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Abstract. The pencil-beam model is valid only when elementary Gaussian
beams are small enough with respect to lateral heterogeneity of a medium, which is
not always the case in heavy charged particle radiotherapy. This work addresses
a solution for this problem by applying our discovery of self-similar nature of
Gaussian distributions. In this method, Gaussian beams split into narrower and
deflecting daughter beams when their size has exceeded the lateral heterogeneity
limit. They will be automatically arranged with modulated areal density for
accurate and efficient dose calculations. The effectiveness was assessed in an
carbon-ion beam experiment in presence of steep range compensation, where
the splitting calculation reproduced the detour effect of imperfect compensation
amounting up to about 10% or as large as the lateral particle disequilibrium effect.
The efficiency was analyzed in calculations for carbon-ion and proton radiations
with a heterogeneous phantom model, where the splitting calculations took about
a minute and were factor of 5 slower than the non-splitting ones. The beam-
splitting method is reasonably accurate, efficient, and general so that it can be
potentially used in various pencil-beam algorithms.

PACS numbers: 87.55.D-,87.55.Kd

1. Introduction

In treatment planning of radiotherapy with protons and heavier ions, the pencil-beam
(PB) algorithm is commonly used (Hong et al 1996, Kanematsu et al 1998, 2006,
Schaffner et al 1999, Krämer et al 2000), where a radiation field is approximately
decomposed into two-dimensionally arranged Gaussian beams that receive energy loss
and multiple scattering in matter. In the presence of heterogeneity, these beams grow
differently to reproduce realistic fluctuation in the superposed dose distribution.

Comparisons with measurements and Monte Carlo (MC) simulations, however,
revealed difficulty of the PB algorithm at places with severe lateral heterogeneity such
as steep areas of a range compensator and lateral interfaces among air, tissue, and
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bone in a patient body (Goitein 1978, Petti 1992, Kohno et al 2004, Ciangaru et al

2005). One reason for the difficulty is that particles in a pencil beam are assumed
to receive the same interactions, whereas they may be spatially overreaching beyond
the density interface. The other reason is that only straight paths radiating from a
point source are considered in beam transport, whereas actual particles may detour
randomly by multiple scattering.

Schneider et al (1998) showed that a phase-space analysis could address the
overreach and detour effects for a simple lateral structure. Schaffner et al (1999) and
Soukup et al (2005) subdivided a physical spot beam virtually into smaller beams to
naturally reduce overreaches. Pflugfelder et al (2007) quantified lateral heterogeneity,
with which subdivision and arrangement could be optimized. Unfortunately, those
techniques are ineffective against beam-size growth during transport.

For electrons, the overreach and detour effects are intrinsically much severer.
Shiu and Hogstrom (1991) developed a solution, the PB-redefinition algorithm,
where minimal pencil beams are occasionally regenerated, considering electron flows
rigorously. The same idea was in fact partly applied to heavy particles for beam
customization (Kanematsu et al 2008b), but the poly-energetic beam model to
deal with heterogeneity could be seriously inefficient in high-resolution calculations
necessary for Bragg peaks.

In this study, we develop an alternative method to similarly address the overreach
and detour effects. In the following sections, we incorporate our findings on the
Gaussian distribution into the PB algorithm, test the new method in a carbon-ion
beam experiment, and discuss the results and practicality for clinical applications.

2. Materials and methods

2.1. Theory

2.1.1. Pencil-beam algorithm The PB algorithm in this study basically follows our
former works (Kanematsu et al 1998, 2006, 2008b). A pencil beam with index b
is described by position ~rb, direction ~vb, number of particles nb, residual range Rb,
angular variance θ2

b, angular-spatial covariance θtb, and spatial variance t2b of the
involved particles. As described in Appendix A, these parameters are initialized and
modified with transport distance s. The resultant beams with variance σ2

b = t2b are
superposed to form dose distribution

D(~r) =
∑

b

nb DΦ0(dbr)

2 π σ2
b (sbr)

exp

(

−|~r0b + sbr~vb − ~r|2
2 σ2

b (sbr)

)

, (1)

sbr = (~r − ~r0b) · ~vb, dbr = R0 − Rb(sbr), (2)

where ~r0b is the beam-b origin, sbr is the distance at the closest approach to point ~r,
dbr is its equivalent water depth, and DΦ0 and R0 are the tissue-phantom ratio and
the beam range in water.

2.1.2. Self-similarity of Gaussian distribution Any normalized Gaussian distribution
Gµ,σ(x) with mean µ and standard deviation σ can be represented with the standard
normal distribution N(x) = G0,1(x) as

Gµ,σ(x) =
1

σ
N

(

x − µ,

σ

)

, N(x) =
1√
2π

e−x2/2. (3)
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Figure 1. The standard normal distribution N(x) (gray area) and its
approximate functions (a) N2(x), (b) N3(x), and (c) N4(x) (solid lines) comprised
of multiple, displaced, narrowed, and scaled Gaussian distributions (dashed lines).

Table 1. Size-reduction, displacement, and share-fraction factors for Gaussian
function splitting of multiplicity M .

Factor name Symbol M = 2 M = 3 M = 4

Size reduction σM

√

3

2

1
√

2

1

2

Displacement µM

`

−1

2
, +1

2

´

(−1, 0,+1)
`

−3

2
, −1

2
, +1

2
, +3

2

´

Share fraction fM

`

1

2
, 1

2

´ `

1

4
, 1

2
, 1

4

´ `

1

8
, 3

8
, 3

8
, 1

8

´

Incidentally, we have found that binomial Gaussian function

N2(x) =
1

2

[

G
−

1

2
,
√

3

2

(x) + G 1

2
,
√

3

2

(x)
]

, (4)

reasonably approximates N(x) as shown in figure 1(a), where we first fixed symmetric
displacement µ = ±1/2 for the binomial terms and determined their reduced standard
deviation σ =

√
3/2 to conserve variance

∫

∞

−∞
x2 N2(x) dx = 1. Similarly, the daughter

Gaussian terms in N2(x) splits into grand daughters to form approximate function

N3(x) =
1

4

[

G
−1, 1√

2

(x) + 2 G0, 1√
2

(x) + G1, 1√
2

(x)
]

, (5)

and then into grand-grand daughters to form approximate function

N4(x) =
1

8

[

G
−

3

2
, 1

2

(x) + 3 G
−

1

2
, 1
2

(x) + 3 G 1

2
, 1

2

(x) + G 3

2
, 1

2

(x)
]

, (6)

as shown in figures 1(b) and 1(c). Table 1 summarizes size-reduction, displacement,
and share-fraction factors for splitting with NM (M ∈ {2, 3, 4}). Further splitting
with the same displacement is not possible with valid (σ > 0) Gaussian terms.

An overreaching Gaussian beam may split two-dimensionally into M ×M smaller
beams with these approximations. Because beam multiplication will explosively
increase computational amount, it must be applied only when and where necessary
with optimum multiplicity M for required size reduction.

2.1.3. Lateral heterogeneity In a grid-voxel patient model with density distribution
ρS(~r), we define density gradient vector ~∇ρS as

~∇ρS =

3
∑

g=1

maxa [ρS(~r + δg~eg) − ρS(~r), ρS(~r) − ρS(~r − δg~eg)]

δg
~eg, (7)
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Figure 2. (a) Definitions of source coordinate system (x, y, z), beam-b coordinate
system (s, t, u), and density grids at intervals δ1, δ2, and δ3 along axes ~e1, ~e2, and
~e3, where parameters perpendicular to the viewing plane, y, u, δ3, ~ey , ~eu, ~e3,
are not shown. (b) Schematic of splitting of a mother beam (gray) into daughter
beams (black) radiating from a common focus.

where δg and ~eg are the grid interval and the basis vector for axis g ∈ {1, 2, 3} as
shown in figure 2 and operation maxa[a, b] equals a if |a| ≥ |b| or otherwise b. We
quantify the lateral heterogeneity by effective lateral density gradient

γxy(~r) =

√

∣

∣~∇ρS

∣

∣

2 −
(

~∇ρS · ~ez

)2

2
, (8)

with which we define the distance to an interface of density change κρ as

δint(~r) = min

(

κρ

γxy(~r)
, 2 δxy

)

, (9)

where κρ = 0.1 may be appropriate for interfaces among air (ρS ≈ 0), soft tissues
(0.9 . ρS . 1.1), and bones (1.2 . ρS . 1.7) (Kanematsu et al 2003). Effective
lateral grid interval

δxy =

√

∑3

g=1
δ2
g −

(
∑3

g=1
δg ~eg · ~ez

)2

2
, (10)

multiplied by 2 is the effective distance to a second laterally adjacent grid, beyond
which the distance to the interface can not be estimated from the gradient.

2.1.4. Beam splitting The pencil beams are examined at every transport step in a
patient. Ones subject to splitting should be not only overreaching beyond a density
interface but also substantially influential to the dose for computational efficiency. For
mother beam b to split with parameters in table 1, we thus require conditions

σb > δint, σb >
δxy√

6
, nb > κn nb0, (11)
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where σb > δint defines the state of overreaching, σb > δxy/
√

6 suppresses splitting
into beams narrower than effective resolution δxy/

√
12 with M = 2, and nb > κn nb0

sets a limit on number of particles nb with respect to that of the ancestral original
beam, nb0, with a cutoff parameter chosen as κn = 0.1. Inefficient direct recursive
splitting will be minimized by choosing the multiplicity as

M =











2 for σ2 σb ≤ δint

3 for σ3 σb ≤ δint < σ2 σb

4 for σ3 σb > δint.

(12)

With the beam-b coordinate system (s, t, u) shown in figure 2(a) and defined as

s = (~r − ~r0b) · ~es, t = (~r − ~r0b) · ~et, u = (~r − ~r0b) · ~eu, (13)

~es = ~vb, ~et =
vbx~ez − vbz~ex
√

v2
bx + v2

bz

, ~eu = ~es × ~et, (14)

daughter beams b′αβ (α, β ∈ [1, M ]) are initialized as

~rb′
αβ

= ~rb + σb

(

µM β ~et + µM α ~eu

)

, (15)

~vb′
αβ

=

∣

∣

∣

∣

∣

~rb′
αβ

− ~rb +
t2b

θtb
~vb

∣

∣

∣

∣

∣

−1(

~rb′
αβ

− ~rb +
t2b

θtb
~vb

)

, (16)

nb′
αβ

= fM α fM β nb, Rb′
αβ

= Rb, t2b′
αβ

= σ2
M t2b, (17)

θtb′
αβ

= σ2
M θtb, θ2

b′
αβ

= θ2
b −

(

1 − σ2
M

) θt
2

b

t2b

, (18)

where ~rb′
αβ

is the displaced position, ~vb′
αβ

is the radial direction from the focus or the

virtual source (ICRU-35 1984) of the mother beam as shown in figure 2(b), nb′
αβ

is the

number of shared particles, Rb′
αβ

is the conserved residual range, t2b′
αβ

is the reduced

spatial variance, and θtb′
αβ

and θ2
b′

αβ
conserve focal distance (t2/θt) and local angular

variance (θ2 − θt
2
/t2) in splitting.

In this manner, a mother beam splits into smaller deflecting daughter beams to
form different detouring paths. Sets of the initial parameters for the daughter beams
are sequentially pushed on the stack of computer memory and the last set on the stack
will be the first beam to be transported in the same manner, which will be repeated
until the stack has been emptied before moving on to the next original beam.

2.2. Experiment

2.2.1. Apparatus An experiment to assess the present method was carried out with
accelerator facility HIMAC at National Institute of Radiological Sciences. A 12C6+

beam with nucleon kinetic energy E/A = 290 MeV was broadened to a uniform field
of nominal 10-cm diameter by the spiral-wobbling method (Yonai et al 2008). The
horizontal wobbler at z = zX = 527 cm and the vertical wobbler at z = zY = 470 cm
formed a spiral orbit of maximum 10-cm radius on the isocenter plane. A 0.8-mm-
thick Pb (ρS = 5.77, X0 = 0.561 cm) foil was placed at z = 425 cm as a scatterer,
which increased the instantaneous RMS beam size from pristine 8.3 mm to 25 mm
at the isocenter. A large-diameter parallel-plate ionization chamber was placed at
z ' 400 cm for dose monitoring and beam-extraction control. An Al (ρS = 2.12,
X0 = 8.90 cm) ridge filter for semi-Gaussian range modulation of mean µ = 0.54 cm
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Figure 3. Experimental layout of the beam delivery, beam customization, and
phantom systems.

and standard deviation σ = 0.18 cm in water (Schaffner et al 2000) and a 2-mm-thick
Al base plate were inserted at z = 235 cm to moderate the Bragg peak for dosimetry.

As shown in figure 3, a water (ρS = 1, X0 = 36.08 cm) tank with a 1.9-cm-thick
PMMA (ρS = 1.16, X0 = 34.07 cm) beam-entrance wall was placed at the irradiation
site with the upstream face at z = 16.9 cm. The radiation field was defined by a
8-cm-square 5-cm-thick brass collimator whose downstream face was at 65 cm. Two
identical 3-cm-thick PMMA plates were inserted. The downstream plate was attached
to the beam-entrance face of the tank covering only the x > 0 side to form a phantom
system with a bump. The upstream plate was put with its downstream face at z = 35
cm covering only the x < 0 side to compensate the bump. Such arrangement is typical
for range compensation and sensitive to the detour effects (Kohno et al 2004). These
beam-customization elements were manually aligned to the nominal central axis at an
uncertainty of 1 mm.

A multichannel ionization chamber (MCIC) with 96 vented sense volumes aligned
at intervals of 2 mm along the x axis was installed at y = 0 in the water tank. The
MCIC system was electromechanically movable along the z axis and the upstream limit
at zref = 14.77 cm was chosen for the reference point with reference depth dref = 2.44
cm of equivalent water from the tank surface.

2.2.2. Measurement With a reference open field without the PMMA plates or the
collimator, we measured reference dose/MU reading Mref i at reference height zref for
every channel i for a calibration purpose. Every dose/MU reading Mi(z) of channel i
at height z for any field is divided by corresponding reference reading Mref i to measure
dose D at position (xi, z) as

D(xi, z) =
Mi(z)

Mref i

zX

zX − zref

zY

zY − zref

, (19)

where divergence-correction factor zX/(zX−zref) ·zY/(zY−zref) = 1.054 is to measure
the doses in dose unit U that would be the isocenter dose for the reference depth of
the reference field.

We then measured reference-field doses D0(z) in the phantom at varied z
positions, from which we get tissue-phantom ratio

DΦ0(d) = D0(z)
zX − z

zX

zY − z

zY

, d = dref + zref − z. (20)
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Figure 4. (a) Tissue-phantom ratio DΦ0(d) with indications for the measurement
(◦) and the reference and 80%-dose depths (dref and d80) and (b) effective density
ρS(x, z) and (c) effective lateral density gradient γxy(x, z) distributions in gray
scale at y = 0 in the calculation model.

Table 2. Estimated contributions of beam-line elements at height z to beam
range (R), scattering angle (θ), and source sizes (σX and σY).

Element z −∆R
p

∆θ2

q

∆σ2
X

q

∆σ2
Y

Pristine 0.68 cm 8.3 mm 8.3 mm
Scatterer (Pb) 425 cm 0.46 cm 5.5 mrad 5.6 mm 2.5 mm
Ridge filter (Al) 235 cm 0.96 cm 3.2 mrad 9.3 mm 7.5 mm

Total 2.10 cm 13.7 mm 11.5 mm

Beam range R0 with Gaussian modulation was equated to the distal 80%-dose depth
(Koehler et al 1975) d80 = 14.14 cm as shown in figure 4(a).

With the collimator and the PMMA plates in place, lateral dose profiles were
measured in the same manner with particular interest around z = 3.3 cm, 6.8 cm, and
10.3 cm, where the Bragg peaks were expected for the primary ions passing through
none, either, and both of the PMMA plates.

2.2.3. Calculation Table 2 shows range loss −∆R and scattering ∆θ2 for the beam-
line elements, and the resultant contributions to source sizes σX and σY estimated by
back projection to the sources. The ridge filter with the base plate was modeled as
plain aluminum of average thickness. The scattering for the scatterer was estimated
from measured beam size 25 mm quadratically subtracted by pristine size in the
distance of 425 cm. Total range loss 2.10 cm was deduced from range 16.24 cm
expected for E/A = 290 MeV carbon ions (Kanematsu 2008c) and deficit 0.68 cm for
the pristine beam may be attributed to minor materials in the beam line.

As described in Appendix A, pencil beams were defined to cover the collimated
field at intervals of δI = 1 mm on the isocenter plane, where the open field was assumed
to have uniform unit fluence Φ0 = nb/δ2

I = 1. Exact collimator modeling was omitted
because we were interested in the density interface in the middle of the field. The
upstream PMMA plate was modeled as a range compensator with range loss S = 3.48
cm for x < 0 or S = 0 for x ≥ 0, where the original beams were generated, followed
by the range loss and scattering. The phantom system comprised of the downstream
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PMMA plate and the water tank was modeled as density voxels at grid intervals of
δ1 = δ2 = δ3 = 1 mm for a 2-L volume of |x| ≤ 5 cm, |y| ≤ 5 cm, and 0 ≤ z ≤ 20 cm.
Figures 4(b) and 4(c) show the density and lateral heterogeneity distributions.

We carried out dose calculations with beam splitting enabled (splitting
calculation) and disabled (non-splitting calculation). In this geometry, the density
interface at x = 0 was almost parallel to the beams and only ones in the two nearest
columns would possibly split.

2.3. Applications

To examine effectiveness and efficiency of this method with larger heterogeneity, a 3-
cm diameter cylindrical air cavity at (x, z) = (−3 cm, 13 cm) and two 1-cm diameter
bone rods with density ρS = 2 at (2 cm, 13 cm) and (4 cm, 13 cm) were added to the
phantom in the calculation model.

We carried out splitting and non-splitting dose calculations of the same carbon-
ion radiation to monitor changes in frequencies of splitting modes, number of
stopped beams, total path length

∑

b

∫

ds, total effective volume
∑

b

∫

12 σ2
b ds in

the heterogeneous phantom, and computational time with a 2-GHz PowerPC G5/970
processor by Apple/IBM.

The splitting calculation could be more effective for protons because they
generally suffer larger scattering. We thus carried out equivalent dose calculations
for protons with enhanced scattering angle by factor 3.61 (A.7) in otherwise the same
configuration including the tissue-phantom-ratio data.

3. Results

3.1. Experiment

Figure 5 shows the two-dimensional dose distributions measured in the carbon-
ion beam experiment and the corresponding non-splitting and splitting calculations.
Figure 6 shows their lateral profiles in the plateau and at depths for sub peak, main
peak, and potential sub peak expected for particles that penetrated both, either, and
none of the PMMA plates. A dip/bump structure was commonly formed along the
x = 0 line for lateral particle disequilibrium (Goitein 1978). There was actually a
sub peak in the measurement and in the splitting calculation, while it was naturally
absent in the non-splitting calculation. The observed loss of the main-peak component
was also reproduced by the splitting calculation. The potential sub peak was barely
noticeable only in the splitting calculation.

3.2. Applications

Figure 7 shows details of the heterogeneous phantom and the dose distributions by
splitting calculation for the carbon-ion and proton radiations. The larger scattering
for protons naturally led to the larger dose blurring. Figure 8 shows the dose profiles
at the main peak and where the heterogeneity effects were large by splitting and non-
splitting calculations. In addition to the loss of the main-peak component at x ≈ 0,
beam splitting resulted in slightly sharper dose profiles especially for the carbon ions.

Table 3 shows the statistical results, where the splitting effectively increased the
carbon-ion and proton beams by factors of 27 and 25 in number, 20 and 25 in path
length, 6.6 and 12 in volume, and 4.9 and 4.3 in total computation.
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D/U from (c) carbon-ion and (d) proton radiations calculated with splitting.
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Figure 8. Lateral dose profiles in the heterogeneous phantom by splitting
(solid) and non-splitting (dashed) calculations for projectile/height of (a) carbon
ion/7.3 cm, (b) carbon ion/6.8 cm (main peak), (c) carbon ion/5.8 cm, (d)
proton/7.3 cm, (e) proton/6.8 cm (main peak), and (f) proton/5.8 cm.

Table 3. Statistics per original beam in splitting and non-splitting calculations
for carbon-ion and proton beams in the heterogeneous phantom.

Projectile Carbon ion Proton
Beam splitting No Yes No Yes

Frequency of M = 2 0 0.243 0 3.857
Frequency of M = 3 0 0.132 0 0.714
Frequency of M = 4 0 1.636 0 0.967
Number of stopped beams 1 26.8 1 25.1
Mean path length/cm 20.0 394.6 20.0 500.8
Mean effective volume/cm3 3.52 23.1 30.8 380.9
Computational time/s 9.3 45.8 15.3 65.6

4. Discussion

Subdivision of a radiation field into virtual pencil beams is an arbitrary process in
the PB algorithm although the beam sizes and intervals should be limited by lateral
heterogeneity of a given system. In the PB-redefinition algorithm (Siu and Hogstrom
1991), beams are defined in uniform rectilinear grids and hence regeneration in areas
with little heterogeneity may be potentially wasteful. In the beam-splitting method,
beams are automatically arranged in accordance with local heterogeneity. In other
words, the field will be covered by minimum number of beams in a density-modulated
manner as a result of individual independent self-similar splitting.

Relative approximation errors (NM − N)/N (M ∈ {2, 3, 4}) are the worst at
x = 0 amounting to −2.3%, −3.3%, and −8.5%. Fortunately, the consequent dose
errors will be normally an order of magnitude smaller, due to contributions of many
other overlapping beams, and thus may be tolerable in practice. Further, these errors
will not give systematic dose bias, due to conservation

∫

∞

−∞
NM (x) dx = 1.

Effectiveness of the splitting method was demonstrated in the experiment. The
most prominent detour effect was the loss of range-compensated main-peak component



Dynamic splitting of pencil beams for heterogeneity corrections 11

in figure 6(c), which amounted to about 10% in dose and approximately as large as
the distortion due to lateral particle disequilibrium. The splitting calculation and
the measurement generally agreed well, considering that the experimental errors in
device alignment could have been 1 mm or more. The potential sub peak for particles
detouring around both PMMA plates was not detected, which may be natural because
detouring itself requires scattering. The dose resolution of the MCIC system of about
1% of the maximum should have also limited the detectability.

In the applications to the heterogeneous phantom model, although we don’t
have reference data to compare the results with, the splitting calculation with finer
beams should have naturally reproduced fine structures in the dose distributions.
Computational time is always a concern in practice. In our example, the slowing
factor for beam splitting with respect to non-splitting calculation was almost common
to carbon ions and protons and the speed performance, a minute for 2-L volume in
1-mm grids, may be already affordable for clinical applications.

In principle, the total path length determines the computational amount for
path integrals (A.6)–(A.9) and the total effective volume determines that for dose
convolution (2). Their Influences on the actual computational time will depend on
algorithmic implementations (Kanematsu et al 2008a). In fact, the slowing factor for
splitting was less than 5, which is even better than either estimation. In addition to
common overhead that should have superficially reduced the factor, our code optimized
with algorithmic techniques, which will be reported elsewhere, could have contributed
to the performance. Accuracy and speed also depend strongly on the cutoff parameters
and logical conditions in the implemented algorithm, size and heterogeneity of a
patient model, and resolution clinically needed for a dose distribution.

The automatic multiplication of tracking elements resembles a shower process
in physical particle interactions usually calculated in MC simulations. In fact, the
MC method shares many things in common. Transport and stacking of the elements
are essentially the same and the probability for scattering may be equivalent to our
Gaussian approximation. As far as efficiency is concerned, the essential differences
from the MC method are that the PB method deals with much less number of elements
and that it does not rely on stochastic behavior of random numbers.

The beam-splitting method is based on a simple principle of self-similarity and
can be applied to any Gaussian beam model of any particle type to fill the gap between
MC particle simulations and conventional beam calculations in terms of accuracy and
efficiency. However, it is difficult for beam splitting or any beam model in general to
deal with interactions that destruct uniformity of involved particles, such as nuclear
fragmentation processes (Matsufuji et al 2005).

5. Conclusions

In this work, we applied our finding of self-similar nature of Gaussian distributions
to dose calculation of heavy charged particle radiotherapy. The self-similarity enables
dynamic, individual, and independent splitting of Gaussian beams that have grown
to overreach the local lateral heterogeneity. As a result, the detour effects can be
addressed by small deflecting beams optimally arranged with modulated areal density.

In comparison with a conventional calculation and a measurement, the splitting
calculation was prominently effective in the target region with steep range adjustment
by an upstream range compensator. The maximum detour effect was about 10%
and of the same order of magnitude with the lateral particle disequilibrium effect.
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In comparison between carbon ions and protons, the effects of splitting were not
significantly different because other scattering effects were also larger for protons.

Although performances depend strongly on physical beam conditions, clinical
requirement, and algorithmic implementation, a typical slowing factor of the order of
10 may be reasonably achievable for involvement of beam splitting. In fact, factor of
5 has been achieved in our example. The principle and formulation for beam splitting
are general and thus the feature may be added to various implementations of the PB
algorithm in a straightforward manner.

Appendix A. Pencil beam generation and transport

On generation of pencil beam b on a plane at height z0 as shown in figure 2, beam
position ~rb, residual range Rb, and variances θ2

b, θtb, and t2b are initialized as

~rb(0) = ~r0b = ~rIb +
z0

vbz
~vb, Rb(0) = R0, (A.1)

θ2
b(0) =

1

2

(

σX

zX − z0

)2

+
1

2

(

σY

zY − z0

)2

, (A.2)

t2b(0) =
zX − z0

zX

zY − z0

zY

δ2
I

12
, (A.3)

θtb(0) =
t2b(0)√

zX − z0

√
zY − z0

, (A.4)

where ~r0b = (x0b, y0b, z0) is the beam-b origin, ~rIb = (xIb, yIb, 0) is the beam position
on the isocenter plane, σX and σY are the source sizes at virtual source heights zX

and zY, R0 is the initial residual range, and ~vb = (vbx, vby , vbz) is the beam direction
radiating from the virtual sources with

vbx

vbz
= −xIb

zX

,
vby

vbz
= −yIb

zY

, vbz = −
(

x2
Ib

z2
X

+
y2
Ib

z2
Y

+ 1

)−
1

2

. (A.5)

Because nuclear interactions are effectively handled in tissue-phantom ratio DΦ0(d) in
dose calculation, number of particles nb is modeled as invariant.

The modified Fermi-Eyges theory (Eyges 1948, Kanematsu 2008c, 2009) gives
increments of the PB parameters in step ∆s within a voxel of tissue modeled as water
with variable effective density ρS (Kanematsu et al 2003) by

∆~rb = ~vb ∆s, ∆Rb = −ρS ∆s, (A.6)

∆θ2
b =

(

1.00 × 10−3
)

z−0.16

(

m

mp

)

−0.92

ln
Rb

Rb + ∆Rb
, (A.7)

∆θtb =

(

θ2
b +

∆θ2
b

2

)

∆s, (A.8)

∆t2b =

[

2 θtb +

(

θ2
b +

∆θ2
b

3

)

∆s

]

∆s, (A.9)

where z and m/mp are the particle charge and mass in units of those of a proton. For

the last physical step with Rb → 0 and diverging ∆θ2
b, the growth is directly given

by ∆t2b = 0.02242z−0.16(m/mp)
−0.92(Rb/ρ)2 and then disabled by ∆t2b = 0 in the

unphysical Rb ≤ 0 region.
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