量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Germline-mutation in BRCA1 tumor suppressor gene is an established risk for carcinogenesis not only in females but also in males. Deficiency in the repair of DNA double-strand breaks is hypothesized as a responsible mechanism for carcinogenesis. However, supporting data is insufficient both in the mutation spectra of cancers in the patients with BRCA1 germline-mutation and in murine knockout/knock-in models of Brca1 haploinsufficiency. Furthermore, information on the driving force toward carcinogenesis in BRCA1 mutation carriers is lacking. Here we applied Fenton reaction-based renal carcinogenesis to a rat heterozygously knockout model of BRCA1 haploinsufficiency (mutant [MUT] model; L63X/+). Rat MUT model revealed significant promotion of renal cell carcinoma (RCC) induced by ferric nitrilotriacetate (Fe-NTA). Array-based comparative genome hybridization of the RCCs identified significant increase in chromosomal amplification, syntenic to those in breast cancers of BRCA1 mutation carriers, including c-Myc, in comparison to those in the wild-type. Subacute-phase analysis of the kidney after repeated Fe-NTA treatment in the MUT model revealed dysregulated iron metabolism with mitochondrial malfunction assessed by expression microarray and electron microscopy, leading to renal tubular proliferation with iron overload. In conclusion, we for the first time demonstrate that biallelic wild-type BRCA1 provides more robust protection for mitochondrial metabolism under iron-catalyzed oxidative stress, preventing the emergence of neoplastic cells with chromosomal amplification. Our results suggest that oxidative stress via excess iron is a major driving force for carcinogenesis in BRCA1 haploinsufficiency, which can be a target for cancer prevention and therapeutics.