ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Optimal Design of Experiment for X-Ray Spectromicroscopy by Machine Learning

https://repo.qst.go.jp/records/49423
https://repo.qst.go.jp/records/49423
2a88872e-6870-4569-91ac-a797b10ab838
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-02-28
タイトル
タイトル Optimal Design of Experiment for X-Ray Spectromicroscopy by Machine Learning
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Ueno, Tetsuro

× Ueno, Tetsuro

WEKO 727244

Ueno, Tetsuro

Search repository
Hino, Hideitsu

× Hino, Hideitsu

WEKO 727245

Hino, Hideitsu

Search repository
Ono, Kanta

× Ono, Kanta

WEKO 727246

Ono, Kanta

Search repository
上野 哲朗

× 上野 哲朗

WEKO 727247

en 上野 哲朗

Search repository
抄録
内容記述タイプ Abstract
内容記述 The total measurement time of an X-ray spectromicroscopy experiment using a scanning transmission X-ray microscope (STXM) is determined by a multiplication of a number of energy points ne, sample scanning points ns, and measurement time per each point tm plus overhead. Overhead consists of time for data acquisition, moving of sample scanners, beamline optics and undulator properties (gap and phase of magnet arrays). An X-ray spectromicroscopy experiment with an STXM is performed as an image acquisition by sample scanning in an energy-by-energy regime. Moreover, moving of beamline optics such as a grating and mirrors takes longer time than that of piezoelectric actuators for sample scanning. Therefore, it is a good strategy to reduce ne to reduce total measurement time. Another strategy to reduce total measurement time is an optimization of tm. One can reduce tm at the expense of a signal-to-noise (S/N) ratio of spectra, which is proportional to tm1/2. It is important to reduce total measurement time without degrading the quality of spectra to extract physical or chemical parameters by analysis. Machine learning techniques are expected to resolve this issue. Ueno et al. proposed the adaptive design of an X- ray magnetic circular dichroism (XMCD) spectroscopy experiment by Gaussian process (GP) modeling, a machine learning technique, and successfully reduced the total number of energy points to measure to evaluate magnetic moments with required accuracy.
書誌情報 Microscopy and Microanalysis

巻 24, 号 S2, p. 134-135, 発行日 2018-08
出版者
出版者 Cambridge University Press
ISSN
収録物識別子タイプ ISSN
収録物識別子 1431-9276
DOI
識別子タイプ DOI
関連識別子 10.1017/S1431927618013065
関連サイト
識別子タイプ DOI
関連識別子 https://doi.org/10.1017/S1431927618013065
関連名称 https://doi.org/10.1017/S1431927618013065
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 19:07:16.695217
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3