量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
The structural features of a polymer electrolyte membrane (PEM), consisting of polystyrene sulfonic acid (PSSA) grafted onto poly(ethylene-co-tetrafluoroethylene) (ETFE), can be characterized semi-quantitatively by atomic force microscopy (AFM). The cross-sectional AFM phase images are converted to the binarized image by fitting two Gaussian functions. The domains correspond to hydrophilic PSSA domains and hydrophobic ETFE crystalline and amorphous regions, respectively, at lower and higher phase shift values. The area fraction of PSSA domains was consistent with the volume fraction determined by the grafting degree (GD). The dependence of the radius and inter-domain distance of the PSSA domains on the GDs of PEMs shows discontinuous features at the threshold GD (39%). The former slightly increased from 10 to 12 nm and significantly increased to 17 nm at a GD greater than 39%; the latter decreased from 140 to 54 nm with increases in GDs up to 39% but inversely increased to 78 nm at a GD of 46%. This discontinuous change in radius and inter-domain distance should be caused by the fusion of adjacent PSSA domains to form a larger size and spacing and thus less connectivity between each large domain, thereby lowering the conductivity at GD greater than 39%. We were able to demonstrate the existence of an ion-conducting hydrophilic path with a radius of approximately 10 nm. Even though it has received little attention in the past, it is expected to enable the design of electrolyte membrane functions in the future.