量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Objective: Although beta-amyloid (Aβ) positron emission tomography (PET) images are interpreted visually as positive or negative, approximately 10% are judged as equivocal in Alzheimer's disease. Therefore, we aimed to develop an automated semi-quantitative analysis technique using 18F-flutemetamol PET images without anatomical images.
Methods: Overall, 136 cases of patients administered 18F-flutemetamol were enrolled. Of 136 cases, five PET images each with the highest and lowest values of standardized uptake value ratio (SUVr) of cerebral cortex-to-pons were used to create positive and negative templates. Using these templates, PET images of the remaining 126 cases were standardized, and SUVr images were produced with the pons as a reference region. The mean of SUVr values in the volume of interest delineated on the cerebral cortex was compared to those in the CortexID Suite (GE Healthcare). Furthermore, centiloid (CL) values were calculated for the 126 cases using data from the Centiloid Project ( http://www.gaain.org/centiloid-project ) and both templates. 18F-flutemetamol-PET was interpreted visually as positive/negative based on Aβ deposition in the cortex. However, the criterion "equivocal" was added for cases with focal or mild Aβ accumulation that were difficult to categorize. Optimal cutoff values of SUVr and CL maximizing sensitivity and specificity for Aβ detection were determined by receiver operating characteristic (ROC) analysis using the visual evaluation as a standard of truth.
Results: SUVr calculated by our method and CortexID were highly correlated (R2 = 0.9657). The 126 PET images comprised 84 negative and 42 positive cases of Aβ deposition by visual evaluation, of which 11 and 10 were classified as equivocal, respectively. ROC analyses determined the optimal cutoff values, sensitivity, and specificity for SUVr as 0.544, 89.3%, and 92.9%, respectively, and for CL as 12.400, 94.0%, and 92.9%, respectively. Both semi-quantitative analyses showed that 12 and 9 of the 21 equivocal cases were negative and positive, respectively, under the optimal cutoff values.
Conclusions: This semi-quantitative analysis technique using 18F-flutemetamol-PET calculated SUVr and CL automatically without anatomical images. Moreover, it objectively and homogeneously interpreted positive or negative Aβ burden in the brain as a supplemental tool for the visual reading of equivocal cases in routine clinical practice.