

核融合原型炉の事故時における 最終障壁による放射性物質閉じ込め 安全方策の検討

中村誠¹, 増井章裕², 染谷洋二¹, 渡邊和仁¹, 飛田健次¹, 原型炉設計合同特別チーム

¹量研機構,²MHI NSエンジ

謝辞(敬称略) Brad Merrill (INL) 荒木隆夫、滝脇賢也(東芝) 城戸寛子、龍福進、黒澤直弘(VIC)

建屋区画は核融合原型炉の放射性物質最終閉じ込め障壁

事故時における最終障壁への荷重と安全設計方策の提案

事象	荷重	原型炉の安全方策
真空喪失 (LOVA)	内向き減圧荷重	バキューム・ブレーカ
冷却材喪失 (ex-VV LOCA)	外向き加圧荷重 ITERよりも厳しい	圧力緩衝タンク 圧力逃がし機器

Nakamura, et al., IEEE Trans. Plasma Sci. (2016)

- ◆ 安全設計方策はケーススタディに 基づいている
- ◆ 原型炉設計研究はまだ概念設計段階

安全性研究が設計に対して役立つ フィードバックをするには、広範な 感度解析が必要

プラズマ核融合学会2016

本研究の目的

◆ 原型炉の最終障壁による閉じ込め安全方策の確立
 ▶ 本発表では特に加圧荷重に対する方策を考察

◆ "コンファインメント"方式、"コンテインメント"方式を比較
◆ 設計条件が閉じ込め方策に及ぼす影響を評価

Ex-VV LOCA

本発表の内容

- 加圧荷重(ex-VV LOCA)に対する
 システムの熱水力解析
- 2. 閉じ込め方策の比較検討
- 3. 公衆被ばく影響評価

検討対象の最終障壁閉じ込め方策

◆ 弱耐圧性1次冷却系ボールト
 ◆ 圧力緩衝タンク
 ◆ 士容量↓カフクエ 川々の広力

◆ 大容量トカマクホールへの圧力逃がし
 ◆ スタック排気(除去系付き)

リーク率

R = 100%Vol./day @ ΔP = 0.3 MPa

- ◆ PWR格納容器級耐圧性・耐リーク性
 1次冷ボールト
- ◆ アニュラス部からのスタック排気 (除去系付き)

R = 0.1%Vol./day @ ΔP = 0.36 MPa

解析手法

5

熱水力過渡解析と放射性物質被ばく影響評価を統合的に実施

炉システム熱水力過渡解析

シビアアクシデント解析コード MELCOR核融合版

- ▶ 機器、区画を少数のセル、 流路でモデル化
- ▶ トリチウム(HTO)の移行、 環境放出量も評価

プラントの MELCOR解析モデル

公衆被ばく線量評価 トリチウム環境移行/被ばく評価コード UFOTRI HTOスタック放出 &リーク 被ばく

1km

HTO単位量放出による被ばく 線量の大気安定度依存性 Early dose (mSv/g-T/7d)

被ばく影響にとって 最も保守的な気象条 件を選択

敷地境界

Downwind distance (m)

GQST

想定起因事象

最大口径の1次冷却系配管の ギロチン破断(1ループ) 1次冷却系区画にまず圧力荷重

1次冷却材/最終障壁区画条件

1次冷却材温度	290-325 °C	
1次冷却材圧力	15.5 MPa	
1次冷却材T濃度	1 TBq/liter	
1次冷ループ数	2	4
1次冷却材量	480 m ³ /loop	240 m ³ /loop
最大口径の配管径	1.45 m	0.73 m
1次冷ボールト 自由体積	20,000 ~ 90,000 m ³	
トカマクホール 自由体積	200,000 ~ :	500,000 m ³

✓ 1次冷ループ数 (保水量、破断面積)
 ✓ 1次冷ボールト自由体積
 ✓ トカマクホール自由体積
 についてex-VV LOCA感度解析を実施

◆ 2ループのほうがボールト内圧最大値P_{TCWSV}^{max}が大きい

◆ P_{TCWSV}^{max} < P_{TCWSV}^{des}とするには、コンファインメント方式のほうが、より大きな1次冷ボールトが必要になる傾向

▶ 1次冷2ループの場合、PWR格納容器程度の巨大な区画が必要

より単純な冷却系システムを採用する場合、 コンファインメント方式を採用する意義は小さい

16/11/29

トカマクホール内圧の感度解析(コンファインメント方式)

◆ 1次冷ボールト自由体積が大 → トカマクホール内圧最大値P_{UTH}^{max}は上昇
 ▶ 1次冷ボールト内空気が圧力緩衝タンクで凝縮されず、トカマクホールに逃されるため

◆ ループ数が少 → P_{UTH}^{max}は上昇

コンファインメント方式では、1次冷ボールト内圧と トカマクホール内圧はトレードオフ関係にある

コンファインメント方式におけるトリチウム漏洩による 早期公衆被ばく線量

4ループ、2ループの場合の代表的区画体積条件での線量

ループ数	4	2
1次冷ボールト ^(*1) 自由体積	20,000 m ³	70,000 m ³
トカマクホール ^(*1) 自由体積	200,000 m ³	500,000 m ³
トリチウム環境放出量	5.8	1.8
早期公衆被ばく線量 ^(*2)	18	5.9

^(*1) 内圧最大値が設計基準圧に最も近いケースを選択 ^(*2) 敷地境界 = 放出点から1 km遠方に設定

◆ コンファインメント方式における早期公衆被ばく線量は、 IAEA推奨の緊急避難を要する目安線量50 mSv/7d未満

> 公衆を緊急避難させるには及ばない

10

放射性物質最終閉じ込め障壁としての建屋区画の健全性に影響を 与えうるex-VV LOCAの事象進展・被ばく影響を評価し、閉じ込 め方策を比較検討した。

- ◆ コンファインメント方式において、1次冷ボールト内圧とトカマ クホール内圧はトレードオフ関係にある
- ◆ コンファインメント方式における早期公衆被ばく線量は、IAEA推 奨の緊急避難を要する目安線量50 mSv/7d未満となる見込み
- ◆ コンテインメント方式よりコンファインメント方式のほうが、より大きな1次冷ボールトが必要になる傾向

炉設計への提言

- ◆ コンファインメント方式でも、ex-VV LOCA時における 公衆被ばく影響は限定的
- ✤ 区画体積が非常に大きくなるため、原型炉プラント設計に おいてより単純な冷却系システムを指向する場合、コン ファインメント方式を採用する意義は小さい。