放射能調査研究報告書

（平成7年度）

平成8年12月

放射線医学総合研究所
序

当研究所では、科学技術庁の放射能調査研究の一環として、昭和34年度より核爆発実験に伴う放射性降下物及び原子力施設等から放出される放射性物質による環境放射能レベル調査、並びにこれらの安全解析について調査研究を行ってまいりました。

現今では、原子力の平和利用の著しい発展に伴い、環境放射能についての国民の関心はますます高まりつつあります。したがって、原子力利用の安全研究の重要性は社会の強い要請の下にあって、環境及び人への影響の基盤をなす放射能調査研究の重要性は益々大きくなると考えられます。

このような状況の中で、平成7年度は、放射能調査研究費総額125,861千円の予算を計上し「環境・食品・人体の放射能レベル及び線量調査」、「原子力施設周辺のレベル調査」、「放射能データセンター業務」、「放射能調査結果の評価に関する基礎調査」、「環境放射能モニタリング技術者の研修」及び「緊急被ばく測定・対策に関する調査研究」を実施しました。

ここに、これらの結果を報告するとともに、関係各位に対し、なお一層のご指導とご鞭撻をお願いする次第であります。

平成8年4月

放射線医学総合研究所長

平尾 泰男
放射能調査研究報告書
（平成7年度）

— 目 次 —

I．環境・食品・人体の放射能レベル及び線量調査
 1．大気浮遊塵中の放射性核種濃度・・・・・・・・・・・・・・・・・・・ 3
 2．環境中の$^1^4$Cの濃度調査・・・・・・・・・・・・・・・・・・・・・・ 6
 3．日本周辺海域の放射能の解析調査・・・・・・・・・・・・・・・・・・・ 10
 4．人体の放射性核種濃度及び線量の解析調査・・・・・・・・・・・・・・ 14
 5．環境中の空間ガンマ線線量調査・・・・・・・・・・・・・・・・...... 19
 6．陸上試料の調査研究・・・・・・・・・・・・・・・・・・・・・・・・・・・ 26
 7．屋内・外のラドン等による被曝線量調査・・・・・・・・・・・・・・・・ 30

II．原子力施設周辺のレベル調査
 1．沿岸海域試料の解析調査・・・・・・・・・・・・・・・・・・・・・・・ 39
 2．環境中のトリチウムの測定調査・・・・・・・・・・・・・・・・・・・・ 44
 3．人体臓器中の$^{23^9}$Pu・$^{24^0}$Pu濃度・・・・・・・・・・・・・・・・...... 50
 4．原子力施設周辺住民の放射性
 及び安定元素摂取量に関する調査研究・・・・・・・・・・・・・・・・・・ 53

III．放射能データセンター業務・・・・・・・・・・・・・・・・・・・・..... 57

IV．放射能調査結果の評価に関する基礎調査・・・・・・・・・・・・...... 61

V．環境放射線モニタリング技術者の研修・・・・・・・・・・・・・・・・ 67

VI．緊急被曝測定・対策に関する調査研究等
 概 要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 77
 1．緊急時被曝線量評価法に関する研究・・・・・・・・・・・・・・・・・・・ 78
 2．放射能迅速評価システム・・・・・・・・・・・・・・・・・・・・・・・・ 82
 3．緊急被曝医療体制の整備に関する調査研究・・・・・・・・・・・・・・・ 85
 4．緊急被曝救護訓練課程・・・・・・・・・・・・・・・・・・・・・・・・ 87
 5．緊急モニタリング体制・・・・・・・・・・・・・・・・・・・・・・・・ 90
 6．緊急医療体制・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 96
I. 環境・食品・人体の放射能
レベル及び線量調査
1．大気浮遊塵中の放射性核種濃度

湯川雅枝、渡辺嘉人、西村義一（環境衛生研究部）
本郷昭三（技術部）
田中千枝子、佐藤愛子（技術補助員）

1．目的
核爆発実験や原子力平和利用により、大気中に放出された放射性核種による放射能レベルを把握し、国民の被爆線量評価に資することを目的として、大気浮遊塵中の放射性核種の濃度を調査する。

2．方法
(1)試料採取
千葉市穴田川にある放射線医学総合研究所所構内の地上1〜1.5mの外気浮遊塵を採取した。浮遊塵は大口径のハイポリユームエアーサンプラーを用いて、捕集効率が0.995以上の大型グラスファイバー濾紙（20.3cm×25.4cm）に連続集塵するが、サンプラーの流量は、マイクロコンピュータによって一定量を保つよう制御されている。濾紙の目詰まりのために流量が下がっても、積算流量は正しく表示されるように設計されている。
(2)分析測定
浮遊塵を捕集したグラスファイバー濾紙は、所定の大きさに折りたたんで、Ge（Li）検出器によるガンマスペクトロメトリを行った。ガンマ線放出核種無量後、NaOHとHClによりストロンチウムを抽出し、発煙硝酸法で精製した。90Srはマイクロコンピュータによる自動解析装置付きの低バックグラウンドスペクトロメータにより定量を行った。

3．結果
本年度は1994年2月18日から1995年3月17日までの採取試料についてのガンマ線計測結果と1989年12月22日から1991年3月4日までの90Srの分析結果についてまとめた。表-1 にガンマ線放出核種（137Csのみ検出できた）の分析結果を、表-2 に90Srの分析結果について示した。

4．過去の調査研究経過
放射性核種の放射能測定を昭和40年10月より実施してきた。昭和56年3月
までは静電式集塵機を用いて試料採取を行ったが、同年4月からは本研究所で開発試作した集塵器による試料採取を継続している。

5．今後の調査研究計画
大気浮遊塵中の放射性核種濃度変動を詳細かつ経時的に観察するために、平常時と緊急時の両方に対応可能なように開発された、大気浮遊塵大容量連続集塵分析装置による連続モニタリングを開始した。従来の集塵器によるデータとの整合性をチェックするため、平行して運転している。今後、放射能レベルの変動を認めた時点で、その浮遊塵サンプルの詳細な分析測定を行うなど、モニタリング方法の再検討を行う。既存の集塵装置で得られるデータとの整合性を図るため、当分の間大容量連続集塵分析装置と平行して、既存の装置の運転も行う。

6．平成7年度の研究発表
（1）本郷昭三、湯川雅枝、田中千枝子、佐藤愛子：第37回環境放射能調査研究成果論文抄録集、1-2、1995.
表 - 1 大気浮遊塵中のγ線放射性核種濃度

<table>
<thead>
<tr>
<th>大気浮遊塵 採取期間</th>
<th>通風量 $m^3 \times 10^3$</th>
<th>放射性核種濃度（$\times 10^{-6}$Bq/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994 2/18 ～ 3/17</td>
<td>21.7</td>
<td>--</td>
</tr>
<tr>
<td>3/17 ～ 4/18</td>
<td>30.1</td>
<td>--</td>
</tr>
<tr>
<td>4/18 ～ 5/18</td>
<td>30.8</td>
<td>--</td>
</tr>
<tr>
<td>5/18 ～ 6/17</td>
<td>28.5</td>
<td>3.0 ± 0.9</td>
</tr>
<tr>
<td>6/17 ～ 7/18</td>
<td>31.8</td>
<td>--</td>
</tr>
<tr>
<td>7/18 ～ 8/17</td>
<td>25.8</td>
<td>--</td>
</tr>
<tr>
<td>8/17 ～ 9/7</td>
<td>23.8</td>
<td>3.7 ± 1.3</td>
</tr>
<tr>
<td>9/7 ～ 9/26</td>
<td>11.8</td>
<td>--</td>
</tr>
<tr>
<td>9/26 ～ 10/17</td>
<td>23.0</td>
<td>2.3 ± 1.3</td>
</tr>
<tr>
<td>10/17 ～ 11/17</td>
<td>24.4</td>
<td>--</td>
</tr>
<tr>
<td>11/17 ～ 12/16</td>
<td>23.6</td>
<td>--</td>
</tr>
<tr>
<td>12/16 ～1995 1/17</td>
<td>26.6</td>
<td>--</td>
</tr>
<tr>
<td>1995 1/17 ～ 2/17</td>
<td>34.0</td>
<td>--</td>
</tr>
<tr>
<td>2/17 ～ 3/17</td>
<td>20.4</td>
<td>3.3 ± 1.5</td>
</tr>
</tbody>
</table>

-- 検出限界以下

表 - 2 大気浮遊塵中のストロンチウム濃度

<table>
<thead>
<tr>
<th>大気浮遊塵 採取期間</th>
<th>通風量 $m^3 \times 10^3$</th>
<th>放射性核種濃度（$\times 10^{-6}$Bq/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989 12/22 ～ 90 1/26</td>
<td>20.6</td>
<td>--</td>
</tr>
<tr>
<td>1990 1/26 ～ 3/5</td>
<td>22.2</td>
<td>--</td>
</tr>
<tr>
<td>4/27 ～ 5/25</td>
<td>9.59</td>
<td>--</td>
</tr>
<tr>
<td>9/28 ～ 10/29</td>
<td>20.9</td>
<td>--</td>
</tr>
<tr>
<td>10/29 ～ 12/3</td>
<td>23.6</td>
<td>1.8 ± 0.6</td>
</tr>
<tr>
<td>12/3 ～ 12/28</td>
<td>18.4</td>
<td>2.7 ± 0.9</td>
</tr>
<tr>
<td>12/28 ～1991 1/25</td>
<td>21.4</td>
<td>4.0 ± 1.4</td>
</tr>
<tr>
<td>1991 1/25 ～ 1/28</td>
<td>3.10</td>
<td>--</td>
</tr>
<tr>
<td>1/28 ～ 2/4</td>
<td>24.8</td>
<td>--</td>
</tr>
<tr>
<td>2/4 ～ 2/12</td>
<td>3.21</td>
<td>--</td>
</tr>
<tr>
<td>2/12 ～ 3/4</td>
<td>19.3</td>
<td>--</td>
</tr>
</tbody>
</table>

-- 検出限界以下

- 5 -
2．環境中の14Cの濃度調査

府馬正一、井上義和
（環境衛生研究部）

1．目的

環境中の14Cの主な起源は、自然生成、大気圏核実験および核燃料サイクル関連施設である。14Cは半減期(5730年)が長いために集団実効線量への寄与は無視出来ないと考えられている。14Cが集団に及ぼす線量影響を起源毎に評価するためには、施設の影響の無い自然環境および施設周辺環境における14Cレベルの長期間の時間推移と変動および地域分布などに関するデータが不可欠である。

自然生成および核実験起源の14Cの環境レベルを把握する目的で、1960年代初頭より現在に至るまで、主に植物精油と発酵アルコールを測定試料として14C濃度（比放射能、dpm/gC）を測定してきた。植物では、ある年に生育した部分の炭素中の14C濃度は、その年の大気中の二酸化炭素中の14C濃度を良く反映すると考えられるので、測定値は、飲食物の摂取を通じて人体に摂取される14C濃度を推定し、線量評価を行う際の有用なデータとして使用出来ると考えられる。

2．方 法

今年度測定した試料は、主として1995年に日本で収穫されたブドウを原料として発酵醸造されたワインである。蒸留精製し、約90-96％のアルコールを調製した。比重を測定して正確なアルコール濃度を決定後、その10mlを同量のトルエンシンチレータと混合し、液体シンチレーションカウンターPackard社製 TRI-CARB 2260XLで1試料当たり500分測定した。バックグラウンド(B.G)計測試料は、同量の合成アルコールを用いて調製した。この測定法では、1試料に導入できる炭素量は約4gであり、測定効率は約60％、B.G計数率は、約3.3cpmであった。

3．結 果

測定結果を表1に示す。日本の各地の14C濃度は、15.0±0.1dpm/gC～15.5±0.1dpm/gCの範囲であった。平均値は、15.3±0.2dpm/gCであった。測定誤差を考慮すると、14C濃度の地域差は認められず、日本の14C濃度は工業地帯
を除いてほぼ均一に分布していると考えられる。1980年から1989年までの10年間の^{14}Cの濃度は、年減少率、約0.20dpm/gCで低下していった。その後、1990年から1995年の最近6年間は、15.6dpm/gCから15.3dpm/gCと緩やかな減少傾向を示した。

また、1995年度に購入した日本産ワインのうち、原料の生産年または生産地の不明なものは4銘柄と1994年岡山県産1銘柄の^{14}C濃度は15.1±0.1dpm/gC～15.8±0.1dpm/gCとなり（表2）、最近数年の測定結果と同一レベルであった。1994年にウクライナで購入したビールとウォッカの^{14}C濃度は、いずれも15.6±0.1dpm/gCとなり（表2）、最近数年の日本の測定結果と同一レベルであった。

4. 過去の調査研究経過・経緯

本調査研究により蓄積された^{14}C濃度の時系列から以下のことが分かった。1940年代の試料から日本での自然生成レベルが、約13.7dpm/gCであった。大気圏核実験の開始に伴い、その影響が1950年代以降の試料に認められ、^{14}C濃度は急激に増大し始め、1963年には最大値約25dpm/gCに達した。その後1980年代まで、濃度は比較的急速に低下した。この間、特に1970年前後の日本の濃度は、北半球大気対流圈の予測濃度より最大十数％の低下を示した。これは、日本の急速な工業化に伴う化石燃料の大量消費の結果、大気中に^{14}Cを含まない炭酸ガス濃度が急激に増加したもの、希釈され濃度が低下したと推定される（Suess効果）。1980～1995年の間の^{14}C濃度のゆるやかな減少傾向は、炭素循環モデルに基づく対流圈の^{14}C予測濃度(NCRP)と良い一致を示した。

5. 今後の調査研究計画・方針

植物由来有機成分中の^{14}C濃度測定値から推定される大気中の^{14}C濃度の時間変化は、年々減少率が小さくなりつつもなお減少傾向が続いている。核実験起源の^{14}Cが、1995年現在で自然レベルの約12％増のレベルで大気中に残存していることを示している。

長期間の時間変化を予測するためには、本測定調査を継続してデータを蓄積するとともに、植生や海洋が果たしている炭酸ガスのリザーバーとしての役割と化石燃料の消費に基づく^{14}Cを含まない炭酸ガスの大気中濃度の増加による希釈効果の両者の影響について解析する必要がある。これらの解析結果は、近年問題となっている地球温暖化の原因解明に役立つであろう。一方、放射性廃棄物の土中埋設処分や核燃料サイクル施設の運転に伴い^{14}Cが環境
に放出され、局地的に環境濃度を上昇させる可能性があるので、今後は、施設周辺の環境試料を定期的に採取し、その14C濃度を測定し、経年変化に関するデータを集積する必要がある。

6. 謝辞

本研究を行うに際し、ウクライナで購入したビールとウォッカを提供してくださった総括安全解析研究官付、石川徹夫氏に深謝いたします。

7. 平成7年度の研究発表

(1) 井上、府馬、後藤：環境中の14Cの濃度調査、第37回環境放射能調査研究成果論文抄録集、3-4、科学技术庁、平成7年11月。

(2) 井上、府馬、後藤：環境中の14Cの濃度調査、放射能調査研究報告書、7-9、放射線医学総合研究所、平成7年11月。
表1. 日本の1995年産ワインの14C濃度

<table>
<thead>
<tr>
<th>試料番号</th>
<th>ブドウの産地</th>
<th>14C濃度 (dpm/gC)</th>
<th>計測誤差、1SD (dpm/gC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>北海道</td>
<td>15.4</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>秋田県</td>
<td>15.2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>福島県</td>
<td>15.4</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>山梨県</td>
<td>15.5</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>山梨県</td>
<td>15.0</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>山梨県</td>
<td>15.3</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>島根県</td>
<td>15.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

1995年 平均値 = 15.3 ± 0.2 dpm/gC（1標準偏差）

表2. 他のアルコール飲料の14C濃度

<table>
<thead>
<tr>
<th>試料</th>
<th>原材料の生産年</th>
<th>原材料の産地</th>
<th>14C濃度 (dpm/gC)</th>
<th>計測誤差、1SD (dpm/gC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ワイン</td>
<td>不明</td>
<td>山形県</td>
<td>15.8</td>
<td>0.1</td>
</tr>
<tr>
<td>（1996年1月購入）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワイン</td>
<td>不明</td>
<td>京都府</td>
<td>15.4</td>
<td>0.1</td>
</tr>
<tr>
<td>（1995年12月購入）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワイン</td>
<td>1995年</td>
<td>不明</td>
<td>15.1</td>
<td>0.1</td>
</tr>
<tr>
<td>（京都府で醸造）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワイン</td>
<td>不明</td>
<td>愛媛県</td>
<td>15.8</td>
<td>0.1</td>
</tr>
<tr>
<td>（原料はゆず）（1995年11月購入）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワイン</td>
<td>1994年</td>
<td>岡山県</td>
<td>15.1</td>
<td>0.1</td>
</tr>
<tr>
<td>ビール</td>
<td>不明</td>
<td>不明</td>
<td>15.6</td>
<td>0.1</td>
</tr>
<tr>
<td>（1994年11月にウクライナ、キエフで購入）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウォッカ</td>
<td>不明</td>
<td>不明</td>
<td>15.6</td>
<td>0.1</td>
</tr>
<tr>
<td>（1994年11月にウクライナ、キエフで購入）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. 日本周辺海域の放射能の解析調査

山田正俊、平野茂樹、青野辰雄、中村清、長屋裕*（海洋放射生態学研究部、*現海洋生物環境研究所）

1. 目的
外洋を含む日本周辺海域の海水・海底堆積物・海産生物等に存在する放射性核種濃度を明らかにするとともに、その経年変化および水平・鉛直方向の分布の様相から、海洋におけるこれら核種の挙動の解明に資するデータを得ることを目的としている。今年度は海水と海藻中の99Tcおよび相模灘海底堆積物中の$^{239+240}$Pu, 137Csの結果について報告する。

2. 方法

99Tc測定用の海水および褐藻であるウミトラノオは、茨城県ひたちなか市沿岸で採取し、イオン交換法と溶媒抽出法で分離後β線スペクトロメータで99Tcの放射能を測定した。海底堆積物試料は東京大学海洋研究所「淡青丸」KT-90-04次航海に関し、相模灘のStn.2（35-02.1N, 139-40.1E, 水深808m）においてボックスコアラーを用いて採取した。イオン交換法、AMP法等で分離・精製し、$^{239+240}$Pu, 137Csの放射能を測定した。

3. 結果

1994年4月から1995年3月の期間に海水中の99Tcの濃度は検出下限（10mBq/m³）以下から80mBq/m³の間で変動した。前年度同期間と比較すると幾分低めに推移した。またウミトラノオの99Tc濃度は海水中の濃度変化にほぼ対応して変化し、その濃度は90～590mBq/kg生の間で変動した。日本周辺の他海域における同種海藻中の99Tc濃度は、最低が千葉県富浦の5.6mBq/kg生、最高が青森県大戸瀬崎の20mBq/kg生であった。

相模灘海底堆積物の測定結果を図-1～4に示す。$^{239+240}$Pu濃度は、堆積物表層で2.9Bq/kg-dryであり、深さとともに直線的に減少し、12～14 cm層で0.13Bq/kg-dryとなる鉛直分布を示した。また137Cs濃度の鉛直分布も$^{239+240}$Puとほぼ同様の傾向を示した。Pu/Cs比は10cmまで1.0～1.3と極めて大きい値であった。堆積物中での$^{239+240}$Puのインベントリーも112MBq/km²と国連報告書に比べ3倍高い値を示した。
4．過去の調査研究経過・経緯
これまで日本海や東シナ海などの縁辺海や北太平洋等でサンプリングの機会を得て、海水や海底堆積物中の放射性核種濃度を測定し、データの蓄積を図ってきた。

5．今後の調査研究計画・方針
次年度も引き続き、外洋を含む日本周辺海域において海洋試料を採取し、放射性核種濃度を測定して海洋における挙動の解明のための基礎データの蓄積および経年変化を把握する。

6．平成7年度の研究発表
（1）山田、青野、平野、中村、長屋：放射能調査研究報告書（平成6年度）、NIRS－R－30，10－14，1995。
（2）山田、青野、平野、中村、長屋：第37回環境放射能調査研究成果論文抄録集、41－42，1995。
図-1 相模灘堆積物中の含水率

図-2 相模灘堆積物中の$^{239+240}{\text{Pu}}$の鉛直分布
図-3 相模灘堆積物中の
137Csの鉛直分布

図-4 相模灘堆積物中のPu/Cs比の
鉛直分布
４．人体の放射性核種濃度及び線量の解析調査

河村日佐男、白石久二雄
（環境放射生態学研究部）

1. 目的

環境に放出された放射能とくにフォールアウトに由来する人体の放射性核種の濃度の測定を行い、体内器官・組織中の濃度に影響する因子につき解析し、あわせて被曝線量の推定を行うことを目的とする。あわせて緊急時における一般人の体内放射能と線量の動向の検討に資する。

2. 方法

本年度は主として平成5年および平成6年の死亡例の試料収集と分析測定の状況につき報告する。骨試料は、東京及び北海道地区において国立病院及び国公立研究機関等の協力のもとに収集し、常法に従って試料の処理を行い、その一部については^{90}Sr放射能の分析および骨線量の推定を行った。収集した骨部位は、主として脊椎骨であった。

3. 結果

(1) 骨中^{90}Sr放射能濃度

現在までに得られている骨中^{90}Sr濃度を表1に示す。平成5年(1993年)死亡例の平均骨中^{90}Sr濃度は、成人群で16±9mBq^{90}Sr (gCa)^{-1}であった。その他の年令群および平成6年(1994年)死亡例についてはなお分析中である。以前の平成4年(1992年)においては、0-4才群で37±2mBq^{90}Sr (gCa)^{-1}、5-19才群においては17±8mBq^{90}Sr (gCa)^{-1}、成人群では14±3mBq^{90}Sr (gCa)^{-1}であった。

(2) 赤色骨髄および骨表面に対する年線量当量

骨組織に与える線量の推定結果を表2に示す。すなわち、日本人成人における骨中の^{90}Sr及びその娘核種^{90}Yのβ粒子から骨内の赤色骨髄及び骨表面細胞が受ける年間の吸収線量につき、上記分析結果に基づき国連科学委員会の線量係数(P_{α})を適用して推定した。平成5年死亡例においては、赤色骨髄及び骨表面細胞に対してそれぞれ7±4及び16±8μGy a^{-1}であった。平成6
年死亡例については、分析値が得られていないため未推定である。

骨中の\(^{90}\)Sr濃度は、長期的に見れば極く暖昧な減少傾向があるが、成人群については数年来殆ど変化がなかった。しかし、0-4才群においては1986年のチェルノブイリ事故後若干の変動が見られた。成人群における\(^{90}\)Srによる赤色骨髄及び骨表面における年吸収線量は、従って数年来変動が見られない。

4. 現在までの調査研究経過

(1) \(^{90}\)Sr

フォールアウト核種と自然放射能による被曝線量の比較を行うことは、両者の国民線量に対する寄与の観点から必要なことである。代表的な自然核種として、\(^{226}\)Raを選び、別に分析測定した日本人の骨中の\(^{226}\)Ra及びその娘核種による\(\alpha\)粒子から受ける年線量当量を求めた。骨線量算定モデルおよびパラメータとして、ICRP Publication 30の方法と標準日本人の線源・標的器官の質量を用いた。その結果、赤色骨髄及び骨表面の年線量当量は、それぞれ10および145 \(\mu\)Sv a\(^{-1}\)であった（参考1）。3節に述べた\(^{90}\)Srによる年吸収線量を、\(\beta\)粒子の線質係数（ICRPの新しい定義によれば放射線加重係数）を1とし
て年線量当量に換算すれば、同様に、それぞれ7及び16 \(\mu\)Sv a\(^{-1}\)となる。したがって、フォールアウト起源の\(^{90}\)Srから、赤色骨髄が受ける年線量当量は、平成5年現在、天然に存在する\(^{226}\)Ra（及び娘核種）の\(\alpha\)線による線量とほぼ同一水準にあること、いっぽう、骨表面細胞については\(^{90}\)Srによる年線量当量は\(^{226}\)Raの\(\alpha\)線による線量よりもほぼ1桁小さいことが推定された。

(2) \(^{131}\)I

a）尿中濃度からの甲状腺線量の推定

1986年チェルノブイリ事故直後の5月4日以降、日本人甲状腺の\(^{131}\)Iによる被曝線量推定のため、成人及び子供計15名の尿中\(^{131}\)I濃度の分析測定を
行った（参考2）。測定された濃度のピーク値は3.3 Bq I\(^{-1}\)であり、この濃度
レベルは1966年当時の中国核実験の直後に推定された値に近いことがわか
った。これは、遠距離のチェルノブイリで起こった事故による\(^{131}\)Iの放射
量の大きさを物語っている。尿中排泄量の積算値から推定した日本人成人
（茨城県水戸市、ひたちなか市および山方町の住民）の甲状腺線量の概略値
（実効線量当量推定として1 \(\mu\)Sv 以下）は、ほぼ同じ時期にフィンランド
及びイギリスで測定・推定された値に較べて2桁低い水準であった。

b）Ge(Li)検出器による甲状腺荷負量の迅速測定

これとは別に、掘え置き型のGe(Li)検出器による甲状腺中の放射性ヨウ素の迅速測定法を検討した（参考3）。正常日本人の各年齢における甲状腺重
量に基づいて、2個の小線源容器および顎部を模擬した塩化カリウム溶液小型タンクで構成した特別の年令依存型甲状腺ファントムを製作し、\(^{131}I \)標準溶液を用いてGe(Li)検出器により200秒間測定した（表3）。その結果、ホールボディ・カウンタと同等程度の検出下限が得られたので、ポータブル小型の検出器を使用すれば、フィールドにおける一般人の甲状腺\(^{131}I \)負荷量のスクリーニングの目的に合致するものと期待された。

5．今後の計画
人体の\(^{90}Sr\)は、\(^{131}I\)および\(^{137}Cs\)と並んで、環境に放出された放射性核種に由来する内部被曝線量推定上の指標核種であり、とくに\(^{90}Sr\)は環境の超ウラン系（\(^{239,240}Pu\)等）の人体への移行・体内線量の解明のため、参照核種として重要である（参考4）。これら核種は、事故的放出における緊急時の内部被曝の推定においても重要である。したがって、日本人における体内移行・線量算定モデルの確立及び人工・自然放射能を総合した集団線量評価の観点から、方法論を含めて検討していく。

6．研究発表
（1）河村、白石：放射能調査研究報告書（平成6年度）、NIRS−R−30、15−18（1995）。
（2）白石、河村：第37回放射能調査研究成果報告書（平成6年度）、89−90（1995）。

（参考文献）
表1．年令群別人骨中の90Sr濃度

<table>
<thead>
<tr>
<th>死亡年</th>
<th>統計量</th>
<th>mBq 90Sr (gCa)$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-4 y</td>
<td>5-19 y</td>
</tr>
<tr>
<td>1991</td>
<td>分析数</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>平均値</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>標準偏差</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>最小値</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>最大値</td>
<td>19</td>
</tr>
<tr>
<td>1992</td>
<td>分析数</td>
<td>2(9)*</td>
</tr>
<tr>
<td></td>
<td>平均値</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>標準偏差</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>最小値</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>最大値</td>
<td>38</td>
</tr>
<tr>
<td>1993</td>
<td>分析数</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>平均値</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>標準偏差</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>最小値</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>最大値</td>
<td>#</td>
</tr>
</tbody>
</table>

*)括弧内は合併した試料の数
#)測定中

表2．成人における骨中90Srによる年吸収線量

<table>
<thead>
<tr>
<th>死亡年</th>
<th>吸収線量, μGy a$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>赤色骨髄</td>
</tr>
<tr>
<td>1991</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>1992</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>1993</td>
<td>7 ± 4</td>
</tr>
</tbody>
</table>
表3. 異なる年令における甲状腺中^{121}IのGe(Li)検出器
による迅速測定の検出下限

<table>
<thead>
<tr>
<th>年令（才）</th>
<th>計数効率（%）</th>
<th>検出下限（Bq）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.89</td>
<td>27</td>
</tr>
<tr>
<td>1-2</td>
<td>0.83</td>
<td>29</td>
</tr>
<tr>
<td>3-4</td>
<td>0.64</td>
<td>37</td>
</tr>
<tr>
<td>14-16</td>
<td>0.46</td>
<td>52</td>
</tr>
<tr>
<td>20-50</td>
<td>0.32</td>
<td>74</td>
</tr>
</tbody>
</table>

1）水平同軸型、容量40 cm²、鉛遮蔽つき
各年令の正常日本人甲状腺重量による甲状腺ファントム使用
2）364 keV ピーク、測定時間 200秒
3）$3\sigma = 3(\sigma_{s-B}^2 + \sigma_B^2)^{1/2}$
5. 環境中の空間ガンマ線線量調査

古川雅英、松本雅紀、床次真司（環境衛生研究部）
岡野貫治（特別研究員）

1. 目的

環境放射線レベルの変動を捉え、その変動要因を明らかにすることを目的として調査研究を行っている。変動の要因は、都市化や社会・生活習慣等の変化による人為的なものと、火山噴火など自然条件の変化によるものとに大別される。本年度は、火山の性質による空間ガンマ線線量率の変動、宇宙線線量率の高度変化、平成7年1月17日に発生した兵庫県南部地震による空間ガンマ線線量率の変動などを捉えるために、岩木山（火山）、秋田駒ヶ岳周辺（火山）、屋久島黒味岳（主として宇宙線測定）、開聞岳（火山）、淡路島北淡町（野島地震断層）、および神戸市（震災域）において各種の測定調査を実施した。

2. 方法

各調査地における測定では、1" φ×2"NaI(Tl)サーベイメータ（nSv/h表示）、3" φ×3"NaI(Tl)スペクトルサーベイメータ（上限7.2MeV、240チャンネル）、3" φ 球形NaI(Tl)スペクトルサーベイメータ（上限開放、1024チャンネル）を使用した。これらを併せて用いることにより、核種寄与スペクトルならびに宇宙線電離成分データを同時に入手した。さらに、屋久島黒味岳では、中性子レムカウンタにより宇宙線中性子成分線量率を測定した。また、各調査地では、元素・核種分析用の土壤・地質試料を採取した。

3. 結果

岩木山では5サイト、秋田駒ヶ岳周辺では2サイト、開聞岳では6サイトにおいて新たにデータを得た。いずれの火山においても大きな地域変化は認められなかった。図-1に、これまでに得られたデータも加え、火山岩の種類による空間ガンマ線線量率の違いをまとめて示す。いずれも1" φ×2"NaI(Tl)サーベイメータによって得た値である。空間ガンマ線線量率と各火山岩の二酸化ケイ素の含有量（デイサイトで多く玄武岩で少ない）との間に比較的良い相関が認められた。
宇宙線線量率については、岩木山（標高200〜1620mの区間、以下同様）、
屋久島黒味岳（60〜1730m）、および開聞岳（135〜922m）において良好な
データが得られた。図-2に、3"φ×3"NaI(Tl)スペクトルメータによって
得られた宇宙線電離成分線量率の高度変化を示す。同時に測定した気圧デー
タなどから、測定期間中の大気は安定した状態であったと判断された。宇宙
線電離成分線量率は高度とともに増加するが、地磁気緯度32.1°に位置する
岩木山（青森県）と地磁気緯度約23.5°に位置する九州南部（鹿児島県開聞
岳、同屋久島黒味岳）を比較した結果、緯度効果が認められた。屋久島で
得た中性子成分データについては、密生する屋久杉などの植生や地形などを
考慮した解析を現在進めている。

兵庫県南部地震にともなって淡路島北淡町に発生した野島地震断層とその
周辺域の5サイトで空間ガンマ線線量率を測定した結果、断層直上とその周
辺との間に大きな差異は認められなかった。表-1に、断層が明瞭であった
3サイトにおける1"φ×2"NaI(Tl)サーベイメータの測定結果を示す。神戸市
内のデータについては現在解析中である。

4．過去の調査研究の経過・経緯

平成4年度には活動中の雲仙普賢岳周辺において調査を実施し、噴火前の
昭和43年度に島原半島周辺で得たデータとの比較を行った。平成5年度には、
雲仙普賢岳とはマグマの性質がそれぞれ異なる伊豆大島三原山ならびに桜島
において、また平成6年度には富士山において調査を実施し、比較検討を行っ
ている。また、火山が環境中のバックグラウンド放射線レベルに与える影
響の大きさは、主に溶岩や火山灰などの噴出物に含まれる天然放射性核種の
濃度に依存すると考えられるため、元素・核種分析用の試料採取を行ってきた。
このような環境放射線の観点から火山およびその噴火活動を調査した例
は他には見あたりず、当調査研究によって得られるデータならばに試料は貴
重である。

宇宙線線量率の高度変化については、これまで特に中・低緯度地域におけ
る実測データが不足していた。このため、本調査研究によって得られたデー
タは、日本および周辺地域の宇宙線線量率を高度別および地磁気緯度別に評
価する上で貴重である。特に、平成6年度に実施した富士山における測定で
は、宇宙線電離成分ならびに中性子成分のいずれについても良好かつ貴重な
データが得られた。富士山山頂部における宇宙線電離成分線量率は約
104nSv/hであり、ほぼ同じ地磁気緯度に位置する海面レベルの測定点（富士市内および放医研）において同時期に測定した値の約3.6倍、また中性子成分線量率は山頂部において約33nSv/hであり、海面レベルの約10倍であるこ
とを実測によって示した。

5．今後の調査研究の計画・方針

火山が環境放射線レベルに及ぼす影響を定量的に明らかにするためには、個々の火山における時系列変動（例えば、噴火前後の比較）を調べるだけでなく、マグマの性質などが同一カテゴリーに属すると考えられる火山群について調査を進め、さらに火山群相互の比較検討を行う必要がある。このた
め、今後も各地に所在する火山について同様の測定調査を効率よく行うとともに、土壤・地質試料の元素・核種分析、ならびに最新の地球科学的知識に基づく解析作業等を行う計画である。

日本の放射線レベル分布の規定要因の一つである地質構造線や断層についても調査研究を進める予定であり、糸魚川－静岡構造線や中央構造線をはじめ、特に淡路島に発生した野島地震断層とその延長部にあたると考えられる
神戸市周辺の活断層等について高密度の測定を計画している。

宇宙線に関しては、富士山などや東京湾～インド洋間（平成5年度）で得た宇宙線線量率データを用いて、宇宙線線量率分布の3次元モデルの構築を進めるとともに、これまでに全国調査によって蓄積してきたバックグラウンド放射線データに含まれる地殻ガンマ線寄与と宇宙線電離成分寄与の分離評
価、ならびに中性子成分寄与の評価等を行う計画である。ただし、宇宙線線
量率の高度変化の様子は、地磁気緯度によって異なると考えられる。このた
め、地磁気緯度の異なる山岳域において、今後も火山調査などと並行して測
定を行う計画である。さらに、より高精度の解析と評価を行うために、気
圧や気温などの気象要素、ならびに地球磁場変動の同時測定も計画している。

6．研究発表

（1）Furukawa,M.: R/V Hakuho-maru KH93–3 Cruise Report, Ocean Research
 Institute, University of Tokyo, 162–164, 1995.
（5）古川，松本，床次，藤高：第37回環境放射能調査研究成果発表会，千葉，1995.12.
（6）松本，古川，床次，藤高，中村：第32回理工学における同位体元素研究発表会，東京，1995.7.
図-1 火山（火山岩）による空間ガンマ線線量率の違い
図 - 2 宇宙線電離成分線量率の高度変化
<table>
<thead>
<tr>
<th></th>
<th>断層直上</th>
<th>周辺</th>
<th>比（断層値/周辺値）</th>
<th>断層垂直変位量</th>
</tr>
</thead>
<tbody>
<tr>
<td>小倉地区</td>
<td>94.5</td>
<td>97.4</td>
<td>0.97</td>
<td>0.5m</td>
</tr>
<tr>
<td>野島平林地区</td>
<td>101.1</td>
<td>103.4</td>
<td>0.98</td>
<td>1.2m</td>
</tr>
<tr>
<td>野島平林地区</td>
<td>97.0</td>
<td>99.7</td>
<td>0.97</td>
<td>0.2m</td>
</tr>
</tbody>
</table>
6．陸上試料の調査研究
～環境中におけるテクネチウム等長半減期核種の挙動に関する研究～

田上恵子、内田滋夫、槇須貢子、渡部輝久
（環境放射生態学研究部）

1．目的
本調査研究は、日本の主要な地域におけるテクネチウム等長半減期核種の放射能レベルを調査研究し、その蓄積状況を把握することを目的としている。テクネチウムは質量数90から110までの同位体が確認されているが、そのすべてが放射性である。これらの同位体のうち、テクネチウム-99は物理的半減期が約21万年と長く、また、\(^{235}\text{U}\)や\(^{239}\text{Pu}\)からの核分裂収率が約6%と、\(^{137}\text{Cs}\)や\(^{90}\text{Sr}\)と同程度であることから、環境安全研究の上で重要な核種の一つである。環境中の\(^{99}\text{Tc}\)は主に核実験由来であるが、今後は原子燃料サイクル施設からの放出、及び\(^{99m}\text{Tc}\)の医学利用等により、徐々に環境中に移行・蓄積されていくと考えられている。そのため、この核種に着目して調査研究を実施している。

2．方法
昨年度までに、\(^{99}\text{Tc}\)の蓄積の可能性がある土壤試料を対象として、分析測定法の検討を行ってきた。本年度は、Tcの土壤への移行経路として重要である降下物（降下塵および雨水）を対象にして分析法の検討を行った。降下物試料中の\(^{99}\text{Tc}\)濃度は極めて低いため、降下物を表面積1 m\(^2\)の採取容器に一ヵ月間採取した。分析のほとんどの操作は土壤試料と同様に行えるものの、前処理において、降下物試料を濃縮する必要がある。降下物の濃縮には加熱・蒸発法が良く用いられているが、この適用の際にはTcの揮発による損失があるかどうかのデータはない。そこで、前処理におけるTcの損失の有無について、降下物中の共存元素濃度の影響を検討した。

降下物試料は3地点（ひたちなか市、千葉市、つくば市）において、一ヵ月間採取したものを用いた。また、純水も比較のために試料として用いた。それぞれ2Lずつ用い\(^{95m}\text{TcO}_4^-\)（Dupont社製、3000dpm/mL）をトレーサーとして添加した。これらの試料をホットプレート上において90～100℃で20mLまで濃縮を行った。回収率はNaIシンチレーションカウンターで\(^{95m}\text{Tc}\)の放射能を測定して求めた。

－26－
3. 結 果

結果を表-1に示す。各試料の電気伝導度（EC）及びpHも併せて示した。
ひたちなか市で採取したものは採取地点が海岸に近接していたため、ECは他
の2地点より高い値であった。また、それぞれのpHの値から、Tcは過テク
ネチウム酸イオン（TcO4−）で存在していると考えられる。これらの試料溶
液を前述した条件により1/100まで調製したときの回収率は各試料ともほぼ
100％であり、共存元素濃度による差は認められなかった。従って、加熱・
蒸発によりTcは揮散しないと思われる。ここには示さないが、今回用いた
試料中のNa、K、Ca、Mgの濃度は日本で得られた水質中の濃度をほぼカバ
ーする濃度であり、したがって、日本のどの地点の降下物を濃縮してもTc
の揮散はないと予想される。

4. 過去の調査研究経過・経緯

99Tcの分析測定法に関して、我が国のように汚染レベルの低い環境試料
では、分析・測定の妨害となる元素の除去が必要である。また、安定同位体
がないために、回収率は短寿命のTcの同位体を用いて求めているが、容易
に入手できない点が問題であった。これまでの分析法は複雑であり、かつ回
収率は不安定であった。そこで昨年度まで簡便な操作で安定した回収率を得
られる方法を検討してきた。分析法は、大型燃焼装置を用いてTcを土壌か
ら揮散させ溶液中に捕集し、次に、捕集溶液から溶媒抽出（シクロヘキサノ
ン使用）によるTcの分離・濃縮を行うものである。燃焼装置の使用により
分析上妨害となる多量の共存元素をTcを分離するのに有効であり、溶媒
抽出は測定の妨害となるRuをほぼ100％除去できることがわかった。

5. 今後の調査研究計画・方針

テクネチウムは環境中において移動しやすく、植物に吸収されやすいこと
が指摘されている一方、土壌中においては、還元状態が発達しやすい条件や
有機物が多い場合において、化学形の変化に伴い土壌固相に取り着し、移動が
遅くなる可能性も指摘されている。このことから、99Tcは放射生態学的に
も重要な核種の一つである。我が国の特有の環境条件下で、テクネチウムが
食物連鎖上をどのように移動するのかを明らかにすることは原子燃料サイク
ルの安全評価を行う上で重要なことである。今後も調査研究において、このよう
な観点から、安全評価上問題となる種々の環境試料について99Tcの分析を
試み、我が国のバックグラウンドレベルの情報を得ていくことを予定してい
る。
6. 平成7年度の研究発表

（5）田上、内田：日本放射線影響学会第38回大会、千葉、1995.11.
表 - 1 降下物および純水試料中の99mTcの加熱・濃縮による回収率及びそれぞれの試料のECとpHの初期値

<table>
<thead>
<tr>
<th>試料</th>
<th>回収率 (%)</th>
<th>EC (mS/cm)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>純水</td>
<td>101.7 ± 1.4</td>
<td>0.0</td>
<td>6.8</td>
</tr>
<tr>
<td>一ヶ月間の降下物（つくば市）</td>
<td>99.9 ± 1.4</td>
<td>0.025</td>
<td>4.2</td>
</tr>
<tr>
<td>一ヶ月間の降下物（千葉市）</td>
<td>102.0 ± 1.4</td>
<td>0.018</td>
<td>4.6</td>
</tr>
<tr>
<td>一ヶ月間の降下物（ひたちなか市）</td>
<td>101.1 ± 1.4</td>
<td>0.21</td>
<td>4.9</td>
</tr>
</tbody>
</table>

±: 計数誤差
7. 屋内・外のラドン等による被曝線量調査（1）

- 居住環境中のラドン濃度の調査 -

床次真司、松本雅紀、古川雅英（環境衛生研究部）
藤元憲三（総括安全解析研究官付）

1. 目的

国連科学委員会報告でも指摘されているように、自然放射線源による被曝線量のうち、ラドンによるものはその大半を占めることが明らかとなっており。本調査では、日本におけるラドン濃度の実態を把握し、正確な線量を評価することを目的としている。現在わが国では、家屋を対象とした全国調査が進行中であるが、世界的な傾向として、家屋調査に留まらず、種々の環境での調査が行われつつある。そのため、我々は、1日の約1/3を過ごすとされる職業環境での調査を、小規模ではあるが、平成6年8月より開始した。

2. 方法

現在進行中の全国水準調査は総括安全解析研究官付で開発されたプラスチック製のラドントロン弁別モニタが用いられている。このモニタにより得られる濃度は長期間の平均ラドン（及びトロン）濃度である。職業環境では就業時間帯とそれ以外の時間帯でのラドン濃度が異なる可能性があるため、その濃度差が検知できるような方法を検討する必要がある。従来から用いられてきた静電捕集型のラドンモニター（アロカ製）は、モニタ内部に侵入したラドンから生成した娘核中核種の約90％が正に帯電していることを利用しモニタ内部電界を発生させることによって、検出部となる電極に娘核種を集め集める方式が採用されている。この原理を利用して、電界を発生させるための高圧電源部にタイマーを取り付けることにより設定した時間帯のみ電圧が印加され、就業時間帯のラドン濃度を測定することが可能となった。このタイマー付きモニタとタイマーのない従来のモニタを併用することによって、就業時間帯の平均ラドン濃度と終日の平均ラドン濃度をそれぞれ測定し、濃度差について検討を行った。

--- 30 ---
3．結果

新宿駅周辺のオフィスビル5箇所に上記のモニタを設置し、終日の平均ラドン濃度と就業時間帯の平均ラドン濃度を比較した。終日のラドン濃度および就業時間帯のラドン濃度の季節変動を、それぞれ図1および図2に示す。これらの結果から、有意な季節変動は見られなかったが、ある場所では比較的高いラドン濃度レベルを観測した。終日の平均ラドン濃度と就業時間帯のラドン濃度の濃度比について検討を行ったところ、0.5～1.0の範囲で変動していることが明らかとなった。

これらのオフィスビルでは、エアーコンディショナー等の空調設備が使用されている。これが室内空気ののみを摂取する場合、ラドン濃度は変化しないが、エアコンに取り付けられているフィルタにラドン娘核種が捕集されるため、娘核種濃度（すなわち平衡ファクタ）が減少することは容易に予想される。エアロゾル非付着成分の割合が増加するので、線量に対してはその影響が相殺される。したがって、ラドン濃度測定のみならず、娘核種濃度の実測データを数多く収集する必要がある。

4．過去の調査研究の経過・経緯

職業環境におけるラドンへの関心は最近の刊行物であるICRP publication 65(1993)によって高められたばかりで、世界的に見ても全国レベルでの調査は皆無である。

5．今後の調査研究計画・方針

様々な環境で、線量に直接関係するラドン娘核種濃度を評価する予定である。なお本年度よりラドントロン弁別モニタの性能を随時チェックできるように簡易型のラドンチェンバーを製作し、まもなく完成する予定である。他の職業環境における濃度等の測定も協力者がれば随時実施する。

6．当該年度の研究発表

(2) 齋藤、飯本、床次：低濃度レベルのラドン娘核種測定法の開発, Radioisotopes, 44, 225－235, 1995.
図-1 終日のラドン濃度の季節変動

図-2 就業時間帯のラドン濃度の季節変動
屋内・外のラドン等による被曝線量調査（2）
－温泉郷における屋内外ラドン濃度の調査－

藤元憲三、土居雅広（総括安全解析研究官付）
床次真司、古川雅英（環境衛生研究部）
阿部 享、山下順助（秋田大学）

1. 緒 言

空気中のラドン（Rn-222）及びその娘核種は、自然放射線被ばくの中で最も線量寄与が大きく、放射線防護の観点からも注目されている。更に、Rn-222の同位体であるトロン（Rn-222）についても特に我が国において関心が高まっている。一般居住家屋に関しては全国屋内ラドン濃度調査が実施され、屋内空気中のラドン濃度の実態が判明しつつある。しかし、特殊な環境としてラジウム温泉を湧出する地域はラドン濃度が高いと予想され、その住民や温泉利用者の被ばくが問題となるが、ラジウム温泉郷の屋内・屋外ラドン濃度についてはこれまで充分な調査が行われていないのが現状である。本調査ではこれまでパッシブ型ラドン・トロン濃度弁別測定器を用いて、我が国のラジウム温泉郷の屋内屋外ラドン濃度の調査を行って来た。前年度は増富温泉の調査を行った。今年度は秋田県の湯沢場として知られている玉川温泉を調査した。玉川温泉はラジウムを含有することが知られ、温泉研究所では効能の研究と療養の指導に当たっている。玉川温泉には温泉の成分が化石化した玄武岩が存在している。これはかって温泉が流れた湯川の河床に沈着したラジウムを含む岩石である。

2. 調査研究の概要

調査では玉川温泉郷とコントロールとしてさとみ温泉にラドン・トロン濃度弁別測定器をそれぞれ10個ずつ配布した。さとみ温泉は秋田駅より約5kmのところにあり、汲み上げて加温している温泉で、源泉水中には特別な放射性核種を保有せず、その放射能濃度は通常の井戸水と同程度であった。したがって、この温泉を玉川温泉のコントロールとした。

玉川温泉では温泉の湧き出し付近の3ヶ所と浴場内と脱衣場にそれぞれ2個づつの測定器を配置した。さとみ温泉では浴場の4ヶ所と一般家屋1ヶ所にそ
れぞれ2個づつ測定器を配置した。濃度計算期間は6ヶ月とし、連続して2度の計測をおこない、冬季と夏季の濃度変動、年間平均ラドン濃度を調べた。使用した検出部はポリカーボネイトであり、6ヶ月間の曝露後回収しエッチング処理を行い、検出部にラドン及びラドン娘核種からのα線により形成された1cm²上の傷の数を読みとり平均ラドン濃度に換算した。使用したラドン・トロン濃度弁別測定器では上球と下球に取り付けられた検出部のポリカーボネイトのエッチビット密度の差異よりラドンとトロンを弁別し、それぞれの濃度を求める方法が取られている。

3．結 果

ラドン・トロン濃度弁別測定器による屋内外ラドン・トロン濃度調査結果を表1に示した。それぞれの場所に配布した2個の測定器による濃度結果は大変良好一致しており、それぞれの濃度がかなり精度良く計測されていることを示している。また、冬季と夏季の6ヶ月間の測定結果の間には若干冬季の結果が高い傾向を示しているものの、玉川温泉においては特にその差が小さい。一般に言われている冬季にラドン濃度が高いという季節的な差異は玉川温泉ではなく、さとみ温泉で若干認められる程度となっている。今回の玉川温泉もラジウム温泉と言われているものの、前年度の増富温泉の結果とは大きく異なり、泉源付近においてもラドン濃度もトロン濃度も大して高い値は求められなかった。逆にコントロール地域にある一般家屋のラドン濃度がこの調査では一番高い値を示している。また、屋内と屋外の差異も認められていない。これは、浴室では湯気がこもるため換気が充分取られているせいかも知れない。これらの結果はラジウムを析出している温泉であるにも係わらず、外気との混合が激しいため、低い濃度が検出されているものか、あるいは温泉水中にもはやラジウムはそれ程含まれていないのかも知れない。これは今後の検討課題である。
表1. 玉川・さとみ温泉屋内外ラドン濃度結果 (Bq/m³)

<table>
<thead>
<tr>
<th>地名</th>
<th>測定点</th>
<th>測定器ID</th>
<th>ラドン濃度'94/11-'95/5</th>
<th>ラドン濃度'95/5-'11</th>
<th>トロン濃度'94/11-'95/5</th>
<th>トロン濃度'95/5-'11</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉川温泉</td>
<td>源泉</td>
<td>秋1</td>
<td>3.7</td>
<td>4.3</td>
<td>10.8</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋2</td>
<td>4.2</td>
<td>3.8</td>
<td>12.3</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>源泉</td>
<td>秋3</td>
<td>3.2</td>
<td>5.5</td>
<td>6.5</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋4</td>
<td>3.9</td>
<td>3.6</td>
<td>9.3</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>岩盤浴上部</td>
<td>秋5</td>
<td>7.5</td>
<td>8.1</td>
<td>20.8</td>
<td>27.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋6</td>
<td>11.0</td>
<td>11.4</td>
<td>25.7</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>脱衣場</td>
<td>秋7</td>
<td>9.8</td>
<td>6.3</td>
<td>8.1</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋8</td>
<td>8.2</td>
<td>6.6</td>
<td>8.0</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>浴場</td>
<td>秋9</td>
<td>4.4</td>
<td>5.9</td>
<td>8.9</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋10</td>
<td>4.5</td>
<td>6.0</td>
<td>7.6</td>
<td>7.0</td>
</tr>
<tr>
<td>さとみ温泉</td>
<td>露天風呂</td>
<td>秋コ1</td>
<td>5.2</td>
<td>2.8</td>
<td>2.8</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋コ2</td>
<td>5.1</td>
<td>2.7</td>
<td>8.1</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>脱衣場</td>
<td>秋コ3</td>
<td>7.6</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>秋コ4</td>
<td>6.5</td>
<td></td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>一般家屋</td>
<td>秋コ10</td>
<td>15.8</td>
<td>8.0</td>
<td>2.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>
II. 原子力施設周辺のレベル調査
1．沿岸海域試料の解析調査（1）

青野辰雄、山田正俊、平野茂樹、中村清
（海洋放射生態学研究部）

1．目的

日本沿岸における放射性物質の動向や放射性核種の分布の経時変化の調査を行い、これらをもとに、試料相互間の汚染の関連を解析し、将来の汚染を予測するためのデータを得ることを目的に、原子力施設周辺の沿岸海域における海産生物、海水等の放射性核種濃度を測定した。

2．方法

試料は、茨城県沿岸及び青森県沿岸より海産生物（魚類、軟体類、海藻等）を採取したものを利用。採取した試料は各部位に分類し、110 ℃で乾燥後、450 ℃で灰化を行った。この灰化試料を硝酸で溶解し、陰イオン交換法、AMP 法等により 239, 240 Pu, 137 Cs を分離・精製し、測定用試料とした。

3．結果

表1に1993年に茨城県及び青森県沿岸より採取された海産魚類及び軟体類の 239, 240 Pu, 137 Cs 濃度を示す。137 Cs 濃度は、イナダ、アカエイ、スズキ等の魚類内臓中は 11 ～ 89、皮は 101 ～ 283 の範囲であった。

マコガレイ、ヒラメ、イナダ、アカエイ、スズキ等の魚類では、同年に、青森県三沢沿岸、新潟県佐渡沿岸及び茨城県沿岸で採取した試料でも、Cs−137 濃度が内臓よりも筋肉で高い値を示す傾向にあった。一方、Pu−239, 240 については、茨城県沿岸で採取したハマグリの筋肉が 0.93mBq/kg−wet であった。同年に茨城県沿岸で採取したヤツシロ貝やツブ貝の筋肉中は 1.7 ～ 10.3 の範囲であり、巻貝よりも 2 枚貝が低い値を示す傾向にあった。

4. 過去の調査研究経過・経緯

これまで、茨城県及び青森県等の沿岸産の海産生物や、海水中の放射性核種濃度を測定し、データの蓄積を図ってきた。

5．今後の調査研究計画・方針

次年度も引き続き、沿岸海域、特に原子力周辺海域において海洋試料を探
取し、放射性核種濃度を測定して、汚染防止のための基礎データの蓄積及び
経年変動を把握する。

表 1 茨城県沿岸及び青森県沿岸魚貝類、軟体類の
239,240Pu及び137Cs濃度

<table>
<thead>
<tr>
<th>魚種</th>
<th>部位</th>
<th>239,240Pu</th>
<th>137Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>茨城 イナダ</td>
<td>内臓</td>
<td>—</td>
<td>11 ± 5</td>
</tr>
<tr>
<td></td>
<td>皮</td>
<td>—</td>
<td>101 ± 20</td>
</tr>
<tr>
<td>ハ アカエイ</td>
<td>肝臓</td>
<td>—</td>
<td>89 ± 6</td>
</tr>
<tr>
<td>ハ スズキ</td>
<td>内臓</td>
<td>—</td>
<td>17 ± 8</td>
</tr>
<tr>
<td>ハ マコカレイ</td>
<td>皮</td>
<td>0.29 ± 0.06</td>
<td>238 ± 24</td>
</tr>
<tr>
<td>ハ ハマグリ</td>
<td>肉</td>
<td>0.93 ± 0.06</td>
<td>91 ± 14</td>
</tr>
<tr>
<td>青森 マコカレイ</td>
<td>骨</td>
<td>0.47 ± 0.08</td>
<td>—</td>
</tr>
</tbody>
</table>

（単位 mBq/kg-wet）
沿岸海域試料の解析調査（2）

石井紀明、中原元和、中村良一、松葉満江
（海洋放射生態学研究部）

1．目的

我が国における原子力発電所、核燃料再処理工場等の大型原子力関連施設は海岸近くに建設及び稼働している為、海洋に放出された54Mn、60Co、90Sr、106Ru、137Cs、239Pu等の放射性核種は海洋生態系の中における複雑な食物連鎖を経て最終的には海産食品を経て人間に還元されるものと考えられる。そのため日本人の放射線による内部被曝を考える場合には放射性物質による海産食品の汚染状況について十分に把握しておく必要がある。

放射性核種による人体に対する被曝線量を算定する際に用いられるパラメーターの一つとして濃縮係数が重要視されており、精度の高い濃縮係数の提供が保健物理の分野から要望されている。これまで安定セシウムの定量分析は原子吸光分析法及び放射化分析法で行われてきたが、高感度で高精度の分析法として誘導結合プラズマ質量分析装置（ICP-MS）が開発され分析化学の分野に登場してきた。今回の調査研究では日本沿岸に生息している海産の魚類および無脊椎動物の可食部について安定セシウム濃度をICP-MSで測定することにより濃縮係数を求めた。

2．方法

青森、茨城、千葉、静岡、和歌山、大阪などの太平洋沿岸で漁獲された海産魚類17種および海産無脊椎動物9種を漁業協同組合から購入して分析試料とした。3〜5個体の供試生物から筋肉部分だけを解剖して約1g取り出し、トールピーカーに収容した後0.01gの単位まで生重量を秤量した。定温恒温器を用いて70℃で乾燥した後、ホットプレート上で硝酸と過塩素酸で湿式分解した。分解物を1規定硝酸で100mlに定容した後、長時間安定性を確保するため内標準元素としてインジウムを100ppbになるように加えた。

安定セシウムの定量分析はVG Elemental PQ2 ICP-MSを用いて行った。ICP-MSは低・中質量元素に対しては同重体干渉が大きいために定量分析には適していないが、原子質量が100amu以上の元素に関しては化学分離を行わないで高精度分析が可能であると報告されている。安定セシウムの原子質量は137amuであるため共存元素の影響は殆ど見られず、精度の高い実分析
3. 結 果

今回分析した17種の魚類の筋肉中の安定セシウム濃度及び濃縮係数を表-1に、海産無脊椎動物9種の可食部における値を表-2に示した。なお濃縮係数は生重量当たりのセシウム濃度を海水中のセシウム濃度0.5ng/mlで除することにより求めた。表-1に示したように、魚類の筋肉中の生重量当たりのセシウム濃度は12.0 - 56.2ng/g、濃縮係数は20 - 110の範囲にあった。これに対して、表-2に示したように海産無脊椎動物中の可食部の生重量当たりのセシウム濃度は3.3 - 10.9ng/g生と魚肉と比べて低く、従って濃縮係数も7 - 21と魚肉よりも低かった。

4. 過去の調査研究経過・経緯

海洋生物200種について安定セシウム、ストロンチウム、コバルト等40元素の濃度を放射化分析法、誘導結合プラズマ原子発光分析法で測定し、精度高い濃縮係数を提供してきた。また、種々の海産生物について放射性核種の生物濃縮実験を行い、放射性核種の移行モデルを構築する上で重要視されている取り込み定数、排泄定数などのパラメーターを提供している。

5. 今後の調査研究計画・方針

放射性ヨウ素及びセリウムは処理工場から放出される可能性のある放射性核種の一つである。安定ヨウ素及びセリウムについて安定元素分析を実施することにより50種以上の海洋生物についてヨウ素とセリウムの濃縮係数を求める予定である。

6. 平成7年度の研究発表

（1）中村（良）、中原、石井、松葉：第37回環境放射能調査研究成果論文抄録集、45 - 46、1995。
（2）中村（良）、中原、石井、松葉：平成6年度放射能調査研究報告書、38 - 42、1995。

- 42 -
表 - 1 日本沿岸で採取された魚類の可食部中のセシウム濃度（ng/g・生）及び濃縮係数

<table>
<thead>
<tr>
<th>魚種名</th>
<th>産地</th>
<th>Cs 濃度</th>
<th>濃縮係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>アカジ</td>
<td>青森</td>
<td>44.8</td>
<td>90</td>
</tr>
<tr>
<td>ヒラメ</td>
<td>青森</td>
<td>15.5</td>
<td>30</td>
</tr>
<tr>
<td>シロザケ</td>
<td>青森</td>
<td>21.5</td>
<td>40</td>
</tr>
<tr>
<td>ハモ</td>
<td>茨城</td>
<td>18.9</td>
<td>40</td>
</tr>
<tr>
<td>マアジ</td>
<td>茨城</td>
<td>12.7</td>
<td>30</td>
</tr>
<tr>
<td>ヒラメ</td>
<td>茨城</td>
<td>22.0</td>
<td>40</td>
</tr>
<tr>
<td>アイナメ</td>
<td>茨城</td>
<td>22.0</td>
<td>40</td>
</tr>
<tr>
<td>イシモチ</td>
<td>茨城</td>
<td>16.0</td>
<td>30</td>
</tr>
<tr>
<td>ウスメバル</td>
<td>茨城</td>
<td>32.0</td>
<td>60</td>
</tr>
<tr>
<td>ゴマソイ</td>
<td>茨城</td>
<td>18.0</td>
<td>40</td>
</tr>
<tr>
<td>シズキ</td>
<td>茨城</td>
<td>28.0</td>
<td>60</td>
</tr>
<tr>
<td>プリ</td>
<td>茨城</td>
<td>12.0</td>
<td>20</td>
</tr>
<tr>
<td>チダイ</td>
<td>茨城</td>
<td>16.0</td>
<td>30</td>
</tr>
<tr>
<td>オニカマス</td>
<td>静岡</td>
<td>46.2</td>
<td>90</td>
</tr>
<tr>
<td>ムツ</td>
<td>静岡</td>
<td>48.0</td>
<td>100</td>
</tr>
<tr>
<td>ウミヒメジ</td>
<td>和歌山</td>
<td>56.2</td>
<td>110</td>
</tr>
<tr>
<td>プダイ</td>
<td>和歌山</td>
<td>49.9</td>
<td>100</td>
</tr>
</tbody>
</table>

表 - 2 日本沿岸で採取された海産無脊椎動物の可食部中のセシウム濃度（ng/g・生）及び濃縮係数

<table>
<thead>
<tr>
<th>生物種名</th>
<th>産地</th>
<th>Cs 濃度</th>
<th>濃縮係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガザミ</td>
<td>青森</td>
<td>3.3</td>
<td>7</td>
</tr>
<tr>
<td>ヒラツメガニ</td>
<td>青森</td>
<td>4.7</td>
<td>9</td>
</tr>
<tr>
<td>クロアワビ</td>
<td>茨城</td>
<td>7.3</td>
<td>15</td>
</tr>
<tr>
<td>イガイ</td>
<td>茨城</td>
<td>5.0</td>
<td>10</td>
</tr>
<tr>
<td>コタマガイ</td>
<td>茨城</td>
<td>6.2</td>
<td>12</td>
</tr>
<tr>
<td>ハマグリ</td>
<td>茨城</td>
<td>4.6</td>
<td>9</td>
</tr>
<tr>
<td>コウイカ</td>
<td>茨城</td>
<td>3.5</td>
<td>7</td>
</tr>
<tr>
<td>シャコ</td>
<td>千葉</td>
<td>6.8</td>
<td>14</td>
</tr>
<tr>
<td>クルマエビ</td>
<td>大分</td>
<td>10.9</td>
<td>21</td>
</tr>
</tbody>
</table>
2．環境中のトリチウムの測定調査

井上義和、宮本霧子、加瀬由美子
(環境衛生研究部)

1．目的
自然環境および原子力施設周辺環境における環境試料中の\(^3\)H濃度を長期間継続的に測定し、分布と時間変化に関するデータを集積する。これらの空間分布データ・時系列データは、放出された\(^3\)Hの環境中における動態を明らかにし、\(^3\)H環境移行モデルを構築するために解析される。またモデルを運用するときの基盤データベースとしても利用される。\(^3\)H環境移行モデルは、\(^3\)Hによる環境汚染を予測するツールとして利用することによって、原子力施設の通常モニタリング法の改善や、ヒトの線量評価法の改良に役立つ。また建設中の原子力施設についても、将来放出される\(^3\)Hの環境への影響評価に備えるため、稼働前に地域の核実験および自然生成起源のいわゆるバックグラウンドレベルの分布と時間変動を把握しておくとともに、レベルの変動に大きな影響を及ぼす水圏の水文学的パラメータの地域固有値を推定するための基礎データを収集する。

2．方法
測定方法は、水試料を蒸留後、40gを100mlのテフロンバイアルまたは石英バイアルに入れ、液体シンチレータ AQUASOL-260mlを加え、十分混合し、冷暗所で1日以上放置後、液体シンチレーションカウンター LSC) Aloka LB1 または LB3 で1試料当たり、500～2000分計測した。低濃度試料については、25倍程度電解濃縮後、Packard 社製 LSC Tri-carb 2250CAで測定した。

3．結果
自然生成および核実験起源の\(^3\)Hレベルの動態を把握するため、1981年以来千葉市において月間降水を採取してきた。降水は、核実験により成層圏に発生した\(^3\)Hを、人間の生活圏へもたらしてきたが、現在ではその濃度レベルがかなり低下している。表 1 に示したように、一般環境である千葉市の、1995年平均値は、0.47 ± 0.19Bq/lであった。± 1SDの範囲で昨年の年平均値 0.46 ± 0.10Bq/lと等しく、既に日本列島中心部における宇宙線自然生成レベルに到達したと考えられる。

−44−
一方青森県川ヶ所村は、村内尾駒の月間降水の 1995 年平均値が 0.76 ± 0.17Bq/l であり、1994年の平均値 0.77 ± 0.29Bq/l と大差なかった。六ヶ所村での測定結果を、一般環境である千葉市と単純に比較すると 1.6 倍高いが、この差は、六ヶ所村の稼働状況から判断して、自然現象である緯度効果で説明できる。緯度効果とは、宇宙線生成の核種量とフォールアウト核種量が緯度の高い地点に多いことであり、その原因は、成層圈における \(^3\)H の生成数が極地方の方が多いこと、また成層圈から対流圈への気流の降下量も緯度の高い地方に多いことによる。今年度は、日本列島の中でも 2 地点の降水を並行して測定した結果として、その緯度効果を鮮明に観測することができた。

河川水や地下水もまた、原理的には緯度効果が表れるはずである。しかし降水は一旦地下水になり、ある滞留時間を経た後、河川へと表面流出する。またその地下の帯水層も \(^3\)H 濃度の異なる層が 2 層から 3 層見られることがある。従って地点の異なる河川水の \(^3\)H 濃度を単純に比較することはできない。表 2 と表 3 に 1995 年度に測定した青森県六ヶ所村の河川水・湖沼水のトリチウム濃度を示した。また関東平野と六ヶ所村の河川水の最近 5 年間のトリチウム濃度の変化を図 1 に示した。青森県六ヶ所村の河川水の \(^3\)H 濃度は関東平野に比べ 25 % 程高い。河川水の表面水である降水の緯度効果と、地下帯水層の構造の違いによる滞留時間の相違と、どちらがどの程度影響を与えているのか、今後モデルを利用したデータ解析により明らかにしていきたい。

4. 過去の調査研究経過・経緯

全国の原子力発電所周辺の陸水、海水の第 1 次調査 (1969 ～ 1980) により、全国における \(^3\)H の分布と時間変化に関するデータを得た。その結果、 \(^3\)H の起源の主体が核実験であり、陸水の濃度が緯度効果と見られる勾配を示すこと、および 3 ～ 5 年のみかけの半減期で年々減少する事実を見い出した。その後、第 2 次調査では (1981 ～)、原子力関連事業により発生したトリチウムを環境中に放出している茨城県東海村を対象として、施設から大気中に放出される \(^3\)H の陸環境における地域分布と時間変化に関するデータを得た。大気、水蒸気、降雨、土壌、植物、地下水における \(^3\)H の挙動を解析した結果、各環境媒体間の移行係数や地域固有の土壌浸透速度、および地表水の滞留時間と流動方向など環境移行モデルの構築に役立つパラメータが得られた。また、第 1 次、2 次調査を通じて継続している千葉市の月間降水と、茨城県の那珂川と久慈川の \(^3\)H 濃度 (バックグラウンドレベル) に関する時系列データ
夕は、わが国の水文学・土木学の分野で利用され役立っている。

5. 今後の調査研究計画・方針

①日本全国の3Hのバックグラウンドレベルの代表としての性格を有する千葉市の月間降水および、茨城県の那河川、久慈川の3H濃度測定を継続すること、②茨城県東海村の地下水の高い3H濃度の推移を見守ること、③青森県六ヶ所村の環境水の3H濃度の分布と時間変動に関するデータを蓄積し、モデルを利用した解析を行うことなどである。

6. 平成7年度の研究発表

(1) 井上、宮本、後藤、加瀬：放射能調査研究報告書、（平成6年度）、
NIRS-R-30、放射線医学総合研究所、43-49、平成7年11月。
(2) 井上、宮本、加瀬、後藤：第37回環境放射能調査研究成果論文抄録集、
（平成6年度）、科学技術庁、11-12、平成7年11月。
表1 1995年の千葉市の月間降水のトリチウム濃度と沈着量

<table>
<thead>
<tr>
<th>月</th>
<th>採取月日</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>年平均</th>
<th>沈着量合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>月</td>
<td>降水(㎜)</td>
<td>10.5</td>
<td>56.1</td>
<td>107.0</td>
<td>109.9</td>
<td>177.4</td>
<td>151.6</td>
<td>141.4</td>
<td>18.5</td>
<td>224.2</td>
<td>37.9</td>
<td>48.1</td>
<td>0.0</td>
<td>0.0</td>
<td>Bq/L kBq/m2</td>
</tr>
<tr>
<td>月</td>
<td>濃度(Bq/L)</td>
<td>0.44</td>
<td>0.53</td>
<td>0.76</td>
<td>0.54</td>
<td>0.55</td>
<td>0.58</td>
<td>0.40</td>
<td>0.62</td>
<td>0.30</td>
<td>0.56</td>
<td>0.35</td>
<td>0.00</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>月</td>
<td>誤差2SD(Bq/L)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.00</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>月</td>
<td>沈着量(kBq/m2)</td>
<td>0.00</td>
<td>0.03</td>
<td>0.08</td>
<td>0.06</td>
<td>0.10</td>
<td>0.09</td>
<td>0.06</td>
<td>0.01</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.53</td>
</tr>
</tbody>
</table>
表2 1995年に採取した青森県六ヶ所村における河川水のトリチウム濃度

<table>
<thead>
<tr>
<th>河川水</th>
<th>採取地点</th>
<th>採取日とT濃度、Bq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3月22日</td>
</tr>
<tr>
<td>老部川</td>
<td>-</td>
<td>0.85</td>
</tr>
<tr>
<td>二又川</td>
<td>0.75</td>
<td>0.83</td>
</tr>
<tr>
<td>室ノ久保川</td>
<td>0.84</td>
<td>1.02</td>
</tr>
<tr>
<td>後川</td>
<td>0.89</td>
<td>1.23</td>
</tr>
<tr>
<td>平沼川</td>
<td>-</td>
<td>1.08</td>
</tr>
</tbody>
</table>

表3 1995年に採取した青森県六ヶ所村における湖沼水のトリチウム濃度

<table>
<thead>
<tr>
<th>湖沼水</th>
<th>採取日とT濃度、Bq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3月22日</td>
</tr>
<tr>
<td></td>
<td>10月5日</td>
</tr>
<tr>
<td>尾駒沼*</td>
<td>0.60</td>
</tr>
<tr>
<td>鷹架沼*</td>
<td>0.74</td>
</tr>
<tr>
<td>市柳沼</td>
<td>0.90</td>
</tr>
<tr>
<td>田面未沼</td>
<td>0.87</td>
</tr>
<tr>
<td>小川原湖</td>
<td>0.87</td>
</tr>
</tbody>
</table>

*汽水湖
図1 関東平野と青森県六ヶ所村の河川水中トリチウム濃度の年変化

- 関東平野（久慈川・那珂川）
- 六ヶ所村（老部川・二又川・室ノ久保川・後川・平沼川）
3．人体臓器中の239,240Pu濃度

湯川雅枝、渡辺嘉人、西村義一（環境衛生研究部）
阿部 享、滝澤行雄（秋田大学）
田中千枝子、佐藤愛子（技術補助員）

1．目的
核爆発実験等によって生成したプルトニウム等超ウラン元素は、広範囲に大気圏に拡散し、徐々に地表に降下蓄積している。また、原子力平和利用の進展に伴い、環境中の超ウラン元素濃度が増加するおそれがある。国民の健康安全の面から、循環の機構を把握し影響を評価するため、環境試料、人体臓器中のプルトニウム等の超ウラン元素の濃度を測定する。

2．方 法
(1) 試料採取
人体臓器試料は秋田大学医学部のご協力により、フォールアウトレベルの比較的高かった日本海側に居住していた人の主要臓器を毎年採取している。本年度は灰化試料としたものを5体分入手した。
(2) 試料の前処理
人体臓器試料を湿式灰化する前に、灰化時の硝酸使用量の低減と作業時間の短縮を目的として、試料の凍結乾燥を行っている。凍結乾燥の前後に試料の重量を測定し、臓器中の水分含量を求めておく。
なお、1991年度より採取臓器の水分量の測定及び乾式灰化を秋田大学で分担している。
(3) プルトニウムの分離定量
科学技術庁編の「プルトニウム分析法」に従って、灰化試料から陰イオン交換樹脂（Dowex1 × 8）を用いてプルトニウムを分離し、ステンレス板上に乾燥した。239,240Puの定量はアルファ線スペクトロメータにより実施した。

3．結 果
今年度は昨年度に引き続き、前年度採取分の4体分の主要臓器についてプルトニウムの定量を行った。結果を表-1に示す。
臓器中のプルトニウム濃度は、試料の保存時や解凍時に失われる組織水を
考慮して乾燥重量当たりとした。また、湿重量当たりへの換算を可能にするため水分含有量も併記した。

4．過去の調査研究経過
環境中に放出されたプルトニウム等の超ウラン元素は、大気、食品などを通じて人体内に取り込まれている。国民の被爆線量を評価する上で、人体膵器中のプルトニウム等超ウラン元素の濃度レベルを知り、これらの元素の環境、生体間の循環を把握することは重要である。このような見地から、環境試料及び人体膵器中のプルトニウム等の超ウラン元素の濃度測定を継続実施している。

5．今後の調査研究計画
人体膵器中のプルトニウム調査は、昭和51年度から環境衛生研究部第2研究室（岡林、湯川）が行ってきた。実施に当たっては、人体膵器を秋田大学の公衆衛生学教室より提供いただき、その試料について、放医研で分析を行ってきた。しかし、近年の膵器採取に関する倫理問題や、秋田大学の人事異動に伴い、人体膵器の入手が困難となってきた。今後、人体の実組織の分析重視の観点から、胎盤組織の分析へと移行することを検討する。また、環境から人体への移行を把握するために、日常食の分析を行うとともに、移行に関して他の元素との関連等についても検討していく。

6．平成7年度の研究発表
（1）湯川雅枝、田中千枝子、佐藤愛子、阿部拓、滝澤行雄：第37回環境放射能調査研究成果論文抄録集、91-92、1995。
表 - 1 人体臓器中のプルトニウム濃度

<table>
<thead>
<tr>
<th>検体 : 男</th>
<th>70才（89－16）</th>
<th>採取日 : 1988.3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>湿重量 (g)</td>
<td>乾重量 (g)</td>
</tr>
<tr>
<td>肺</td>
<td>126</td>
<td>不明</td>
</tr>
<tr>
<td>肝臓</td>
<td>105</td>
<td>不明</td>
</tr>
<tr>
<td>腎臓</td>
<td>49.2</td>
<td>不明</td>
</tr>
<tr>
<td>脾臓</td>
<td>16.4</td>
<td>不明</td>
</tr>
<tr>
<td>生殖器</td>
<td>11.0</td>
<td>不明</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>検体 : 男</th>
<th>64才（26－89）</th>
<th>採取日 : 1989.4.14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>湿重量 (g)</td>
<td>乾重量 (g)</td>
</tr>
<tr>
<td>肺</td>
<td>46.7</td>
<td>7.59</td>
</tr>
<tr>
<td>肝臓</td>
<td>150.5</td>
<td>36.0</td>
</tr>
<tr>
<td>腎臓</td>
<td>39.6</td>
<td>5.68</td>
</tr>
<tr>
<td>脾臓</td>
<td>30.6</td>
<td>5.77</td>
</tr>
<tr>
<td>骨</td>
<td>57.9</td>
<td>12.7</td>
</tr>
<tr>
<td>生殖器</td>
<td>7.33</td>
<td>1.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>検体 : 男</th>
<th>69才（60－89）</th>
<th>採取日 : 1989.9.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>湿重量 (g)</td>
<td>乾重量 (g)</td>
</tr>
<tr>
<td>肺</td>
<td>62.7</td>
<td>11.4</td>
</tr>
<tr>
<td>肝臓</td>
<td>87.4</td>
<td>22.7</td>
</tr>
<tr>
<td>腎臓</td>
<td>51.3</td>
<td>14.7</td>
</tr>
<tr>
<td>脾臓</td>
<td>16.6</td>
<td>4.77</td>
</tr>
<tr>
<td>腦臓</td>
<td>24.0</td>
<td>4.91</td>
</tr>
<tr>
<td>生殖器</td>
<td>9.80</td>
<td>2.11</td>
</tr>
<tr>
<td>腎のう</td>
<td>4.64</td>
<td>1.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>検体 : 男</th>
<th>83才（53－89）</th>
<th>採取日 : 1989.7.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>湿重量 (g)</td>
<td>乾重量 (g)</td>
</tr>
<tr>
<td>肺</td>
<td>82.6</td>
<td>14.4</td>
</tr>
<tr>
<td>肝臓</td>
<td>185</td>
<td>47.0</td>
</tr>
<tr>
<td>腎臓</td>
<td>41.8</td>
<td>11.0</td>
</tr>
<tr>
<td>脾臓</td>
<td>24.2</td>
<td>5.18</td>
</tr>
<tr>
<td>腎のう</td>
<td>11.2</td>
<td>2.92</td>
</tr>
</tbody>
</table>

N.D. : 検出限界以下 () ; 湿重量当り
4. 原子力施設周辺住民の放射性及び安定元素摂取量に関する調査研究

村松康行, 吉田 聡, 坂内忠明, 柳沢 啓
（環境放射生態学研究部）

1. 目的
環境に放出された放射性物質の経口摂取量を推定するためには、それぞれの食品中の放射能濃度及びそれらの消費量を知る必要がある。ここでは、主として茨城県原子力施設周辺を対象に、種々の食品を採取し、それに含まれる放射性及び安定元素の分析、及び、主要な食品の消費量調査を行う。
今年度は、 Cs-137 を濃縮する食品であるキノコに着目し、その中に含まれる Cs-137 と K-40 の定量を行った。

2. 方法
キノコ試料は主として茨城県内の市場で購入した。以前、野生のキノコに含まれる Cs-137 の分析を行いデータが得られていることから、今年度は、人工栽培されることが多い食用キノコを対象とし、その中に含まれる Cs-137 と K-40 の定量を行った。シイタケについてはすでにいくつか分析しているので、今回は、主としてエノキタケ、マイタケ、ツクリタケ（マッシュルーム）、ブナシメジ、キクラゲ及びマツタケを調べた。
 Cs-137 及び K-40 分析方法は次の通りである。試料は、主として凍結乾燥機で乾燥しがて 450 ℃で灰化した（但、濃度が高いものについては乾燥粉末試料）。それをプラスチック容器に入れた後、 Ge 半導体検出器を用い放射能測定を行った。サンプル量は灰として 10 ～ 50 g 程度であり、測定時間は 8 ～ 70 時間であった。得られたガンマ線スペクトルを解析し、 Cs-137 （662KeV）及び K-40 （1461KeV）のピークの面積からそれらの核種の濃度を求めた。

3. 結果（当該年度の結果）
分析の結果を表にまとめる。Cs-137 の濃度範囲（生重量当たり）は、エノキタケで 0.06 ～ 0.23Bq/kg、マイタケで 0.86 ～ 6.5Bq/kg、ツクリタケで 0.07 ～ 0.09Bq/kg、ブナシメジで 0.05 ～ 0.09Bq/kg、マツタケで 2.2 ～
39Bq/kgであり、種類により比較的大きな差があった。一方、K-40の濃度は生重量で表すと100Bq/kg前後で、今回用いたキノコでキクラゲを除いて種類による大きな差は見られなかった。K-40の放射能濃度のほうがCs-137のそれよりも高い値であった。今回測定したキノコ中のCs-137濃度は、森林で採取したキノコ（以前に測定）に比べると大きく下まわる傾向にあった。これらのキノコの培地としては、エノキタケとブナシメジはおがくずとコメヌカ、マイタケは主として木材、ツクリタケはわらを使用している。これら培地のCs-137濃度は、森林の土壌や落葉層に比べると非常に低いため、キノコ中のCs-137の濃度も低くなったと言える。マツタケは、菌根性であり赤松林の土壌中に菌糸をはり、松と共生している。一般的に、森林土壌中のCs-137濃度は高いので、マツタケ中のCs-137はそれを反映して、人工栽培のキノコより高い値になったと推定される。
これらの結果より、一般の食用キノコ中のCs-137濃度は、野菜などより高いが、野生のキノコに比べるとCs-137の値は明らかに低い傾向にあることが確認できた。また、K-40の濃度は、野生のキノコと比べCs-137ほど大きな差はなかった。我が国のキノコ摂取量は1人1日当たり（成人）約3.5kgもあることから、キノコ中の放射能のレベルを把握することは重要と考える。

4．過去の調査研究経過・経緯
これまで行った調査は、東海村周辺住民の食品摂取実態調査、同地域で採取した各種食品中のヨウ素、セシウム、ストロンチウム、亜鉛、マンガン、コバルト等の安定元素の分析に関するものである。また、放射性元素を濃縮し易い食品、例えば、I-129については海そう、Cs-137についてはキノコに注目して、核種の分析も行ってきた。しかし、キノコについては前年度までに、分析した試料の多くが森林で採取したものであった。そこで、核種濃度が低く分析し難い栽培キノコについてCs-137とK-40のレベルを調べ、上で述べたような知見を得ることができた。

5．今後の調査研究計画・方針
キノコは、Cs-137の摂取量への寄与が大きいと思われることから、試料の種類と量を更に増やす予定である。そして、キノコを通じての摂取量を推定し、寄与率についても調べる。
その他の食品についても、その中に含まれる放射性及び安定元素の分析を行いデータを蓄積する。また、食品の流通が盛んになっている事から、東海
村だけでなく、水戸や東京など都市部からも試料を集め分析を行い、放射性及び安定元素の摂取量に関する知見を増やす。

6．当該年度の研究発表
(1) 坂内，村松，吉田：日本放射線影響学会，千葉，1995.11.
(2) 村松，柳沢，吉田，坂内：環境放射能調査研究成果論文抄録集，1995.
<table>
<thead>
<tr>
<th>名称（学名）</th>
<th>試料No.</th>
<th>137Cs (Bq kg$^{-1}$-wet)</th>
<th>40K (Bq kg$^{-1}$-dry)</th>
<th>137Cs (Bq kg$^{-1}$-wet)</th>
<th>40K (Bq kg$^{-1}$-dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ツクリタケ（Flammulina velutipes)</td>
<td>ED-71</td>
<td><0.061</td>
<td>124</td>
<td><0.50</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td>ED-35</td>
<td>0.140</td>
<td>109</td>
<td>1.24</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td>ED-54</td>
<td><0.11</td>
<td>68.3</td>
<td><1.0</td>
<td>648</td>
</tr>
<tr>
<td></td>
<td>ED-21</td>
<td>0.134</td>
<td>97.6</td>
<td>1.27</td>
<td>924</td>
</tr>
<tr>
<td></td>
<td>ED-38</td>
<td>0.188</td>
<td>115</td>
<td>1.77</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>ED-55</td>
<td>0.091</td>
<td>104</td>
<td>0.75</td>
<td>857</td>
</tr>
<tr>
<td></td>
<td>ED-11</td>
<td>0.148</td>
<td>147</td>
<td>1.79</td>
<td>1790</td>
</tr>
<tr>
<td></td>
<td>ED-31</td>
<td><0.096</td>
<td>135</td>
<td><0.76</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>ED-36</td>
<td><0.078</td>
<td>129</td>
<td><0.62</td>
<td>1020</td>
</tr>
<tr>
<td></td>
<td>MR-63</td>
<td>0.227</td>
<td>123</td>
<td>1.99</td>
<td>1080</td>
</tr>
<tr>
<td>エノキタケ（Grifola frondosa)</td>
<td>ED-9</td>
<td>1.34</td>
<td>65.7</td>
<td>14.3</td>
<td>704</td>
</tr>
<tr>
<td></td>
<td>ED-18</td>
<td>0.860</td>
<td>44.2</td>
<td>10.3</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>ED-34</td>
<td>1.38</td>
<td>73.6</td>
<td>17.1</td>
<td>914</td>
</tr>
<tr>
<td></td>
<td>ED-63</td>
<td>1.04</td>
<td>56.6</td>
<td>13.1</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>ED-62</td>
<td>1.93</td>
<td>72.4</td>
<td>19.7</td>
<td>739</td>
</tr>
<tr>
<td></td>
<td>ED-50</td>
<td>1.35</td>
<td>94.3</td>
<td>13.0</td>
<td>913</td>
</tr>
<tr>
<td></td>
<td>MR-65</td>
<td>3.55</td>
<td>98.6</td>
<td>46.2</td>
<td>1280</td>
</tr>
<tr>
<td></td>
<td>MR-34</td>
<td>5.14</td>
<td>191</td>
<td>34.7</td>
<td>1290</td>
</tr>
<tr>
<td></td>
<td>MR-31</td>
<td>1.47</td>
<td>70.3</td>
<td>19.6</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>MR-261</td>
<td>6.51</td>
<td>122</td>
<td>50.4</td>
<td>944</td>
</tr>
<tr>
<td>ブナシメジ（Hypsicizus marmoreus)</td>
<td>ED-33</td>
<td>0.092</td>
<td>115</td>
<td>0.95</td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td>ED-41</td>
<td>0.079</td>
<td>117</td>
<td>0.85</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>ED-47</td>
<td>0.080</td>
<td>128</td>
<td>0.85</td>
<td>1360</td>
</tr>
<tr>
<td></td>
<td>ED-72</td>
<td><0.084</td>
<td>116</td>
<td><0.97</td>
<td>1330</td>
</tr>
<tr>
<td></td>
<td>ED-7</td>
<td><0.056</td>
<td>134</td>
<td><0.45</td>
<td>1060</td>
</tr>
<tr>
<td>キクラゲ（Auricularia auricula)</td>
<td>ED-81</td>
<td>-</td>
<td>-</td>
<td>2.18</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>ED-65</td>
<td>-</td>
<td>-</td>
<td>2.30</td>
<td>346</td>
</tr>
<tr>
<td>マツタケ（Tricholoma matsutake)</td>
<td>ED-22</td>
<td>11.9</td>
<td>210</td>
<td>67.0</td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td>ED-16</td>
<td>2.22</td>
<td>160</td>
<td>19.7</td>
<td>1420</td>
</tr>
<tr>
<td></td>
<td>ED-76</td>
<td>7.79</td>
<td>105</td>
<td>74.9</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td>ED-23</td>
<td>39.3</td>
<td>117</td>
<td>309</td>
<td>917</td>
</tr>
<tr>
<td></td>
<td>MR-MA1</td>
<td>3.99</td>
<td>157</td>
<td>39.5</td>
<td>1550</td>
</tr>
<tr>
<td></td>
<td>MR-209</td>
<td>24.9</td>
<td>129</td>
<td>209</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>MR-MA2</td>
<td>5.76</td>
<td>84.8</td>
<td>56.5</td>
<td>832</td>
</tr>
</tbody>
</table>
Ⅲ．放射能データセンター業務
放射能データセンター業務

1．調査の概要
 内外の放射能に関する資料を収集し、これを総合的に整理保存して必要な
データの迅速提供をはかるとともに一部をとりまとめて公表する。

2．発刊等
(1) RADIOACTIVITY SURVEY DATA in Japan
 昭和38年より“RADIOACTIVITY SURVEY DATA in Japan”を刊行して
いる。本年度はNumber 106～109を刊行した。
 対象は、環境試料として、
 ①降下物、②大気浮遊じん、③陸水、④土壌、⑤海水、⑥海底土
食品試料としては、
 ①日常食、②精米、③牛乳、④野菜、⑤茶、⑥海産生物、
 ⑦淡水産生物
 であり、Sr及びCsについての分析結果を報告した。
 また、降下物・牛乳中のSr及びCsについて四半期別にWHOへ
報告を行った。

(2)第37回環境放射能調査研究成果論文抄録集（平成6年度）
 平成7年11月29日（水）に科学技術庁主催の第37回環境放射能調査研
究成果発表会が科学技術庁放射線医学総合研究所講堂で行われ、同論文抄
録集の作成に協力した。
IV. 放射能調査結果の評価に関して

に関する基礎調査
放射能調査の評価に関する基礎調査

1. 目的
我が国の国民の被ばく線量を評価するため、放射能調査結果及び人間集団に関する資料を整理することを目的とし、調査を民間機関に委託した。

2. 委託課題及び委託先
(1) 「国民線量推定のための基礎調査（XIX）」
 財団法人 放射線影響協会
(2) 「ICRP 勧告の日本人への適用に関する調査」
 社団法人 日本医学放射線学会

3. 国民線量推定のための基礎調査
(1) 調査目的
 天然源及び自然源からの放射線による国民線量の推定値が合理的な考えのもとに全国的規模で求められれば、原子力の利用、ラジオアイソトープの利用等において、放射線、放射性物質にかかわる、いわゆる環境放射線問題の解決に標準的なものとして欠かせないものになる。
 このような国民線量推定においては、人も含めた環境の放射線、放射性核種レベルの分布、挙動、時間的推移の測定が第1に重要であることはいうまでもない。
 しかし、測定のみで国民線量を合理的に推定できるわけではない。日本人の生活習慣の実態、人工動態等周辺の資料、それも線量推定上適切な資料が入手できなければ国民線量を求め得ない。このような有用な資料の収集は、その線量推定への有効性を検証しながら行わなければ資料の意味が薄れてしまうので、着実に進行させなければならない、測定におとらず長期間を要するものである。またある面では、周期的に見直す必要性がある。
 本調査研究の目的は、上記のような国民線量推定上重要な因子となる有効な資料を収集し、これを解析することにある。

(2) 調査内容
 1. 国内外におけるラドン及びその娘核種の空気中濃度測定データの調査・収集を行う。
②地域別国民生活時間のデータ調査・収集を行う。
③体内被ばく線量推定のための日常食及び人体臓器中の放射能濃度データの調査・収集を行う。
④医療被ばく・職業被ばくデータの調査・収集を行う。

(3)調査結果
①外部被ばく線量について
　地上のガンマ線線量率を計算するために必要な線量換算係数を算定した。
②屋内・外ラドン濃度の調査について
　静電式積分型モニターを用いて日本国内の屋内・外におけるラドン濃度調査を行った。
③内部被ばく線量について
　日本人の体内臓器中のプルトニウム濃度についてデータを収集した。
④国民生活時間と社会生活基本調査について
　国民線量を算定するため、様々な生活環境に留意した時間の情報をもとに、国民生活の時間調査結果を比較検討した。
⑤医療被ばくによるリスク評価について
　医療被ばく対象者の年齢分布を考慮して考案されたリスク評価法を示し、胃のX線診断によるリスクや寿命の短縮を推定した。

４．ICRP勧告の日本人への適用に関する調査
(1)調査目的
　ICRP勧告1990は、現在日本での法制化が検討されており、近い将来法律として適用されるであろう。新勧告の最も重要な部分は職業被ばくの線量限度が従来の年間50mSvが20mSvに引き下げられたことである。
　本調査目的は、医療機関において行われている代表的な放射線検査を調査し、ICRPが勧告している線量拘束値や、IAEAのBSS9に対応する我が国独自の放射線基本安全基準の参考レベルを設定する。

(2)調査方法
　被ばくを伴う作業の安全性に関する国際的な考えの我が国に適用するための関係データ調査を継続的に行うとともに、我が国の医療機関において放射線基本安全基準を具体的化するための参考レベルを調査する。
(3)調査結果

ICRP 1990年勧告の内容を実際的に各国で適用するための基本安全基準（Basic Safety Standards, BSS）の暫定版が入手可能となり、調査委員会委員が日本語訳の作業を行った。

さらに、この仮訳版を委員間で再検討し、最終的に主要委員によって全般的な検討を行った。
V. 環境放射線モニタリング

技術者の研修
環境モニタリング技術研修
（養成訓練部）

1．目的
本研修は、科学技術庁の放射線調査計画のもとに、各都道府県で行われている放射線調査の実務担当者を対象として行うものであって、実践的な講習と実習により当該環境放射線調査の標準化・技術水準の向上を図ることを目的としている。

2．方法及び結果
（1）名称
環境放射線モニタリング技術課程

（2）実施場所
科学技術庁 放射線医学総合研究所 養成訓練棟

（3）研修方法
本研修は、各都道府県における事務担当者の配置状況を考慮して、従来4年を1周期として実施してきたが、平成6年度から2年を1周期として実施している。
第18回環境放射線モニタリング技術課程（平成7年度）に参加した人員とその区分は以下のとおりである。

研修生所属機関の都道府県人員区分

<table>
<thead>
<tr>
<th>番号</th>
<th>都道府県機関名</th>
<th>参加人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>青森県環境保健センター</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>千葉県環境研究所</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>岐阜県保健環境研究所</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>大阪府立公衆衛生研究所</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>奈良県衛生研究所</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>岡山県地域振興部環境調整課</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>徳島県保健環境センター</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>愛媛県環境保全センター</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>福岡県保健環境センター</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>鹿児島県環境センター</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>沖縄県衛生環境研究所</td>
<td>1</td>
</tr>
</tbody>
</table>
環境放射線モニタリング技術課程
年度別（平成7年～8年）研修計画（1周期／2年）教科目概要

<table>
<thead>
<tr>
<th>年度</th>
<th>講義</th>
<th>実習</th>
</tr>
</thead>
<tbody>
<tr>
<td>第18回</td>
<td>放射線と物質の相互作用</td>
<td>放射線測定の基礎</td>
</tr>
<tr>
<td>2020年10月</td>
<td>原子物理</td>
<td>8単位</td>
</tr>
<tr>
<td>実施</td>
<td>1単位</td>
<td>β線の測定</td>
</tr>
<tr>
<td>1）基礎</td>
<td>非密閉R Iの安全取り扱い</td>
<td>γ線の測定</td>
</tr>
<tr>
<td>コース</td>
<td>環境放射線</td>
<td>6単位</td>
</tr>
<tr>
<td>（1年度）</td>
<td>放射線測定と核データ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>放射線生物学</td>
<td></td>
</tr>
<tr>
<td></td>
<td>放射線の人体への影響</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α、β放出核種の生物影響</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環境放射線モニタリング指針</td>
<td></td>
</tr>
<tr>
<td>第19回</td>
<td>放射線リスクと被ばく限度</td>
<td>サーバータイム</td>
</tr>
<tr>
<td>2021年10月</td>
<td>放射線と物質の相互作用</td>
<td>3単位</td>
</tr>
<tr>
<td>実施予定</td>
<td>線量測定</td>
<td>環境外ガンマ線測定</td>
</tr>
<tr>
<td>2）応用</td>
<td>電離箱</td>
<td>4単位</td>
</tr>
<tr>
<td>コース</td>
<td>線量標準</td>
<td>線量測定</td>
</tr>
<tr>
<td>（2年度）</td>
<td>食品中の放射性核種</td>
<td>6単位</td>
</tr>
<tr>
<td></td>
<td>線量体系とICRP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>緊急時医療対策</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ線モニタリングと緊急時</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環境モニタリングの実際</td>
<td></td>
</tr>
<tr>
<td></td>
<td>個体飛騨検出器</td>
<td></td>
</tr>
<tr>
<td></td>
<td>放射生態学</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環境γ線調査の全国サーベイ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環境モニタリングの現状</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環境放射線トピックス</td>
<td></td>
</tr>
</tbody>
</table>

- 71 -
<table>
<thead>
<tr>
<th>実施回数・年度</th>
<th>第1回 58年度</th>
<th>第2回 59年度</th>
<th>第3回 58年度</th>
<th>第4回 57年度</th>
<th>第5回 58年度</th>
<th>第6回 59年度</th>
<th>第7回 60年度</th>
<th>第8回 61年度</th>
<th>第9回 62年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>青森県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>岩手県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>宮城県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>秋田県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山形県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>福島県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>茨城県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>栃木県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>埼玉県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>千葉県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>神奈川県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>京都市</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>横浜市</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新潟県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>富山県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>石川県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>福井県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>長野県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>岐阜県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>静岡県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>愛知県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>三重県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>滋賀県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>京都府</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大阪府</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>兵庫県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>和歌山県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鳥取県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>島根県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>岡山県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広島県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京都</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>岐阜県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>愛知県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高知県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>福岡県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>佐賀県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>長崎県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熊本県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大分県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鹿児島県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>沖縄県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合 計</td>
<td>24</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>23</td>
</tr>
</tbody>
</table>
環境放射線モニタリング技術研修課程実績

<table>
<thead>
<tr>
<th>実施回数・年度</th>
<th>第11回</th>
<th>第12回</th>
<th>第13回</th>
<th>第14回</th>
<th>第15回</th>
<th>第16回</th>
<th>第17回</th>
<th>第18回</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>青森県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>岩手県</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>宮城県</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>秋田県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>山形県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>福島県</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>茨城県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>栃木県</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>埼玉県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>千葉県</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>神奈川県</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>川崎市</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>横浜市</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>新潟県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>富山県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>石川県</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>福井県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>豊中県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>岐阜県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>静岡県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>愛知県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>三重県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>滋賀県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>京都府</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>大阪府</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>奈良県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>兵庫県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>和歌山県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>鳥取県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>岡山県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>岩手県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>広島県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>広島市</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>山口県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>徳島県</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>香川県</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>愛媛県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>高知県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>福岡県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>佐賀県</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>長崎県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>鹿児島県</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>沖縄県</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>合計</td>
<td>28</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>399</td>
</tr>
</tbody>
</table>
VI．緊急被曝測定・対策に関する調査研究等
概要

原子力施設における災害に起因する人体の放射線被ばく・環境汚染による影響等に関する対策を確立するための調査・測定及び研究を推進するとともに、併せて看護要員・救護要員等に対し緊急被ばく時の測定・防護・被ばく評価等について教育及び訓練を行い、原子力災害における緊急被ばくの防災対策に資することを目的として、以下の項目について調査研究及び整備等を進めてきた。

1. 緊急被ばく線量評価法に関する研究（ESR）

2. 環境放射能迅速評価システム（ERENS）

3. 緊急被ばく医療体制の整備に関する調査研究

4. 緊急被ばく救護訓練課程

5. 緊急モニタリング体制

6. 緊急医療体制
1. 緊急時被曝線量評価法に関する研究

白石久二雄（環境放射生態学研究部）
中島敏行（特別研究員）

1. 目的
緊急時の放射線被曝線量評価に資するため、電子スピン共鳴法（ESR 線量法）の研究を行い、緊急時における国民の被曝線量情報を提供することを目的とする。

2. 方法
糖類試料はコバルト-60 線源を用いて 0-8Gy の吸収線量になるように照射したものを利用。試料管に一定容量になるように充填した。これは試料重量としては約 400mg であった。フェーディングを調べる時は、線量 8Gy の試料を用い、照射後に封入した試料と同じ試料管中で経時的に同一条件下で測定した。

ESR 測定装置は日本電子 kk 製 RE-2X 型を使用した。測定条件は変調巾 1.25mT、磁場挿引巾 25mT、マイクロ波出力 3mW である。

3. 結果
ショ糖の構成糖であるフラクトース（果糖）とグルコース（ブドウ糖）に関して、放射線照射によって生成した遊離基数のフェーディングの結果を図－1 に示す。これまでにショ糖に関しては、室温で 2 ヶ月間、遊離基数は変化しないことが明らかにされているが、図に認められる様に、約 10 ヶ月後においても安定であることが解った。即ち、放射線照射後約 1 年後においてもショ糖が線量推定に使用出来ることを示すものである。今回、この遊離基の安定性の原因、機構を知る意味から、ショ糖の構成糖であるフラクトースとグルコースについてもフェーディングを調べた。図のように二つの構成糖もショ糖と同様に安定であることがわかった。グルコースにおいては多少上昇が認められるが、これは試料管に保存しているあいだに、試料がより密着した結果と考えられる。図－2 には 3 種の糖の遊離基数と吸収線量の関係（検量線）を示している。これは実験方法の部で述べているように、見かけ上の単位体積当たりの検量線である。感度としては、ショ糖と果糖は同程度であるがブドウ糖はこれに比べて低い。アモルファス（不定形結晶）ではこ
れらの感度は同一であることが既に解っているが、結晶形や粒子サイズの影響が現実の測定時には現れていることがわかる。以上のことから構成糖はショ糖と同様に経時変化（フェーディング）は一年間認められず、ESR線量法による線量材料として十分使用出来ることがわかった。

4．過去の調査研究経過・経緯

緊急被曝時において、一般住民は職業人（放射線作業従事者）と違い被曝線量計を携帯していないため被曝線量の推定が困難である。そこで一般住民の生活環境に存在する物質中のラジカルをESR測定することによって、線量計測に利用出来ると考え、様々な有機物に対して検討を行い、ショ糖の有効性を見つめた。実証例として、チェルノブイリ事故時に退去した住民の家屋中のショ糖を用いて屋内線量並びに避難住民の被曝線量について推定し、旧ソ連の推定した結果と良い一致が認められた。

5．今後の調査研究計画・方針

ESR線量法に最適な線量材料の検討を行う。遊離基の安定性の原因、機構を知る意味から、この種の研究はより優れた線量材料の発見につながると考えられるので、引き続き研究する。

人体の一部を利用する方法として、歯のエナメル質によるESR線量法がある。歯のエナメル質の分離法並びにESR線量法の基礎的研究についても実施する。

6．当該年度の研究発表

（1）中島、白石、横須賀：第37回環境放射能調査研究成果論抄録集（平成6年度）115. 1995.
図-1 ショ糖、果糖、ブドウ糖内の遊離基のフェーディング
図-2 糖類（ショ糖、果糖、ブドウ糖）の遊離基数と吸収線量の関係

ESRの相対強度

吸収線量（Gy）

Fructose
Sucrose
Glucose
2. 放射能迅速評価システム（ERENS）

Environmental Radiation Estimation Network System

本郷昭三（技術部技術課）
竹下　洋（環境衛生研究部）
内田滋夫（環境放射生態学研究部）

1. はじめに
放射能迅速評価システム（ERENS: Environmental Radiation Estimation Network System）の導入を昭和63年度から5ヶ年計画で行った。ERENSは、コンピュータネットワークを用いた放射能測定解析システムで、そのネットワーク環境の推移を表1

<table>
<thead>
<tr>
<th>年度</th>
<th>ネットワーク環境</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和63年度</td>
<td>単独試験</td>
<td>ローカルアドレスで試験開始</td>
</tr>
<tr>
<td>平成元年度</td>
<td>放医研電子計算機システムと接続</td>
<td>正式アドレスで試験開始</td>
</tr>
<tr>
<td>平成2年度</td>
<td>染色体LAN接続</td>
<td>TISON接続（9600BPS）</td>
</tr>
<tr>
<td>平成3年度</td>
<td>重粒子LAN接続</td>
<td>384KBPS接続</td>
</tr>
<tr>
<td>平成4年度</td>
<td>インターネット接続</td>
<td></td>
</tr>
<tr>
<td>平成5年度</td>
<td>放医研全所LAN再構築</td>
<td></td>
</tr>
<tr>
<td>平成6年度</td>
<td>STAネット接続</td>
<td></td>
</tr>
</tbody>
</table>

表1：ERENSネットワーク環境経過

に示した。平成2年度にはJPNIC（Japan Network Infomation Center）に登録されたIP（インターネットプロトコル）で試験を始め、平成4年度にインターネット接続を行っている。この時点では、通信速度が9600BPSであり、インターネットのアクセスはキャラクタベースの通信以外は実用上不可能であったが、平成6年度に、384KBPSでSTAネットに続り、インターネットとマルチメディア通信が出来る状態になっている。

2. ERENS概要
世界規模の通信に参加したり、研究者がそれぞれのコンピュータで解析す
るようなオープンなネットワークを目標として、ERENSではエンジニアリング・ワークステーション（EWS）を提案し、パーソナルコンピュータ（PC）を統合する。分散処理型の電算機ネットワーク（ローカル・エリア・ネットワーク：LAN）を専門で導入した。分散処理型のネットワークでは異なるオペレーティング・システムでデータを供用することが出来ると、既存の機器やソフトウェアを無理なく統合することが出来る。分散処理型はどちらかと言えば、研究用に向けられているが、現在では大型汎用コンピュータもUNIXを搭載したものが市販され、一方ワークステーションにも高性能なものが現れており、両者は分散処理型ネットワークで融合しつつある。ERENSはUNIX、MSDOSのツーのOSの共同でなりたっており、ファイルの実態はUNIXで管理されている。このため、スタンド・アローンのパーソナル・コンピュータでは扱うことが出来ないような大きなファイル・システムがMSDOSからも利用出来る。また、許可さえ与えれば他のワークステーション（国内外を含む）からもこのデータが利用可能である。

3. 平成7年度の計測結果

個別計測結果については別途報告しているので、ここでは、当所の屋上に設置したNaI（3×3in）検出器により観測された、平成6年6月から、平成8年9月までの空間r線の計数率の経時変化（図1）を示した。なお、計数率が統計誤差の3倍以上でかつ10％以上変化したときはエネルギースペクトルも自動的に記録される。『空間r線の経時変化』の中で平均に比較して高いところがあるが、エネルギースペクトルで調べると、昨年同様検出器の利得の不安定性が認められるが、人工放射線に関係するようなスペクトル変化は観察されない。

4. ウェルドウエブ（WWW）によるデータのアクセスについて

ERENSの測定器による測定結果は、すべてインターネットに継いているERENSのサーバに納められており、許可さえ与えれば、インターネット上の国内外のワークステーションでアクセスできる。但し、ある程度ワークステーションを知っていないと困難である。現在、図1については、放医研の内部向けサーバ（http://uexs72/usr/kankyoho.html）で見ることが出来る。但し、ポストスクリプトビュアが組み込まれたWWWビュアが必要である。

5. おわりに

放医研のネットワークもファイアウォールが設定されインターネットから
直接ERENSのデータをアクセスすることが出来なくなるが、公開出来るものは公開ネットワークにコピーをつくりアクセス出来るようにする予定である。

図1: 空間γ線の経時変化('95/06～'96/09)
３．緊急被曝医療体制の整備に関する調査研究

赤沼篤夫、明石真言、下村智、蜂谷みさを、鈴木元
（障害・臨床研究部）

1．被曝時救急医療対策

放射線事故における急性放射線障害は複合疾病であり、その治療には救急医学、外科、形成外科、血液内科／骨髄移植などの専門家による総合的な診療体制が必要である。障害・臨床研究部はこれまでに国内外の大学や病院からこれらの専門家に加え、内部被曝、基礎研究者等によるネットワークづくりを目指して緊急時被曝医療検討委員会を開催し、その基礎作りを行ってきた。放医研の在り方に関して、またキレート剤の研究の進歩等に関して討論を重ね、平成９年度から具体的なネットワークの参加施設を考慮した準備委員会を設けること、また日本では医薬品として認可されていないDTPAの投与できる体制を整えること、同時にヨード剤の投与のための基礎研究をすすめることなどが議論された。

2．教育／指導

地方自治体の主催する放射線事故避難訓練や講習会に講師として参加している。同時に、原子力安全研究協会（原安協）や原子力安全技術センターの主催する講習会にも講師を派遣している。平成7年度緊急被曝医療に関する派遣実績は次の通りである。

北海道・石川県・茨城県・佐賀県・青森県・新潟県原子力防災／緊急被曝医療研修会講師、日本原子力研究所東海研究所被曝医療課程講師、千葉県消防大学校講師、養成訓練部講師、原子力軍艦放射能調査技術研修会講師、千葉県原爆爆弾被曝者医療審査会委員、その他原子力防災訓練（北海道、茨城県）、被曝者医療国際シンポジウム（長崎県）、原爆爆弾被曝者医師研究会（広島県）、また緊急時被曝医療対策専門委員会（原安協）、原子力施設事故情報調査専門委員会、SPEEDIネットワーク調査専門検討委員会、原子力防災研修事業検討委員会、原子力防災研究部会、原子力防災活動器材調査委員会、緊急時対策相互支援システム調査検討委員会にも委員を派遣している。
3. データベース／国際協力

急性障害を起こす放射線事故はまれであるが、治療技術の向上の為には過去の症例の検討が不可欠である。現在、医学教育の中でも放射線障害の診断・治療に関するものはなく、教科書にも充分な記載はない。WHOは、世界的な放射線事故に於ける患者の医学的なデータベースの作成にとりかかっている。我が国では1954年3月のピキニ環礁に於ける核実験の被災者の被曝初期の臨床データがあり、その登録を要請されている。その他にも、1971年のイリジウム線源による事故症例があり、これらを登録する事により外国とのデータ交換が可能になる。積極的な協力が望まれる。

4. 基礎的研究

被曝時の生体反応に関して生体は放射線の照射に対し蛋白質を産生する。この生体反応を放射線障害の治療に利用する事を目的としてin vitroもしくはin vivoの系で基礎研究を行っている。

5. 研究発表

4. 緊急被曝救護訓練課程について

本課程は、主として原子力発電所等原子力施設において、当該従事者の健康管理又は診療等に従事する要員を対象として、放射線管理区域における従業員の労働災害の発生に際して、被災者の救急医療に必要な基本知識と技術を習得させることを目的としている。

平成7年度に実施された本課程の回数、実施期間、参加者数等の区分及び主要科目は表-1、2のとおりである。

表-1 実施期間及び参加者

<table>
<thead>
<tr>
<th>年度・回数</th>
<th>実施期間</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成7年度</td>
<td>第31回</td>
<td>H7. 4.17～4.21</td>
</tr>
<tr>
<td></td>
<td>第30回</td>
<td>H7. 9.25～9.29</td>
</tr>
</tbody>
</table>

表-2 緊急被ばく救護訓練課程講義及び実習科目

<table>
<thead>
<tr>
<th>講義科目</th>
<th>実習科目</th>
</tr>
</thead>
<tbody>
<tr>
<td>緊急被ばく時の線量計測と評価</td>
<td>救護蘇生法</td>
</tr>
<tr>
<td>救護蘇生法</td>
<td>傷汚染計測法</td>
</tr>
<tr>
<td>汚染対策</td>
<td>ヒューマンカウンター</td>
</tr>
<tr>
<td>緊急時の身体汚染測定と線量評価</td>
<td>（構成と計測・評価）</td>
</tr>
<tr>
<td>緊急時の医療対策</td>
<td>被災者救出法</td>
</tr>
<tr>
<td>体内被ばく障害と汚染患者の取扱</td>
<td>汚染患者の救護・取扱・移送法</td>
</tr>
<tr>
<td>放射線被ばく事故の概況</td>
<td>放射線被ばく事故と患者の取扱</td>
</tr>
<tr>
<td>放射線の生物影響</td>
<td>（ビデオ）</td>
</tr>
<tr>
<td>緊急被ばく医療概論</td>
<td></td>
</tr>
<tr>
<td>米国の緊急被ばく事故対策の現況</td>
<td></td>
</tr>
<tr>
<td>緊急被ばく時のバイオアッセイ</td>
<td></td>
</tr>
</tbody>
</table>
緊急被曝救護訓練課程実績

<table>
<thead>
<tr>
<th>実施年度</th>
<th>54</th>
<th>55</th>
<th>56年度</th>
<th>57年度</th>
<th>58年度</th>
<th>59年度</th>
<th>60年度</th>
<th>61年度</th>
<th>62年度</th>
<th>63年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施回数</td>
<td>第1回</td>
<td>第2回</td>
<td>第3回</td>
<td>第4回</td>
<td>第5回</td>
<td>第6回</td>
<td>第7回</td>
<td>第8回</td>
<td>第9回</td>
<td>第10回</td>
</tr>
<tr>
<td>研修実施期間</td>
<td>7月11〜13日</td>
</tr>
<tr>
<td>医師</td>
<td>国</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>县市町村</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>病院保健所</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>原子力発電</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>看護師</td>
<td>国</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>县市町村</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>病院保健所</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>原子力発電</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>診療</td>
<td>国</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>县市町村</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>放射線技師</td>
<td>国</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>县市町村</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>原子力発電</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>22</td>
<td>16</td>
<td>22</td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
緊急被曝救護訓練課程実績

<table>
<thead>
<tr>
<th>実施年度</th>
<th>元年度</th>
<th>2年度</th>
<th>3年度</th>
<th>4年度</th>
<th>5年度</th>
<th>6年度</th>
<th>7年度</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施回数</td>
<td>第19回</td>
<td>第20回</td>
<td>第21回</td>
<td>第22回</td>
<td>第23回</td>
<td>第24回</td>
<td>第25回</td>
<td>第26回</td>
</tr>
<tr>
<td>研修実施期間</td>
<td>7.15</td>
<td>10.7</td>
<td>4.21</td>
<td>10.6</td>
<td>4.20</td>
<td>10.5</td>
<td>4.17</td>
<td>10.2</td>
</tr>
</tbody>
</table>

医師
国	1
県市町村	2
病院保健所	1
原子力発電	5
その他	1

看護婦
国	1
県市町村	1
病院保健所	2
原子力発電	4
その他	1

診療
国	1
県市町村	2
病院保健所	2
原子力発電	3
その他	1

放射線技師
国	1
県市町村	2
原子力発電	1
その他	1

計
国	1
県市町村	2
原子力発電会社	3
原子力保守会社	1
その他	1

計
| 24 | 26 | 14 | 26 | 22 | 22 | 20 | 25 | 23 | 23 | 28 | 28 | 30 | 704 |
5. 緊急モニタリング体制

原子力発電所等に係る不測の事故の発生に際し、国が設置する災害対策本部の下で、科学技術庁の要請に基づき緊急モニタリングに従事する要員を現地に派遣する必要が生じた、場合これを迅速かつ的確に対処するための派遣体制及びモニタリング実施体制をとることを目的とする。

緊急モニタリングマニュアル

1. 体制

派遣体制としては、常時所内に「緊急モニタリングチーム」を置く。チームは4チーム制として3ヶ月毎に輪番制をとる。（表-1）

※ 輪番制をとることにより、中央防災会議で職名指定された職員以外の者も派遣されることになる。

2. マニュアルの内容

第1章 総則
第2章 モニタリングチームの編成・任務
第3章 モニタリング用機器等の保守・管理
第4章 放射線モニタリングマニュアル
第5章 放射能モニタリングマニュアル

3. 緊急モニタリング派遣用機器・機材について

機器・機材はアルファ線検の研究室に一括保管している。（表-2）
<table>
<thead>
<tr>
<th>番号</th>
<th>第1チーム (4～6月)</th>
<th>第2チーム (7～9月)</th>
<th>第3チーム (10～12月)</th>
<th>第4チーム (1～3月)</th>
</tr>
</thead>
<tbody>
<tr>
<td>チームリーダー</td>
<td>技術部技術課情報処理室長 本郷 昭三</td>
<td>放射線科学研究室第1研究室長 藤木 武浩</td>
<td>内部被ばく研究部門第4研究室長 小泉 彰</td>
<td>統合安全解析研究官 藤元 慎三</td>
</tr>
<tr>
<td>班長</td>
<td>同上</td>
<td>同上</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>測定係</td>
<td>放射線科学研究部主任研究官 戸田 健</td>
<td>環境衛生研究部第1研究室長 清水 眞司</td>
<td>環境衛生研究部第1研究室長 松本 雅紀</td>
<td>技術部放射線安全課中性子線管理係長 宮本 法博</td>
</tr>
<tr>
<td>安全係</td>
<td>技術部放射線安全課専門職 魚谷 益男</td>
<td>技術部放射線安全課安全係長 玉川 和彦</td>
<td>技術部放射線安全課汚染処理係 三村 喜夫</td>
<td>技術部放射線安全課アルファ線管理係長 児玉 昌一</td>
</tr>
<tr>
<td>测定係</td>
<td>企画室総括研究企画官付企画係 鶴田 善文</td>
<td>企画室総括研究企画官付企画係 佐藤 孝司</td>
<td>企画室総括研究企画官付企画係 櫂井 清一</td>
<td>企画室総括研究企画官付放射能資料係長 鶴澤 勝己</td>
</tr>
<tr>
<td>班長</td>
<td>海洋放送生態学研究部第1研究室長 平野 茂樹</td>
<td>環境放射生態学研究部第2研究室長 村松 康行</td>
<td>環境衛生研究部主任研究官 武田 洋</td>
<td>環境放射生態学研究部第3研究室長 河村日佐男</td>
</tr>
<tr>
<td>試料採取係</td>
<td>環境放射生態学研究部主任研究官 柳瀬 啓</td>
<td>海洋放送生態学研究部主任研究官 山田 正俊</td>
<td>環境放射生態学研究部主任研究官 白石久雄</td>
<td>養成訓練部指導室長 上島 久正</td>
</tr>
<tr>
<td>試料採取係</td>
<td>海洋放送生態学研究部主任研究官 石井 紀明</td>
<td>環境放射生態学研究部主任研究官 内田 滋夫</td>
<td>環境衛生研究部主任研究官 竹下 洋</td>
<td>海洋放送生態学研究部主任研究官 中原 元和</td>
</tr>
<tr>
<td>測定係</td>
<td>放射線科学研究部主任研究官 野田 豊</td>
<td>環境衛生研究部第2研究室長 西村 義一</td>
<td>環境衛生研究部主任研究官 黒澤 克己</td>
<td>総括安全解析研究官付安全解析研究官 石川 徹夫</td>
</tr>
<tr>
<td>記録係</td>
<td>技術部放射線安全課安全係 高倉 伸夫</td>
<td>技術部放射線安全課中性子線管理係 斎藤 和典</td>
<td>高城澤支所管理課放射線安全係 佐々木昭徳</td>
<td>高城澤支所管理課放射線安全係伊藤 幸久</td>
</tr>
<tr>
<td>機関係</td>
<td>企画室総括研究企画官補佐 中山 隆</td>
<td>企画室総括研究企画官付調査係長 羽野 耕二</td>
<td>企画室総括研究企画官付放射能資料係長 佐藤 博信</td>
<td>企画室総括研究企画官认定係長 川上 利彦</td>
</tr>
</tbody>
</table>

平成7年9月現在
<table>
<thead>
<tr>
<th>機器名</th>
<th>数量</th>
<th>受領年月日</th>
<th>備品番号</th>
<th>保管場所</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>サーベイメータ</td>
<td>2 台</td>
<td>S59. 3.23</td>
<td>H 1. 7.31</td>
<td>No.1280～83</td>
<td>α線検</td>
</tr>
<tr>
<td>受領業日</td>
<td></td>
<td></td>
<td></td>
<td>247,248</td>
<td>α線検</td>
</tr>
<tr>
<td>同上用ゲージ</td>
<td>4 個</td>
<td>S59. 3.7</td>
<td>No.1181～84</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>表面汚染計（GM型）</td>
<td>2 台</td>
<td>S59. 3.23</td>
<td>S59.10.27</td>
<td>No.1284</td>
<td>α線検</td>
</tr>
<tr>
<td>受領月日</td>
<td></td>
<td></td>
<td></td>
<td>No.342</td>
<td>α線検</td>
</tr>
<tr>
<td>同上用ゲージ</td>
<td>1 個</td>
<td>S59. 3.7</td>
<td>No.1185</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>集塵器</td>
<td>3 台</td>
<td>S54.11.30</td>
<td>S59.2.29</td>
<td>No.868</td>
<td>α線検</td>
</tr>
<tr>
<td>受領業日</td>
<td></td>
<td></td>
<td></td>
<td>1096,1097</td>
<td>α線検</td>
</tr>
<tr>
<td>発電機</td>
<td>3 台</td>
<td>S54.11.30</td>
<td>S59.3.6</td>
<td>No.871</td>
<td>α線検</td>
</tr>
<tr>
<td>受領業日</td>
<td></td>
<td></td>
<td></td>
<td>1151,1152</td>
<td>α線検</td>
</tr>
<tr>
<td>ラジオ</td>
<td>2 台</td>
<td>S59. 3.6</td>
<td>S59. 3.7</td>
<td>No.1155</td>
<td>α線検</td>
</tr>
<tr>
<td>受領業日</td>
<td></td>
<td></td>
<td></td>
<td>1191</td>
<td>α線検</td>
</tr>
<tr>
<td>風向風速計</td>
<td>1 台</td>
<td>S59. 2.28</td>
<td>No.1044</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>カメラ</td>
<td>2 台</td>
<td>S59. 3.7</td>
<td>No.1186,1187</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>望遠レンズ</td>
<td>1 台</td>
<td>S59. 3.7</td>
<td>No.1188</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>ドラムシーバー</td>
<td>2 台</td>
<td>S59. 3.7</td>
<td>No.1189,1190</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>電卓</td>
<td>2 台</td>
<td>S59. 3.6</td>
<td>No.1161,1162</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>ストップウォッチ</td>
<td>2 個</td>
<td>S59. 3.6</td>
<td>No.1156,1157</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>巻尺</td>
<td>2 個</td>
<td>S59. 3.6</td>
<td>No.1163,1164</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>野営用具セット</td>
<td>2 式</td>
<td>S54.11.27</td>
<td>(H 3. 8.27)</td>
<td>No.839,840</td>
<td>α線検</td>
</tr>
<tr>
<td>①テント</td>
<td></td>
<td>(H 3. 8.27)</td>
<td>(313,314)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>②ザック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③エアーマット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④シュラフ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑤コッヘル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑥炊事セット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑦キャンピングコンロ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑧ヘビーストーブ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑨⑩⑪用ボンベ（3本）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑫ヘッドランプ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑬三角スコップ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑭ポリタンク（2個）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑮コンパス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑯水筒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑰ロープ（20m）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑱ペグ（20本）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コードリール</td>
<td>2 巻</td>
<td>S59.11.6</td>
<td>No.354-1,2</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>ストロボ</td>
<td>1 台</td>
<td>S59.10.31</td>
<td>No.345</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>モニタリング用品収納箱</td>
<td>10 個</td>
<td>H 1.10.3</td>
<td>No.302-1～10</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>デジタル式上皿自動はかり</td>
<td>1 台</td>
<td>H 1.9.29</td>
<td>No.253</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>機器名</td>
<td>数量</td>
<td>受領年月日</td>
<td>備品番号</td>
<td>保管場所</td>
<td>備考</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>20 半導体式ポケット 線量当量計</td>
<td>5台</td>
<td>H 2. 1.16</td>
<td>No.599-1〜5</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>21 スペクトルサーベイメータ</td>
<td>1式</td>
<td>H 4. 3.31</td>
<td>No.1604</td>
<td>α線検</td>
<td></td>
</tr>
<tr>
<td>機器名</td>
<td>数量</td>
<td>受領年月日</td>
<td>保管場所</td>
<td>備考</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>ボリエチレン製タンク</td>
<td>2個</td>
<td>59.3.28</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>牛乳缶</td>
<td>2缶</td>
<td>59.2.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マリネリピーカー</td>
<td>5個</td>
<td>59.3.23</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>手押し</td>
<td>1個</td>
<td>59.4.3</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>剪定鉄</td>
<td>1本</td>
<td>59.4.3</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スコップ</td>
<td>1本</td>
<td>59.3.28</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防塵マスク</td>
<td>10個</td>
<td>59.3.5</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防寒作業衣</td>
<td>10着</td>
<td>59.4.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防寒作業ズボン</td>
<td>10着</td>
<td>59.4.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防寒衣</td>
<td>10着</td>
<td>59.4.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防寒ズボン</td>
<td>10着</td>
<td>59.4.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>つなぎ</td>
<td>10着</td>
<td>59.4.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>半袖作業上着</td>
<td>20着</td>
<td>H1.8.31</td>
<td>企画室</td>
<td></td>
<td></td>
</tr>
<tr>
<td>防具</td>
<td>10着</td>
<td>59.4.16</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全つまつ</td>
<td>10足</td>
<td>59.4.23</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ネオプレーン手袋</td>
<td>10双</td>
<td>H2.10.11</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>投光器</td>
<td>2個</td>
<td>59.4.6</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>背負子</td>
<td>5個</td>
<td>59.3.28</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヘルメット</td>
<td>10個</td>
<td>59.4.3</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィルムパッチケース</td>
<td>10個</td>
<td>59.3.5</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLDCASE</td>
<td>10個</td>
<td>59.6.5</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLDS子</td>
<td>25個</td>
<td>59.6.5</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射線データブック</td>
<td>2冊</td>
<td>H2.10.11</td>
<td>α線棲、企画室</td>
<td></td>
<td></td>
</tr>
<tr>
<td>方位計</td>
<td>2個</td>
<td>59.3.28</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中電灯</td>
<td>6個</td>
<td>59.11.2</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ガソリンタンク</td>
<td>1個</td>
<td>59.11.5</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発電機用オイル</td>
<td>2本</td>
<td>59.11.21</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ドライパーセット</td>
<td>4組</td>
<td>59.11.20</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>活性炭ろ紙</td>
<td>50枚</td>
<td>59.11.21</td>
<td>α線棲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>テスター</td>
<td>2台</td>
<td>S63.11.22</td>
<td>α線棲、企画室</td>
<td></td>
<td></td>
</tr>
<tr>
<td>機器名</td>
<td>数量</td>
<td>受領年月日</td>
<td>保管場所</td>
<td>備考</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>31 新日本分県地図</td>
<td>2冊</td>
<td>H.2.12.13</td>
<td>α線棟、企画室</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 作業服</td>
<td>15着</td>
<td>H.2.1.17</td>
<td>α線棟</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 作業ズボン</td>
<td>15着</td>
<td>H.2.1.17</td>
<td>α線棟</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2-4 緊急モニタリング用品一覧（消耗品）
6．緊急医療体制

原子力発電所等に係る不測の事故の発生に際し、現地の緊急被ばく医療活動に指導・協力する要員を派遣する必要が生じた場合及び現地で処置できない被ばく患者を受け入れることとなった場合に、これに迅速かつ正確に対処できるよう所要の体制及び要領を整えることを目的とする。

1．緊急医療棟及び無菌室について

緊急医療棟は内部被ばく患者を受け入れるために増設（昭和56年9月10日完成、平屋建面積約160㎡）、無菌室は外部被ばく患者を受け入れるために病院棟4階の412号室を改修（昭和56年3月31日完成、面積30㎡）したもので、必要関連機器等については表－1、2、3のとおり継続的に整備を行っている。

2．緊急医療マニュアル

「緊急被ばく医療派遣マニュアル」、「内部被ばく患者緊急医療棟診療マニュアル」及び「外部被ばく患者無菌室診療マニュアル」の内容について表－4に示す。
<table>
<thead>
<tr>
<th>機器名</th>
<th>数量</th>
<th>受領年月日</th>
<th>備品番号</th>
<th>保管場所</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>長椅子</td>
<td>1台</td>
<td>S53.7.3</td>
<td>No.351</td>
<td>搬入前室</td>
<td></td>
</tr>
<tr>
<td>除染用バス</td>
<td>1式</td>
<td>S56.3.25</td>
<td>No.1090</td>
<td>除染室</td>
<td></td>
</tr>
<tr>
<td>外科手術台</td>
<td>1式</td>
<td>S56.3.30</td>
<td>No.1195</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>手術台用上肢台</td>
<td>2組</td>
<td>S56.3.30</td>
<td>No.1196,1197</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>手術台用足部</td>
<td>2組</td>
<td>S56.3.30</td>
<td>No.1198,1199</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>処置台（ワゴン）</td>
<td>3台</td>
<td>S56.3.30</td>
<td>No.1175〜77</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>バスポックス</td>
<td>3式</td>
<td>S56.3.31</td>
<td>No.1223(^1) No.1223(^2) No.1223(^3)</td>
<td>管理室</td>
<td>観察室 処置室 廊下 除染室</td>
</tr>
<tr>
<td>身体洗浄装置</td>
<td>1式</td>
<td>S56.3.30</td>
<td>No.1208</td>
<td>緊急医療棟</td>
<td></td>
</tr>
<tr>
<td>手術用冷洗装置</td>
<td>1式</td>
<td>S56.9.30</td>
<td>No.317</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>手術用照明</td>
<td>1台</td>
<td>S56.9.30</td>
<td>No.318</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>ロッカー</td>
<td>2台</td>
<td>S56.11.13</td>
<td>No.388,389</td>
<td>更衣室</td>
<td></td>
</tr>
<tr>
<td>ギャッシュベッド</td>
<td>1台</td>
<td>S56.11.26</td>
<td>No.427</td>
<td>観察室</td>
<td></td>
</tr>
<tr>
<td>器械台</td>
<td>1台</td>
<td>S56.11.26</td>
<td>No.431</td>
<td>観察室</td>
<td></td>
</tr>
<tr>
<td>表面汚染計（α）</td>
<td>1台</td>
<td>S56.11.30</td>
<td>No.440</td>
<td>管理室</td>
<td></td>
</tr>
<tr>
<td>医療器具戸棚</td>
<td>1台</td>
<td>S56.11.30</td>
<td>No.441</td>
<td>観察室</td>
<td></td>
</tr>
<tr>
<td>カラーテレビ</td>
<td>1台</td>
<td>S56.12.1</td>
<td>No.445</td>
<td>観察室</td>
<td></td>
</tr>
<tr>
<td>テレビ戸棚</td>
<td>1台</td>
<td>S56.12.1</td>
<td>No.446</td>
<td>観察室</td>
<td></td>
</tr>
<tr>
<td>無菌ロック（戸棚）</td>
<td>1台</td>
<td>S56.12.8</td>
<td>No.467</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>自動麻酔器</td>
<td>1式</td>
<td>S56.12.16</td>
<td>No.486</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>ハンツフットクロズモニタ</td>
<td>1台</td>
<td>S57.2.12</td>
<td>No.689</td>
<td>前室</td>
<td></td>
</tr>
<tr>
<td>ガスモニタ</td>
<td>1台</td>
<td>S57.3.30</td>
<td>No.990-1</td>
<td>排気機械室</td>
<td></td>
</tr>
<tr>
<td>ガスモニタ</td>
<td>1台</td>
<td>S57.3.30</td>
<td>No.990-2</td>
<td>排気機械室</td>
<td></td>
</tr>
<tr>
<td>モニタ表示器</td>
<td>1台</td>
<td>S57.3.30</td>
<td>No.990-3</td>
<td>管理室</td>
<td></td>
</tr>
<tr>
<td>エリアモニタ</td>
<td>1台</td>
<td>S57.3.30</td>
<td>No.991</td>
<td>除染室</td>
<td></td>
</tr>
<tr>
<td>デシケータ</td>
<td>1台</td>
<td>S57.7.9</td>
<td>No.248</td>
<td>管理室</td>
<td></td>
</tr>
<tr>
<td>回転椅子</td>
<td>4脚</td>
<td>S57.7.20</td>
<td>No.311,312,313,314</td>
<td>管理室</td>
<td>ホール「メディカル」</td>
</tr>
<tr>
<td>作業台</td>
<td>4台</td>
<td>S57.8.31</td>
<td>No.380,381 No.382,383</td>
<td>管理室</td>
<td>検査室</td>
</tr>
<tr>
<td>サーベイメーター（β、τ）</td>
<td>1台</td>
<td>S57.8.3 H 2.3.30</td>
<td>No.355</td>
<td>管理室</td>
<td></td>
</tr>
<tr>
<td>傷モニタ</td>
<td>1式</td>
<td>S57.10.29</td>
<td>No.464</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>ホールボディカウンタ</td>
<td>2式</td>
<td>S58.1.18 S62.3.27</td>
<td>No.377</td>
<td>ホール「メディカル」</td>
<td></td>
</tr>
</tbody>
</table>

- 97 -
<table>
<thead>
<tr>
<th>機器名</th>
<th>数量</th>
<th>受領年月日</th>
<th>備品番号</th>
<th>保管場所</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>校正用ファントム</td>
<td>3式</td>
<td>S59.11.30</td>
<td>No.391〜393</td>
<td>用品庫</td>
<td></td>
</tr>
<tr>
<td>校正用人体ファントム</td>
<td>1式</td>
<td>S60.3.8</td>
<td>No.840</td>
<td>用品庫</td>
<td></td>
</tr>
<tr>
<td>保冷庫</td>
<td>1台</td>
<td>S60.11.29</td>
<td>No.654</td>
<td>前室</td>
<td></td>
</tr>
<tr>
<td>ジェット洗浄器</td>
<td>1台</td>
<td>S61.3.27</td>
<td>No.1620</td>
<td>検査室</td>
<td></td>
</tr>
<tr>
<td>整理棚</td>
<td>1台</td>
<td>H 1.10.3</td>
<td>No.296</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>シンチレーションスキャナイメージタ</td>
<td>1台</td>
<td>H 1.8.31</td>
<td>No.250</td>
<td>管理室</td>
<td></td>
</tr>
<tr>
<td>蘇生器</td>
<td>1台</td>
<td>H 3.9.25</td>
<td>No.358</td>
<td>処置室</td>
<td></td>
</tr>
<tr>
<td>引き違い書庫</td>
<td>1台</td>
<td>H 3.9.13</td>
<td>No.347</td>
<td>除染室</td>
<td></td>
</tr>
</tbody>
</table>
表-2-1 無菌室用機器一覧

<table>
<thead>
<tr>
<th>機器名</th>
<th>数量</th>
<th>受領年月日</th>
<th>備品番号</th>
<th>保管場所</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>自動加温器</td>
<td>1台</td>
<td>S56.2.9</td>
<td>No.734</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>折たたみ椅子</td>
<td>1脚</td>
<td>S56.2.18</td>
<td>No.785</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>ブックラック（診察記録用）</td>
<td>1台</td>
<td>S56.2.18</td>
<td>No.784</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>無菌室（水平層流式隔離病室+シャワーユニット）</td>
<td>1式</td>
<td>S56.3.27 (シャワーユニット 613.17)</td>
<td>No.1153</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>ポリホームバス (浴槽)</td>
<td>1台</td>
<td>S56.3.28</td>
<td>No.1245</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>手洗台</td>
<td>2個</td>
<td>S56.3.30</td>
<td>No.1173, No.1174</td>
<td>緊急医療棟医務課研究室</td>
<td></td>
</tr>
<tr>
<td>吸引器</td>
<td>1台</td>
<td>S56.3.30</td>
<td>No.1178</td>
<td>病院棟4Fリカン室</td>
<td></td>
</tr>
<tr>
<td>ランドリーバック</td>
<td>1個</td>
<td>S56.3.30</td>
<td>No.1179</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>キックバケツ</td>
<td>1個</td>
<td>S56.3.30</td>
<td>No.1180</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>イルリガートル台</td>
<td>2本</td>
<td>S56.3.30</td>
<td>No.1181,1182</td>
<td>病院棟4Fリカン室</td>
<td></td>
</tr>
<tr>
<td>心電計</td>
<td>1式</td>
<td>S56.3.30</td>
<td>No.1200</td>
<td>検査課</td>
<td></td>
</tr>
<tr>
<td>自動輸液ポンプ</td>
<td>3台</td>
<td>S56.3.30, S57.8.6, S60.12.17</td>
<td>No.1202, No.356, No.816</td>
<td>病院棟4Fリカン室</td>
<td></td>
</tr>
<tr>
<td>電子レンジ</td>
<td>1台</td>
<td>S56.3.31</td>
<td>No.1214</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>冷蔵庫</td>
<td>1台</td>
<td>S56.3.31</td>
<td>No.1215,1216</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>オーバーベッドテーブル</td>
<td>1台</td>
<td>S56.3.31</td>
<td>No.1237</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>ベッド棚</td>
<td>4台</td>
<td>S56.3.31</td>
<td>No.1238〜1241</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>無菌ロック（戸棚）</td>
<td>1台</td>
<td>S56.3.31</td>
<td>No.1242</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>X線撮影装置（放射線）</td>
<td>1台</td>
<td>S56.3.31</td>
<td>No.1243</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>カラーテレビテレビ台</td>
<td>1台</td>
<td>S56.3.31</td>
<td>No.1244</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>ギャッピッピッド</td>
<td>1台</td>
<td>S56.12.1</td>
<td>No.428</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>電子レンジ台</td>
<td>1台</td>
<td>S56.12.1</td>
<td>No.448</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>白衣掛</td>
<td>1台</td>
<td>S59.2.22</td>
<td>No.1021</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>クリップバ洗浄器</td>
<td>1台</td>
<td>S60.3.28</td>
<td>No.1021</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>酸素流量計</td>
<td>1個</td>
<td>S60.12.7</td>
<td>No.815</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>超音波ネプライザー</td>
<td>1台</td>
<td>S60.12.17</td>
<td>No.811</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>処置台 (ワゴン)</td>
<td>1台</td>
<td>S60.12.17</td>
<td>No.812</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>血圧計</td>
<td>1台</td>
<td>S60.12.17</td>
<td>No.814</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
<tr>
<td>ポータブルトイレ</td>
<td>1台</td>
<td>S60.12.17</td>
<td>No.818</td>
<td>病院棟2F無菌室</td>
<td></td>
</tr>
<tr>
<td>砲菌燈</td>
<td>1個</td>
<td>S60.12.23</td>
<td>No.839</td>
<td>病院棟4F無菌室</td>
<td></td>
</tr>
</tbody>
</table>
表-2-2 無菌室用機器一覧

<table>
<thead>
<tr>
<th>機器名</th>
<th>数量</th>
<th>受領年月日</th>
<th>備品番号</th>
<th>保管場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>付添ベッド</td>
<td>1台</td>
<td>60.12.17</td>
<td>No.813</td>
<td>病院棟4F無菌室</td>
</tr>
<tr>
<td>洗髪椅子</td>
<td>1脚</td>
<td>60.12.17</td>
<td>No.817</td>
<td>病院棟2F無菌室</td>
</tr>
<tr>
<td>食事運搬用無菌ボックス</td>
<td>2個</td>
<td>60.12.3</td>
<td>No.763,764</td>
<td>事務課栄養係</td>
</tr>
<tr>
<td>移動型簡易無菌装置</td>
<td>1式</td>
<td>H 1.8.7</td>
<td>No.103</td>
<td>病院棟3F病棟</td>
</tr>
<tr>
<td>無菌ストレッチャー</td>
<td>1台</td>
<td>H 1.11.10</td>
<td>No.328</td>
<td>病院棟B1</td>
</tr>
<tr>
<td>循環隔離病室システム</td>
<td>1台</td>
<td>H 6.2.28</td>
<td>No.2351</td>
<td>病院棟4F無菌室</td>
</tr>
<tr>
<td>機 器 名</td>
<td>数量</td>
<td>受 領 年 月 日</td>
<td>備 品 番 号</td>
<td>保 管 場 所</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>ファイリングキャビネット</td>
<td>1台</td>
<td>S56. 2.18</td>
<td>No.783</td>
<td>病院棟4F N.S.</td>
</tr>
<tr>
<td>鼻咽頭ファイバースコープ</td>
<td>1式</td>
<td>S56. 2.19</td>
<td>No.1201</td>
<td>病院棟212号室</td>
</tr>
<tr>
<td>超広視野顕微鏡</td>
<td>1台</td>
<td>S56. 3.17</td>
<td>No.1051</td>
<td>医務課研究室</td>
</tr>
<tr>
<td>クリーンベンチ</td>
<td>2台</td>
<td>S56. 3.30</td>
<td>No.1205</td>
<td>病院棟212号室</td>
</tr>
<tr>
<td>自動炭酸ガス細胞培養装置</td>
<td>1式</td>
<td>S56. 3.30</td>
<td>No.1207</td>
<td>培養棟</td>
</tr>
<tr>
<td>身体洗浄装置</td>
<td>1式</td>
<td>S56. 3.30</td>
<td>No.1208</td>
<td>緊急医療棟</td>
</tr>
<tr>
<td>吸引ポンプ</td>
<td>1式</td>
<td>S56. 3.30</td>
<td>No.1209</td>
<td>晩発棟3F</td>
</tr>
<tr>
<td>血液成分分析装置</td>
<td>1式</td>
<td>S56. 3.30</td>
<td>No.1185</td>
<td>病院棟211号室</td>
</tr>
<tr>
<td>ポータブルシーラー</td>
<td>1式</td>
<td>S56. 3.30</td>
<td>No.1186</td>
<td>病院棟211号室</td>
</tr>
<tr>
<td>診察台</td>
<td>1台</td>
<td>S56. 3.31</td>
<td>No.1236</td>
<td>病院棟4F処置室</td>
</tr>
<tr>
<td>スロンポカウンター</td>
<td>1式</td>
<td>S56. 3.31</td>
<td>No.1226</td>
<td>晩発棟3F</td>
</tr>
<tr>
<td>患者監視装置</td>
<td>2式</td>
<td>S57. 1.21</td>
<td>No.569</td>
<td>病院棟手術室</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S57. 8.31</td>
<td>No.384</td>
<td></td>
</tr>
<tr>
<td>觀血鏡</td>
<td>1台</td>
<td>S57. 7.30</td>
<td>No.343</td>
<td>検査課</td>
</tr>
<tr>
<td>セルカウンター（自動血球測定装置）</td>
<td>1台</td>
<td>S57. 8.20</td>
<td>No.371</td>
<td>晩発棟3F</td>
</tr>
<tr>
<td>ガス滅菌器</td>
<td>1台</td>
<td>S57. 9.17</td>
<td>No.406</td>
<td>病院棟211号室</td>
</tr>
<tr>
<td>細胞凍結用保存容器</td>
<td>1台</td>
<td>S60.11.29</td>
<td>No.655</td>
<td>病院棟2F無菌室</td>
</tr>
<tr>
<td>血液ガス分析装置</td>
<td>1式</td>
<td>S62. 3. 4</td>
<td>No.1309</td>
<td>検査課</td>
</tr>
<tr>
<td>全自動成分検血装置</td>
<td>1式</td>
<td>H 1. 9.14</td>
<td>No.232</td>
<td>病院棟211号室</td>
</tr>
<tr>
<td>自動血沈計</td>
<td>1式</td>
<td>H 2. 8. 8</td>
<td>No.107</td>
<td>検査課</td>
</tr>
<tr>
<td>クリーンベンチ</td>
<td>1式</td>
<td>H 2. 8.31</td>
<td>No.275</td>
<td>第1研究棟3F</td>
</tr>
<tr>
<td>分光光度計</td>
<td>1式</td>
<td>H 2. 8.30</td>
<td>No.324</td>
<td>緊急医療棟</td>
</tr>
<tr>
<td>エレクトロニクス装置</td>
<td>1式</td>
<td>H 3. 5.31</td>
<td>No.29</td>
<td>第1研究棟3F</td>
</tr>
</tbody>
</table>
放射能調査研究報告書（平成7年度）

平成8年12月刊行
編集放射線医学総合研究所（企画室）
郵便番号263
千葉県千葉市稲毛区穴川4丁目9番1号
電話 043-251-2111（代表）
FAX 043-256-9616（企画室）