Y, = (SL,+1)  +p = [s(Lt M)+r] " +p7,

can be used. What should be evaluated is the magnet current. Magnitude and
the phase of this current varies with a location in the magnet string. If the
coil current is not greater than the cable current, one can use the cable
current which is easier to evaluate. To see how the magnet current and the
cable current differ we plotted it as a ratio of the cable current to a magnet
current. They are shown from Figures 14 to 15 with and without bridge
resistor for the case of Quadrupole. Without bridge resistor, the magnet
current is resonantly enhanced at particular frequencies. In this case, the
cable current is under-evaluated. With bridge resistor installed as in the

HIMAC, however, the magnet current becomes smaller than cable current.

3 T T 3 T T
|imn(1.f)| 1 |imn( 5. )|
lin( 1, £)] lin(5.£)]
1.5 l; - - 1.5 - o
limn( 12, ) | N g i limn( 6. )]
lin( 12, )] 1\ / lin(6. )]
I ki
0 | 1 - . 0 1 1 !
100 1000  1°10° 1°10 100 1000  1°10° 1°10

FIGURE14.Normal mode normalized magnet current without bridge resistor
(p=6 kQ,Quadrupole). n=11 and 12 for the left and n=5 and 6 for the right.

f

f

2 T T 2 —T
|imc(1,f)| \} limc(S.f)l ‘.‘r
Jic( 1. 1)] 3 r lic(5.1)] /"
1 SNSRI f . 1.25 i
lime( 12.£) | 1.; lime( 6. £)|
lic( 12. )] : lic(6.£)]
| | !
0 0.5 : ,
100 1000 1°10* 1°10° 0 1.5e10t 3010t
f f
FIGURE15.Common mode normalized magnet current without

resistor(p=6 kQ, Quadrupole). n=1,12,5 and 6.
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[imn( 1.1)| |imn( 5. £)]
Jin( 1. )] lin(5.6)]
055 = =1 0.5 - =
[imn(12.£)] |imn( 6. )|
lin(12. )] lin(6. )]
I ) ]
0 : 0
100 1000 1°10% 1°10° 100 1000 1°10* 1°10°
f f

FIGURE 16. Normal mode normalized magnet current with bridge resistor

(p=20 Q, Quadrupole). n=1,12,5 and 6.

1

-
Iimc( l.f)l s |imcg 5.f)|
lic( 1. )] lic(5.1)]
0.5 - 0.5 -
Iimc(12.f’)| |imcg 6.f)|
licc12.£)] lic(6.f)]
0 0
100 1000  1°10% 1°10° 0 15010 3010

f

f

FIGURE 17. Common mode normalized magnet current of with bridge resistor
(p=20 Q, Quadrupole). n=1,12,5 and 6.

Spatial Distribution

The distribution of the magnet current varies along the magnet. Typical
current patterns are shown below. The location of the power supply is at the
right side of the figures.

5 T 0.04 T T
imn( n.7700) imn( n.7700)
e B
0 - 0.01 [ -
(mA) (mA)
-5 -0.02 ' !

15

23
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15



2 ; ' 0.04 — ,
imn( n, 15000) imn( n. 15000)
= ——
(mA) (mA)
- I L -0.02 L L
0 5 10 15 0 5 10 15

n

n
FIGURE 18. Normal mode distribution of magnet current of the 1st(7700Hz)
and 2nd(15000Hz) lowest resonant frequency without(left figure, 6kQ) and
with bridge resistor(right figure,20Q)

20 T T 0.1 T T
imd n, 7700 ) ime( n.7700)
—_——
10 | - 2.05 |- -
(mA) (mA)
0 l ] 0 | |
0 5 10 15 0 5 10 15
imel T, 22650 ime( n. 22600 )
—_—
(S - = 0.5 | -
(mA) (mA)
- 1 ] 0 1 I
0 5 10 15 0 5 10 15

FIGURE 19. Common mode distribution of magnet current of the 1st(7700Hz)
an 2nd(22600Hz) lowest resonant frequency without(left figure, 6k Q) and

with bridge resistor(right figure,20Q).

Current distribution of the magnet current 1/4,2/4,3/4,4/4 of the wave
length as shown in Figurel8 and 19 without the bridge resistor. With bridge
resistor of 20Q this structure become simple and the amplitude of the

current is decreased as expected. The unit of the current is in mAmpere
when the output voltage of the input of the magnet string is normalized to

one volt.



Frequency Dependence of Magnet Coil Current

Frequency dependence of the magnet current depends on the location of
the cell. Figure 20 and Figure 21 show typical examples. The lowest
resonance frequency of the common mode is lower than that of the normal
mode. Since the resonance of the lower frequency is stronger than that of the
resonance of the higher frequency, one must avoid the resonance of the

lower frequency.

0.1 . - 0.1 T :
001 } - 0.01 |- .
0.001 — 0.001 -

1010 . o107 N
110 0| - 14107 -
141070 b L 141070 T
0 2+10 44107 6°10 0 2410 4°10° 6°10
f f
normal mode current common mode current
(n=12) (n=12)
FIGURE 20.Frequency dependence of the magnet current of the n=12 magnet.
0.1 T T 0.1 1 I
0.01 -
01 -
0.01 0.001 | -
1104 .
0.001 - —
1°10 -
0.0001 l 1 141070 1 I
7 7 7 7
0 2°10 4°10° 6°10 0 2°10 4410° 6°10
£ f
normal mode current common mode current
(n=2) {n=2)

FIGURE 21. Frequency dependence of the magnet current of the n=2 magnet.

Impedance matching

To chose impedance matching is possible for the case of the common
mode. The case of the impedance matching is interesting to evaluate, as in
this case the frequency characteristic is rather flat and is independent on the
frequency. The reflected wave in the time domain which may be often
observed in several synchrotron magnet, is also expected to be considerably
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suppressed. In the case of the impedance matching, where Zgp=Zyp , we have,
for the common mode cable current as,

V.N)=Y,, (2-53)
ic(N)=Y0cuc(N) (2-54)
i (D) = [0 _Z‘:;(n— ]

=2u£—fz)cmg“’°“sinh[(n—%)gm}+cosh (-3 [si0( G5 | (2755

As shown, the resonance characteristic is disappeared for the case of
impedance matching. Application of this case is interesting in other
synchrotron magnet string.

III. Spike Analysis of the Ladder Circuit

Spike current is induced when the voltage source is abruptly changed.
This is analyzed by the inverse Laplace transformation of the admittance or
the impedance by multiplying the Laplace operator 1/s. We use the
admittance of the ladder circuit in deriving the expression of the current
spike in the input of the magnet string. Recalling the admittance from eq.(2-
41)' and (2-42)', and rewriting the characteristic admittance of the ladder
circuit one has,

s 10

n cosh(NG _ ) Y. sinh(S ,,) cosh(NGS ) (2-41)
sinh(NS_) [cosh(S )~ 1] sinh(NS__)

Sinh(NG,)  _ sinh(S,) _sinh(NG,)
“cosh(NG_) ™ [cosh(G,.)-1] cosh(NS_.)

(2-42;'

=
e 0

for the normal mode and the common mode. The characteristic admittance
YV, is written by the expression of the rational number. The denominator of

the equation (2-1)' and (2-2)' can be decomposed. cosh(NCy,) and sinh(NGpp)
can be expanded by cosh(G,,) and can be expressed as a products of
cosh(C,,) cos[kn/N]. This process is equivalent to the process of the Heaviside

theorem. For the even number of N that is the total number of cells, as in
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the HIMAC Quadrupole string, we have[20],

P - sinh(§ ) cosh(N¢S_ )

You [cosh(gm)-l] sinh(NG )

) PR cosh[NC,, | (3-1)
cosh(gm)[cosh(gm)—l] -;l-l - -

I [cosh(g o) + COS [-—N—H[cosh(gm)—cos.[F

k=1

—
————

Y. __ sinh(S,)  sinh(NG,)
Yo [cosh(g o)~ 1] cosh(NG )

2 sinh(S ) sinh(NC_,) . (3-2)

[cosh(gm)—l] %-1
II lcosh(gm)+cos QE;WIE” cosh(S ) - cos [Q}%E—H

k=0

Similar equations can be obtained for odd number of N[20].

We have expanded the denominator in eqs.(3-1) and (3-2) by cosh(Tup) so
that the transformation to the Laplace operator is easy where the relation
between them are written as,

1+Z,,Y,,= cosh(f;mp) , (3-3)

g
ZpY = 2sinh* | =% . (3-4)

Keeping this relation in mind, one can further simplify the eqs.(3-1) and (3-
2). Expansion of the e€q.(3-1) by cosh[tmplz] causes the range of summation to

k=1 to N-1 from k=1 to N/2-1. Using the relation of cosh(x)=2cosh2(x)-1, one
can derive the following equations.

v, i :ﬁ: cosh(C,, ) - cos 21;;1 :n:H
Yoo Zi:I:[cosh(?;m)-cos[—I]%-nH &
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Similarly, for the common mode, one has,

N

v II [cosh(‘gm)—cos[{r—nﬂ

k=1

(3-6)

=N-1

Yo II [cosh(Cm)—cos[zg;}l JzH

k=0

Putting X =cosh(g,), the numerator and the denominator are rational

functions and are expressed by polynomials of X;. The denominator and the
numerator of the right hand side of the eqs.(3-5) and (3-6) have the order of
N in X;. Furthermore, the denominator and the numerator has no common
factors. By dividing the numerator by the denominator, one can obtain the
new numerator of the order of (N-1) and the denominator of the order of N-
One can apply the Heaviside expansion theorem. Thus the total admittance
can be expressed as a sum of the partial fractional expression of X,

(Appendix).

Equations (3-5) and (3-6) are expressed as follows,

) [E} [ﬁ]
"/"—1+—1—Nz_1 PN -1+-2—Ni1 P (3-7)
Y. NS5 km NG . 2| km ’

1+Z_,.Y_ . —cos N Z.,.Y, . +sin N
1+cos| 2L o cos2[2k+1n]
N-1 N-1

Y. =1+i y 2N =1+—2— Y, aN .(3-8)
Y, Noliez v o 2k+1n] NSy v opne] 2] ]

mo Yme ™ €08 THN mo Vo aN "

Residues of above equations, which gives the decay rate and the oscillation
frequency of the ladder circuit, are obtained by putting the denominator
zero as the solution of the following equations,

for the normal mode,

. 2 , knt
Cos
Ln p (:'1 2N

k
s’ +s +2(r+p) cosz[ n}=0 (3-9)

For the common mode,
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2 2k + 1)1 r+ 2k + 1)m
s’+s —£—+-—cos2[( 2 ) }4—2( p)cosz[(—A{—N—)——]=0. (3-10)
L. pc, N pLC,
Defining the solutions of above equations as,
1
Skn=___ijgkn (3'11)
‘tkn
1
Ske=— 2 (3-12)
tkc
one has,
2
2 [p+r] z[kﬂ:} 1] 2 2[k:rc} r
Q=T ———cos" |55 (-7 cos +— (3-13)
JLDCH 0 2N |74 o, N L,
2 [p+r] 2[21<+1 ] 1[ 2 2[2k+1 r P2
Q. = cos X [——|—cos |+ (3-14)
k J LC. 4N 4| oc. 4N L,

Definition of Ly, G, Lcand G are given in eqs. (2-28) to (2-32).
Resistor r can be neglected in many cases, and one has simpler equations as

follows,
2 kx 1 L, ,|km
Q = L.C, COS[ZN } Jl—;{ C. cos” | 5N (3-15)
2 2k+1 1 L, 2[2k+1 ]
Q. [ L.C, cos| =N " 1—2p2 C. cos”| N © (3-16)

Eqgs.(3-15) and (3-16) show dispersion relations of the resonance frequency
by sine and cosine functions when a self resistance of the excitation coil is
neglected. Installation of the bridge resistor p in parallel to the coil shifts the
resonant frequency. There exists an equivalent parallel resistor due to AC
losses of the magnet in case the bridge resistor is not installed. The lowest
resonant frequency is of a primary interest, where m=1 for the normal mode
and m=0 for the common mode. In either case, the resonant frequency is
lowered by the addition of the bridge resistor. As is given by eq.(2-35), the
characteristic impedance of the magnet string is roughly equal to the
characteristic impedance of the transmission line circuit, which is 4/L/(2C) ,
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the choice of p=Zy, gives the zero resonance frequency for k=0. It is shown
that for the low resonance frequency, to suppress the resonance, the
resistance p must be lowered according to the dispersion. Bridge resistance
of the dispersion relation is plotted in Figures 22 and 23.

1'108 T 1 1°10 T T

o A7
0. 0] 14107 4 leco.p] 1710

lacs. 0l lacs.o)| 1°10° | -
1°10 o

lac10, )] lec1o.o] 110 | -
. 5 ol

letit.py] 1*19 docitool | -

1+10* 1 1000 ' ' 1

1000 1°10 10 100 1000 1°10

P p

FIGURE 22 and 23. Bridge resister dependence of the normal mode(left) and
common mode(right) resonant frequency for k=0,6,10 and 11.

For the normal mode and the common mode, the attenuation parameter

1/1:kp are,
1 T 1 ,| km
- =2Lu+pC cos” | o (3-17)
1 1 2[(21<+ l)n]
——m +——cos’ | ———|. (3-18)
-tkc 2LC pcc 4‘N

In the above discussion, we obtained following type of equation,

I+p
S+
1 1 L
= 2
1+Z,,Y, +cos@C,) pC, s+i +Q, 2
T,

Recalling the inverse Laplace transformation of the above equation[18], the
time response to the unit step voltage is written as,
t
1| = sin[ @, t]
) Z Lk ]
pcp Qkp
When &, <0 , the time response is not oscillatory. One can still use the

r+p 1

L, <

Tkp

cosL2, t+

kp

above equation by rewriting the above equation with hyperbolic function
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using the relation of cos(jx)=cosh(x) and sin(jx)=j sinh(x). Even when &, = 0,

written as,

the above equation still holds by taking the limit of Q, = 0, which can be
1

L
e @ [1+ IEP_LH]‘
pC, P Ty

Qyp is the angular resonant frequency of the ladder circuit in frequency

domain. When the bridge resistor is installed to the magnet coil, the resonant
frequencies is decreased with smaller resistance. Criterion for the condition
of Qup=0 depends on the frequency and written as,

for the normal mode,

kx

2N

L
p(k) = %cos , (3-19)

for the common mode,

o) = 218 cos [Zk‘&l]“. (3-20)

To the change of unit step function input voltage, the excitation current of
the normal mode ip(t) and the common mode ic(t) at the input of the magnet

string are in presence of the parallel resistor p, which may be either an

external bridge resistor or equivalent resistor,

2 3 kn | "o r+p 1 |sinQt
i) =0t +—— Y |cos’| 5= |e ™| cosQ, t+ -—— (3-21)
© =50 PN kf-lﬂ[ 2N k@ L, T Q,
2 o 2k+1]m | + sinQ, t
i)=0t)+— Y cosz[-[“T] e “| cosf t+ er I i " . (3-22)
PN k=0 ¢ T R

0 function appears both in the normal and the common mode current. For
simplicity, this plot is omitted in subsequent figures.

Eqs(3-21) and (3-22) are valid for the cable current of general magnet string
of the synchrotron. For the HIMAC, where the equivalent bridge resistance
of p=6 kQ and the stray capacitance is 1.8 nF, the calculated spike current of
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the Quadrupole is shown in Figure 24 and 25 for the normal and the common
mode. Typical example of different time scale are shown. Fast spike of tens
of kHz is seen. Slow response of the normal mode is the response to the

inductance and the series resistance of the magnet.

0.6 - 10 T
in(p,t) in(p,t)
(mA) (mA)
0 . !
-
(] 0.03 0.06 0 5 10
t(ms) t(ms)

FIGURE 24. Normal mode spike current without the bridge resistor.
Equivalent bridge resistor is taken into account.

0.5 T 0.5 T
ic( p,t) ie(p,t)
0 - 0l
(mA) (mA)
-0.5 . -0.5 L
0 0.02 0.04 0 0.05 0.1
t(ms) t(ms)

FIGURE 25. Common mode spike current without the bridge resistor.
Equivalent bridge resistor is taken into account.

With bridge resistor the current is not oscillatory and the eqs. (3-21) and (3-
22) can be approximately expressed as,

T 2t 2] kn
. 1 ] T NG knJ el b
1n(t)=6(t)+;ﬁ— [1+;}—e +—;)—§k§ cos”| ST e (3-23)
2t 2[ [2k+1]n
2 ¥ 2[[2k+1]n} - [ ]
i()=8t)+— ) cos’|—— e °
=90 pN kz_lo 4N (3-24)
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FIGURE 26. Normal mode spike current with bridge resistor of p=20 Q.
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ic(20,t) ic(20,t)
30 - 0
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I ]

0 =50
0 0.15 0.3 0 0.03 0.06
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FIGURE 27. Common mode spike current with bridge resistor of p=20 Q.

When the magnitude of the parallel resistance is less than the critical value
given by (3-19) and (3-20), the spike current become decaying current.
Decaying time constant is inversely proportional to the magnitude of the
bridge resistor and the width of the spike becomes much narrower with a
sacrifice of larger magnitude as shown in Figures 26 and 27. Calculated spike
width is less than p second. In such a short pulse, a permeability of the

magnet core will be close to unity, and the magnet will not respond.

Response to § function and ramp change of the voltage is obtained simply by

multiplying 1 or 1/s? to the admittance respectively. Mode currents in any
location of the magnet string could be derived in a similar way. Resonance
characteristic of them depends upon the location of the coil; the closer the
location of the power supply the more the number of resonances, the
further from the location of the power supply the fewer the number of the
resonances. So fa the formulation is performed for even number of cells.

Similar formulation holds for the odd number of cells.

33



IV. Resonance in Power Supply and Magnet String

As discussed in the preceding chapters, the magnet string has resonance
characteristics. The power supply is a voltage source and consists of a reactor
and capacitor of the mode filter and has a leakage inductance and a stray
capacitance. They constitute resonant elements in the power supply. The
resonance between the power supply and the magnet string is unavoidable
unless cares are taken.

- f
UO Ya U,
ground line
+— A ‘
to neutral point to Magnet
of thyristor Ya yoke
Vo Vi
‘__
Z
Jo J1

FIGURE 28. Six terminal filter circuit with the HIMAC magnet string.
(i) Symmetric Mode Filter and Earthing of the Thyristor Bank

Ripple or the abrupt change of the voltage goes through the mode filter.
Total admittance of the ladder circuit is taken into account in this section.
Applying Kirchhoff law in six terminal symmetric low pass filter shown in
the Figure, one can derive following equations,

G EU1+V1=, 1 : 7 (4-1)
* UtV [14[Z,+2,][Y.+ Yo,cotn[NE_ ]

_UI_VI 1

G=v—v = ,
U=y [Hz;{:+[zs—zM][Ya+Yocm[Ntm]]J

where Y; and Y, are the admittance of the neutral point of the thyristor

bank and that of the lowpass filter respectively. Above equation is useful to
describe the ripple current in the magnet string when the magnitude of the

(4-2)
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ripple voltage of the thyristor bank is known.

The admittance of the magnet string appears in the denominator of the
transfer function as Ypocoth(NCmnn) for normal mode and Ycotanh(NTne)
common mode. Although the form of the admittance of the normal mode and
the common mode is slightly different and show the resonant property, the
magnitude is still suppressed mainly by the intrinsic low pass filter term. It
will be useful to derive equations of the input admittance }j, of the low pass

symmetric filter including the magnet string seen from the power supply

side,
_Lo+¥e Ya*YnO“’th[Nt"m] - (4-3)
ol U0+VO [1+[ZS+ZM:][YE+Y“°COth[Ncm]]]
Io-JO Ya+ thanh[ Ntmc]
yd=U -V. Y o
" [1+2—Y—’+[ZS—ZM][Ya+Yw‘a"h[NC“H]

In case of grounded neutral thyristor bank, the admittance Y; is infinite,
Y./Y1=0. Then, the form of the normal and the common mode admittance
becomes similar except the effect of the magnet load. The assumption of the
infinite impedance of the magnet load leads to the formula given by Praeg
[18]. The common mode admittance of the conventional configuration can be
expressed by eq.(4-4) by putting Zy=0 and by reinterpreting Y, as stray
capacitance, where Y; and Y, is comparable, Y,/Yi1=1 and does not show the
low pass filter characteristic. This is the reason the thyristor spike and
ripples are not suppressed in a conventional synchrotron power supply.

Voltage spike is generated when one thyristor is turned off and the other
thyristor is turned on at the interval of 1200 Hz at the HIMAC for the normal
mode and that of 600 Hz for the common mode. Due to the presence of the
stray capacitance between the transformer, the cable and the bus bar to the
ground, the resonance could occur in the power supply side as well as in the
magnet string. In the HIMAC, the neutral point of the thyristor bank is
grounded through the earth line that is also connected to the yoke of the
magnet string.

Choice of the earth of the neutral point of the thyristor bank is a
characteristic feature in the HIMAC. In most of previous power supplies, this
neutral point is isolated from the ground. Although the concept of the
common mode in previous synchrotrons is not clear as in the present study,
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the thyristor noise generated in the rectifier returns through the (imaginary)
earth line. Neutral point of the thyristor and the (imaginary) earth line is
connected by the stray capacitance.The lower the magnitude of this
capacitance the lower the thyristor spike in the power supply system. The
high impedance of the earth line to the thyristor bank blocks the common
mode spike. Blocked thyristor spike current, however, needs other routes of
lower impedance and returns to the thyristor bank by giving off the spike
noise to the surroundings. This explains why the thyristor power supply is
known as a noise source of spikes.

Connecting the neutral point to the earth line of the load reduces the
impedance of the earth line to the thyristor bank and increases the flow of
the spike noise on the return earth line and at the same time confines the
spike noise inside the power supply system. This common mode spike is
taken cared by the common mode filter installed in the HIMAC.

(ii) Resonance and modulation of the spike by four voltage source

In this section the full expression of the transfer function of the power
supply including the magnet string in presence of stray capacitance in the
four voltage sources is shown. The simple model circuit of four voltage
sources is shown in Figure 29. The stray capacitances from the midpoint
from each thyristor bank are expressed as G, & and Cs. Inductance Ly is a
leakage inductance of the transformer. Due to this difference in the
capacitance, the amplitude of the thyristor spike depends upon the spike
voltage of the location of the four thyristor banks. This results in the
amplitude modulation of the thyristor spike by illogical ripple.

Let again the thyristor spike voltage of the four banks be

v, (outer), v; (inner), u, (outer), u; (inner),
and that of at the input of the ladder load be Up and V. The spike voltages
are generated at an ignition timing of 1.2 kHz in case of 24 pulse thyristor
system. Pulse width of each spike is short and they contribute to equivalent
high frequency ripple. A close look at the amplitude of each spike reveals
that their amplitude is modulated. This amplitude modulation is regarded as
the source of the equivalent low frequency illogical ripple. Applying the
Kirchhoff law we have a following set of equations,

I,-J, =swC, (5-1)

L-I, = (-w+u;-sL,I,)sC, (5-2)
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Ji-J, = (w+v -sL J.)sC, (5-3)

U, =-w+u;+u -sL (I,+1,) (5-4)
V, = wtv,+v -sL {J;+],) (5-5)
I,+],= [sC,+ ¥, ][U,+V,] (5-6)
-1, = [sCo+ ¥u][Us- V] (5-7)

Eliminating the common voltage w of the neutral point, the outer and inner
currents in the thyristor I,, I, Ji, Jo and the corresponding voltage v, vi, uo,
uj ,one obtains following equations for the normal mode voltage (Up+Vy) and

the common mode voltage (Ugp-Vo) expressed by (uj+vi),(up+vo),(ui-vi) and

(uo-voy,

[1+5°LyC,+ 5Ly [2+5°LyC, | [ ¥ +5C;3 ]| [Ug + Vo = [u;+v,]+[1+8*L,C, | [u, + v,] (5-8)

C, 2 C,
1+52L0C2+2C—1+SL0[yu+sC3][2+ SCL +s2L0c2+2a”[Uo—vo]

(5-9)

C
1+s2L0C2+2FjJ[uo—vo]

where Y and Y are the normal and the common mode admittance of the

=[u;-v,]+

ladder circuit given by eqs.(4-3) and (4-4). Y, and Y show resonance as

are shown in previous chapters. These equations give a transfer function of

the voltage from the thyristor of the four voltage sources to the entrance of

the low pass filter. The important lessons from the equations are;

(i) transfer function of the common mode and the normal mode are
different,

(ii) transfer function of the thyristor of the inner bank and the outer
bank is different,

(iii) there is a mechanism of the enhancement of the resonance where the
residue is given by equating the coefficient of the left-hand side of
equations to zero.

Examination of the equations reveals that the difference between the modes

appears as terms multiplied by a factor 2C/C; as found in the previous

chapter and again earthing the midpoint of the thyristor bank makes two
equations similar. This can be understood that in general the impedance at
the ground line appears only in the equation of the common mode whereas
the impedance at the P and N lines appears in both equations. When the
mid-point is grounded, the equation for the common mode is thus given by,
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[1+8°L,C, +sLy[2+5L,C, |[ ¥+ 5C, ]| (Ug= Vo) =[u;=v,]+[1+8"L,C, ] [u, - v, ]

(5-10)
The equation of the normal and the common mode voltage is the same
except the admittance of the ladder circuit. Further elaborate model such as
the one incorporating a snubber circuit is possible. It is,however,the essential
property of the existence of the resonance and unified treatment of the
normal and the common mode remains unchanged.

A\

FIGURE 29. Block diagram of the power supply in front of the low pass filter.
The dotted lines show virtual lines of the stray capacitances and the virtual
ground line. In most of the power supplies, the thyristor is floated and G has
finite magnitude where in the HIMAC, the thyristor bank is grounded.

V. Conclusion

By finding the importance of the common mode besides the normal mode,
we could make a formulation of the normal and common mode in the power
supply and the magnet string. Six terminal ladder circuit found out to be
decomposed into two set of four terminal circuit of two different modes.
When a degree of symmetry of the circuit with respect to the earth is high,
two modes become a decupled normal and common mode. Quantities of the
voltage, current, admittance can be expressed in simple analytical expression
as a complex number. Frequency domain as well as time domain solution is

38



available. The role of the bridge resistor was evaluated by simple expression
in a closed form. Performance of the mode filter, the normal and the common
mode filter, was evaluated in a presence of elements of resonant property.
The effect of the separate connection of the coil is evaluated by the chahgc of
the common mode impedance. Analysis based upon the formulation supports
the performance of the small ripple content of the HIMAC synchrotron and
will be useful for other synchrotrons. In the HIMAC, logical ripples of the
power supply is eliminated in this way. Normal mode 50 Hz and 100 Hz can
be eliminated by other standard method. Owing to the common earth line of
the power supply and the load that is introduced from the property of the
"symmetry", the whole system can be "noiseless" seen from outside the
power supply as the noise current is confined inside the power supply. The
symmetry can provide the decoupling of individual systems such as the low
level power supply of the control circuit. If this method is applied to the
power supply of other synchrotron, high performance as the HIMAC will be
obtained.
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Appendix. Decomposition of Partial Fractional Expression

(i) Expansion theorem
Derivation of the equations of (3-6) and (3-7) from the equations of (3-3)
and (3-4) is a consequence of the expansion theorem. We will prove this by

the mathematical induction. Consider a rational fractional expression of Q(s),
N

II (x+bk)
Qs) = q,(s) = 55— (A-1)
II (x+ak)

k=1

We assume Q(s) can be expressed by a partial fraction expression for k=N as,

N
0=, 1+ T 17 (A-2)
with a condition that,
a,#b;and a;#a; for i=1,2,...Nand j=1,2,...N.
(1) For N=1
x+b, ¢ b, -a,
Q)= ry @ G =T+ =g, (A-3)
(2) Assuming the equality of q;(x)=q2(x) for N=n,we have
X+b,,, S G X+by,,
0 (9=0Q,.,(9)=0,(x) x+an+1]=[1*£x+ak} x+a,,+,]
. b..,-a, 1 b=, ’ Cy et
=1+kz=.:10k[an+]_ak :|X+ak ¥ [ X+a ,, ] I:l-kgl a,,1-3 ]E 1+k2=:1 X+a, =42(0)-(A-4)

Similarly, we can write a rational function Q(s) of the Laplace operator s can
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be written as[19],

N
Q) =P(s) + 5y D(s) (A-5)

where P(s), N(s) and D(s) are polynomial in "s" with the condition that the
order of D(s) is at least one higher than the order of N(s).
Furthermore if D(s) can be written as,

D(s)=(s - s, (s =8;)(s=83)...(s — Sy) (A-6)

then onec has,
A . dD -1
QGt)=Y , with A = N(a)[ s J . (A-7)

This theorem holds for complex number of rcs1dua1[18]. In our case, the
admittance Y is written as,

N(X)
=P A-9
Yr=-PX)+ D(X) (A-9)
where Xis defined by
X =cosh (f;mp(s))=1+Zmp(s)Ymp(s) . (A-10)

For the proof of the Heaviside expansion theorem, "s" is not necessary to be
imaginary number but can be complex number. One can replace "s" by X in
the expansion theorem. In the case of the total admittance /}, normalized by

Ymp(s) the numerator and the denominator have the same order in the
power of Xand P(X) is 1.
(ii) Derivation of the partial fraction
Let us define a normalized total admittance of the ladder circuit of the
common mode as,
"""=Ym =1+k§,1 o (A-11)
coshC,m—cosF

We will derive one of the amplitude function factor Fx as an example,

sinh(x) cosh(Nx) sinh(x) cosh(Nx)
k= h inh = -
cosh(x)  sinh(Nx) [cosh(x)-1] Neosh (Nx) &)
Ec.} kr X ?
X - Cos N X=COS -N_]
__ sinh’(x) _TSIN] S aN (A-12)
~ (cosh(x)-1) X=-cos £ - N - N
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