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ABSTRACT: An acidic leaching method using HNO3 is
widely employed to release the global fallout Pu from soil
samples for further chemical separations in radioecology and
toxicology studies and in many applications using Pu as a
useful tracer. In the method’s sample ash treatment step to
decompose organic matter in soil, various ashing temperatures
(400−900 °C) are used; however, the effect of ashing
temperature on the accurate Pu analysis has not been well
investigated. In this study, two standard reference soils (IAEA-
soil-6 and IAEA-375) were used to determine the ashing
temperature effect (from 375 to 600 °C) on the HNO3
leaching method. The Pu analytical results of both standard
reference materials showed that lower 239+240Pu activity was
observed when the ashing temperature exceeded 450 °C, and the 239+240Pu activity continued to decrease as the ashing
temperature was raised. Approximately 40% of the Pu content could not be leached out by concentrated HNO3 after ashing for 4
h at 600 °C. The Pu loss was attributed to the formation of refractory materials, which are insoluble in HNO3 solution. This
hypothesis was confirmed by the XRD analysis of soil samples, which revealed that plagioclase-like silicate materials were formed
after high-temperature ashing. To ensure Pu release efficiency in HNO3 leaching, we recommend 450 °C as the ideal ashing
temperature. This recommendation is also useful for analysis of other important artificial radionuclides (e.g., 137Cs, 90Sr, 241Am)
for which an ashing process is needed to decompose the organic content in soil samples.

The global fallout plutonium in soil, introduced by nuclear
detonations in the past century, has been extensively

studied not only for the purpose of radiological assessments,1−4

but also in various studies in which Pu is used as a geochemical
tracer, such as soil erosion,5−8 sediment dating,9,10 desertifica-
tion studies,11 and estimation of aerosol residence time in the
stratosphere.12 Usually, in these applications, large amounts of
soil samples are needed for Pu analysis. To shorten the
analytical time and improve efficiency, a quick digestion
method, the HNO3 leaching method, has been commonly
employed.13−17

Generally, the HNO3 leaching method uses concentrated
HNO3 (or 8 M HNO3) to dissolve the Pu component in the
soil samples after high-temperature ashing, and that is followed
by chemical separation and Pu measurement. However, during
the ashing step, which is intended to decompose the organic
matter and avoid interferences with the subsequent chemical
separation, various ashing temperatures (400−900 °C) have
been used by different researchers.13,18−21 Different ashing
temperatures may cause additional uncertainties for Pu analysis.

For example, a low temperature cannot decompose the organic
matters thoroughly, whereas a high temperature may produce
some refractory particles that cannot be dissolved by simple
HNO3 leaching.22 It was observed that, at an ashing
temperature of 900 °C, the 239+240Pu activities in a series of
soil and sediment standard samples were lower than the
certified values.18 Thus, an appropriate ashing temperature
should be identified and accepted by researchers to improve the
reliability and accuracy of the HNO3 leaching method.
In the present study, IAEA reference soil samples IAEA-soil-6

and IAEA-375 were used to evaluate the effect of different
ashing temperatures (375−600 °C) on Pu analysis. Lower
239+240Pu activities were observed when the ashing temperature
was increased. When ashed at high temperature, the formation
of refractory fractions was proposed to be responsible for the
incomplete release of Pu from soil samples. This proposed
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cause was discussed by examining the chemical change in two
ways: via X-ray diffraction analysis and comparison of the Pu
results with those of the total digestion method. Finally, an
optimal ashing temperature for the HNO3 leaching method is
recommended.

■ EXPERIMENTAL SECTION
Standard Soil Samples. Two soil standard reference

materials (IAEA-soil-6 and IAEA-375) were used to investigate
the ashing temperature effect on the release efficiency of Pu.
IAEA-soil-6 standard samples were collected in Upper Austria,
and their Pu content was assumed to be from global fallout.23

The approximate composition of IAEA-soil-6 reference material
is summarized in Supprting Information (SI) Table S-1. It is
noted that this material was characterized by a high content of
SiO2 (38.5%). IAEA-375 soil samples were collected in Russia
in July 1990, and their Pu content was assumed to be from
global fallout and radionuclides released in the Chernobyl
accident.14,24 The elemental composition of the IAEA-375
reference material is summarized in Table S-2. It is noteworthy
that the latter may be contaminated with hot particles resulting
from the Chernobyl accident; significantly elevated activities
may be observed for anthropogenic radionuclides in some
subsamples.25

Instrumentation. The ashing process for soil samples was
conducted in a muffle furnace (FUW 253PA, Advantec, Tokyo,
Japan). An example of temperature increment conditions was
heating from room temperature to 450 °C during 10 min,
followed by maintaining the temperature at 450 °C for 4 h.
To evaluate the ashing temperature effect on Pu release in

soil samples by HNO3 leaching, 15 samples of IAEA-soil-6
(∼1.5 g amount for each sample) and 18 samples of IAEA-375
(∼2 g amount for each sample) were transferred to individual
30 mL ceramic crucibles (CW-B1, ASONE Corp., Tokyo,
Japan), and then ashed at 375−600 °C. After heating at the
target temperature for 4 h, the samples were cooled to room
temperature in the muffle furnace until ready for subsequent
acid leaching/digestion. Weight loss ranges of 0.9−4.4% and
9.2−11.7% were found after ashing for IAEA-soil-6 and IAEA-
375 samples respectively, and the actual values depended on
the ashing temperature. The crystal structures of the ashed soils
were obtained using powder X-ray diffraction (XRD) on a
Bruker D8 Advance diffractometer (Karlsruhe, Germany) using
Cu Kα radiation.
To measure Pu isotopes, a high efficiency sample

introduction system (APEX-Q) equipped with a conical
concentric nebulizer was combined with SF-ICP-MS (Element
2, Thermo Scientific, Bremen, Germany). Details of this
analytical system have been described in previous study.26 Low-
resolution mode was used to take advantage of the maximal
instrument sensitivity. All the measurements were made in the
self-aspiration mode with an uptake rate of ∼0.2 mL/min to
reduce the risk of contamination from the peristaltic pump
tubing. The SF-ICP-MS was optimized on a daily basis using
0.1 ng/mL U standard solution to provide optimum intensities
and peak shapes. The instrument detection limit of Pu was as
low as 0.14 fg/mL.
Reagents. All solutions were prepared using analytical grade

reagents, including HCl, HNO3, HF, H3BO3, HBr, HClO4,
H2O2, NaNO2, NH4I, and NH2OH·HCl. Ultrapure grade
HNO3 obtained from Tama Chemicals (Tokyo, Japan) was
used for preparation of the final sample solution for ICP-MS
measurement. Milli-Q water (18.2 MΩ cm) was used for

sample preparation. The two anion-exchange resins, AG 1 × 8
(100−200 mesh, Cl-form) and AG MP-1 M (100−200 mesh,
Cl-form), were obtained from Bio-Rad (Hercules, CA, U.S.A.).
242Pu (CRM 130, Pu spike assay and isotopic standard, New
Brunswick Laboratory, NJ, U.S.A.) was used to spike the soil
samples as a yield tracer. The mixed Pu isotope standard
solution (NBS-947) with a certified 240Pu/239Pu atom ratio of
0.242 was employed for mass bias correction.

Pu Separation Method. Three acidic leaching or digestion
methods were used in this study: HNO3 leaching, HNO3−HF
leaching, and HNO3−HF−HClO4 digestion. Detailed descrip-
tions of their procedures can be found elsewhere: the HNO3
leaching method from Bu et al.;27 the HNO3−HF leaching
method from Zheng et al.;28 and the HNO3−HF−HClO4
digestion method from Zhang et al.29 For the HNO3 leaching
method, in brief, 1−3 g ashed soil samples and 20 mL conc.
HNO3 were transferred to a capped 120 mL Teflon vessel and
digested at 160 °C for 4 h after 0.57 pg 242Pu was added as a
yield tracer. After filtration and adjusting the acidity to 8 M
HNO3, 0.41g NaNO2 was added to take Pu to the tetravalent
state.27

In the HNO3−HF leaching method, an ashed soil sample
(1−3 g) was mixed with 0.57 pg of 242Pu tracer in a capped 120
mL Teflon vessel and digested by heating on a hot plate after
adding 20 mL 10 M HNO3/1 M HF. After leaching, the
solution was heated to dryness, and the residues were dissolved
in 30 mL 8 M HNO3. NaNO2 was also added to adjust the
oxidation state, and then 0.3 g of boric acid was added to
convert unreacted HF to BF4

−.28

The HNO3−HF−HClO4 digestion method used 40 mL of
HNO3 and 10 mL of HF for digestion after adding 0.57 pg of
242Pu tracer. The samples were then evaporated to dryness,
followed by adding 3 mL of HClO4. Next, 3 mL conc. HNO3
was added and the solution was evaporated to dryness, this step
was repeated twice. The residue was dissolved in 50 mL 1 M
HNO3, and 4 mg Fe3+ was added as carrier, then 2.5 mL of
NH2OH·HCl (80 g/L) was added to change Pu to Pu(III), and
Pu was further coprecipitated with Fe(OH)3. The precipitate
was dissolved in 1.5 mL conc. HNO3, and then 50 mL 8 M
HNO3 was added to the solution along with 0.41 g of NaNO2
to adjust the oxidation state of Pu to Pu (IV).29

After acid leaching or digestion, the samples were subjected
to the subsequent two-stage anion chromatographic chemical
separation as described by Bu et al.27 In brief, Pu was separated
from the sample matrix using an AG 1 × 8 anion-exchange
column. The obtained Pu fraction was further purified using an
AG MP-1 M anion-exchange column with HBr for Pu elution.
After removing any trace of HBr, the sample was finally
dissolved in 4% HNO3 in preparation for the SF-ICP-MS
analysis. Details on SF-ICP-MS measurements of Pu isotopes
are reported elsewhere.26

■ RESULTS AND DISCUSSION

Effect of Ashing Temperature on the Release of Pu
Using HNO3 Leaching Method. The Pu analytical results are
shown in Table S-3 for IAEA-soil-6 samples (temperature from
400 to 600 °C), treated by the HNO3 leaching method. A
239+240Pu activity range from 0.625 to 1.087 mBq/g was
obtained, equal to or lower than the IAEA recommended
239+240Pu activity value: 0.96−1.11 mBq/g. The 240Pu/239Pu
atom ratios derived from the current analysis ranged from 0.183
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to 0.203, consistent with the reported range of 0.17−
0.22.13−15,17,30−35

For a better understanding of the ashing temperature effect
on the release of Pu in the HNO3 leaching method, Pu
analytical results (temperature-averaged) of IAEA-soil-6
samples are plotted in Figure 1. For samples ashed at

temperatures not exceeding 450 °C, the 239+240Pu activities
were generally consistent with the reported range: 0.96−1.11
mBq/g. As the ashing temperature was increased, however, an
obvious decreasing trend was observed. The lowest activity
(average: 0.638 ± 0.011 mBq/g) was found for the 600 °C
ashed samples, in which only ∼62% of the Pu was released. By
comparison, the IAEA recommended average activity was 1.035
mBq/g. In contrast to 239+240Pu activity, the 240Pu/239Pu atom
ratios did not show any significant difference at various ashing
temperatures, and all the ratios were within the reported range.
This may indicate no isotopic discrimination occurred during
the ashing process, and all Pu isotopes were lost at the same
rate.
In the case of IAEA-375 samples (Table S-4), unlike the

IAEA-soil-6 case, no obvious ashing temperature effect was
observed on the temperature-averaged 239+240Pu activities,
which appeared to be irregularly distributed with large
uncertainties. In addition, some subsamples showed signifi-
cantly higher 240Pu/239Pu atom ratios (0.335−0.456) compared
with the literature value, 0.22−0.31.13,15,18,20,33,36 These
discrepancies might be attributed to the influence of hot
particles released from the Chernobyl accident. As pointed out
by the IAEA data sheet of IAEA-375, some evidence has been
presented to suggest that this material may be contaminated
with hot particles resulting from the Chernobyl accident,25 but
the frequency of the occurrence of these hot particles is
unknown. The IAEA suggested that Pu analysis of IAEA-375
would be especially welcomed, as to receive additional data
about hot particles.37 Fortunately, because of the smaller
sample amount (about 2 g) and larger number of samples
adopted in the current study, compared with other stud-
ies,13,20,36 hot particle signals were successfully observed.
Among the 18 analyzed IAEA-375 samples, 6 samples
(400_sub_2, 450_sub_2, 500_sub_2, 550_sub_1,
550_sub_2, and 600_sub_1 in Table S-4) were considered to
be seriously affected by hot particles, taking into account their
much higher 240Pu/239Pu atom ratios and 239+240Pu activities
compared with the reported values, 0.22−0.31 for the
240Pu/239Pu atom ratio;13,15,18,20,33,36 and 0.26−0.34 mBq/g

for 239+240Pu activity.25 The correlation between the 240Pu/239Pu
atom ratio and the 239+240Pu activity for IAEA-375 samples is
plotted in Figure 2, in which the samples heavily affected by hot

particles were clearly separated from the less (or non-) hot-
particle-affected samples. Taking the 240Pu/239Pu atom ratio as
a Pu source indicator, a higher ratio means more hot particles
were mixed in the soil sample, thus resulting in a linearly
increased 239+240Pu activity. The highest 240Pu/239Pu atom ratio
was found to be 0.456 ± 0.041, which was in good agreement
with the reported values of 0.45−0.52 for Chernobyl hot
particles.38

To eliminate the hot particles’ influence on IAEA-375
samples, only those samples whose Pu analytical results
(240Pu/239Pu atom ratios and 239+240Pu activities) were
consistent with the reported values were considered for the
evaluation of ashing temperature effect (Figure 3). Similar to

the IAEA-soil-6 case, the 239+240Pu activities decreased as the
ashing temperature increased, with the exception of the 600 °C
ashed samples, which might be slightly influenced by hot
particles. Unlike the IAEA-soil-6 case, IAEA-375 samples ashed
at 400 and 450 °C showed lower 239+240Pu activities than the
IAEA recommended range. This was probably due to the fact
that the IAEA-recommended 239+240Pu activity was based on
measurements of large-sized samples in which the hot particles’
influence might be included, and hence, the recommended
values were overestimated. The highest Pu loss was found for
the sample ashed at 550 °C, in which only 55% of the Pu was

Figure 1. Pu analytical results of IAEA-soil-6 samples treated by
HNO3 leaching method (ashed at 400−600 °C).

Figure 2. Correlation between 240Pu/239Pu atom ratio and 239+240Pu
activity in IAEA-375 soil samples affected by hot particles.

Figure 3. Pu analytical results of IAEA-375 samples treated by conc.
HNO3 leaching (ashed at 375−600 °C).
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measured, compared with the IAEA recommended activity
(0.30 mBq/g).
As discussed above, both standard reference materials had a

decreasing trend for 239+240Pu activity when the ashing
temperature exceeded 450 °C, indicating that a smaller Pu
content was measured in these samples. Because all the
experimental conditions were the same except the ashing
temperature, we hypothesized that the high ashing temperature
is responsible for the Pu loss by forming some refractory
fractions in which some portion of the Pu was trapped and
could not be leached out by HNO3.
XRD Analytical Results. To verify our hypothesis, X-ray

diffraction (XRD) analysis was performed to identify the phase
change in the soil samples after ashing treatment. Soil samples
ashed at 400 and 600 °C, together with a nonashed sample,
were subjected to XRD measurements in which the diffraction
data were recorded in the 2θ range of 10−80° with a step of
0.03° and a count time of 1 s. As shown in Figure 4a, the
spectra obtained from soil samples, nonashed and ashed at 400
°C, had exactly the same distribution pattern, indicating that no
phase change was observed after 400 °C heating. However, in
the 600 °C case, three new peaks were observed between the
angle 25° and 30°. New phases, for which the three new peaks
stand, were formed in soil samples during the 600 °C ashing
process.
For a better understanding of these newly formed

components, a comparison between the present XRD spectra
and a soil sample spectrum reported by Mukai et al.39 was
carried out; the results are shown in Figure 4. Mukai et al.
collected a litter soil sample from a forest in Fukushima
Prefecture and analyzed this sample by XRD. Their results
showed the presence of quartz, plagioclase, and hornblende in
the soil sample. Two obvious quartz peaks appeared at the
same locations in both spectra (from 20° to 30°) (Figure 4b,c),
providing a valid basis for comparing these two spectra in detail.
Similarly, the three new peaks observed in this study also
appeared in Mukai et al.’s spectrum, in which the middle peak
was identified as plagioclase. Plagioclase, commonly present in
the Earth’s crust, refers to a series of silicate minerals that are
known to be insoluble by nitric acid leaching. Thus, it was
concluded in the 600 °C ashing temperature case, that the lost

Pu content during ashing was probably wrapped up by these
newly formed plagioclase-like refractory fractions.

Validation of the Hypothesis Using Different Leach-
ing/Digestion Methods. To validate the hypothesis, various
leaching/digestion, including conc. HNO3, HNO3−HF, and
HNO3−HF−HClO4, were utilized to treat IAEA-soil-6 samples
after ashing at 550 °C. The 239+240Pu activity obtained from the
conc. HNO3 leaching method was 0.67 ± 0.02 mBq/g,
significantly lower than the reported range: 0.96−1.11 mBq/g.
For the HNO3−HF leaching and HNO3−HF-HClO4 digestion
methods, silicate fractions formed during ashing were dissolved
by HF, resulting in the 239+240Pu activity (0.96 ± 0.03 mBq/g
for HNO3−HF leaching; 0.99 ± 0.02 mBq/g for HNO3−HF−
HClO4 digestion) being within the reported range. Con-
sequently, on the basis of the above discussion, it was
confirmed that a high ashing temperature (500−600 °C) can
lead to formation of some refractory silicates that remain
insoluble in conc. HNO3 and Pu loss in the HNO3 leaching
method.

■ CONCLUSIONS

In summary, standard reference soil samples, IAEA-soil-6 and
IAEA-375, were used to evaluate the effect of ashing
temperature on Pu analysis for the widely employed HNO3
leaching method. Both standard reference materials showed Pu
loss (without isotopic composition change) when the ashing
temperature exceeded 450 °C. Pu release decreased as the
ashing temperature was increased, and ∼40% of the Pu was lost
after 600 °C ashing. The results of XDR analysis for IAEA-soil-
6 samples revealed that refractory materials (silicate, e.g.
plagioclase-like) were generated after the 600 °C ashing;
however, these refractory fractions remain insoluble in
concentrated HNO3. Thus, the Pu content wrapped in these
refractory fractions could not be released by HNO3 leaching,
resulting in the Pu loss observed for this method. To ensure the
Pu release efficiency, the findings of this study suggest that the
temperature for sample ashing in the HNO3 leaching method
should be controlled below 500 °C, and 450 °C is
recommended. This suggestion is also useful for the
determination of other artificial radionuclides (e.g., 137Cs,
90Sr, 241Am) if an ashing process is needed. In addition, hot
particle information in IAEA-375 standard reference soil was

Figure 4. Spectrum of XRD analysis after ashing at different temperatures (a); XRD results derived from Mukai et al.39 (b); and XRD spectra from
this study (20°−30°) (c).
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presented, and it should be useful for studies using this soil as a
quality control material for the validation of analytical methods
and for the assessment of a laboratory’s analytical work.
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