WEKO3
アイテム
Reaction of Glutathione and Bio-Related Thiols with 2,2-Diphenyl-1-picrylhydrazyl Radical Solubilized by beta-Cyclodextrin in Water
https://repo.qst.go.jp/records/72820
https://repo.qst.go.jp/records/72820d09f8499-8cf9-459d-a956-465062a13c30
Item type | 会議発表用資料 / Presentation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2018-06-12 | |||||
タイトル | ||||||
タイトル | Reaction of Glutathione and Bio-Related Thiols with 2,2-Diphenyl-1-picrylhydrazyl Radical Solubilized by beta-Cyclodextrin in Water | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_c94f | |||||
資源タイプ | conference object | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Nakanishi, Ikuo
× Nakanishi, Ikuo× Ohkubo, Kei× Ueno, Megumi× Sekine-Suzuki, Emiko× Ozawa, Toshihiko× Matsumoto, Ken-ichiro× 中西 郁夫× 大久保 敬× 上野 恵美× 関根 絵美子× 小澤 俊彦× 松本 謙一郎 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Glutathione (GSH) is known to act as a redox regulator. However, the radical scavenging mechanism of GSH has yet to be fully clarified. Recently, we have succeeded in solubilizing water-insoluble 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in water using beta-cyclodextrin. In this study, the scavenging mechanism of the water-solubilized DPPH radical by GSH was investigated using the stopped-flow technique. Upon mixing of GSH with the DPPH radical in phosphate buffer (0.05 M, pH 7.4), the absorption band at 527 nm due to the DPPH radical decreased gradually. The pseudo-first order rated constants (kobs), determined from the decay of the absorbance at 527 nm, increased with increasing the GSH concentration and reached a constant value. Furthermore, the higher pH was, the larger the kobs values became. When H2O of the phosphate buffer was replaced with D2O, little change was observed for the kobs values. Thiol compounds with smaller pKa values than GSH, such as L-cysteine, showed higher scavenging activity than GSH under the same experimental conditions. These results suggest that the DPPH radical-scavenging reaction by GSH may proceed via deprotonation of GSH to produce the corresponding thiolate anion, GS-, followed by an electron transfer from GS- to the DPPH radical. |
|||||
会議概要(会議名, 開催地, 会期, 主催者等) | ||||||
内容記述タイプ | Other | |||||
内容記述 | 19th Biennial Meeting of Society for Free Radical Research International (SFRRI 2018) | |||||
発表年月日 | ||||||
日付 | 2018-06-04 | |||||
日付タイプ | Issued |