量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Background/Aim: Genetic and environmental factors interact to dictate the risk of cancer, and animal models are expected to provide avenues for identifying such interactions. The aim of the study was to clarify the genetic susceptibility of Copenhagen rats to spontaneous, radiation-induced, and chemically-induced mammary carcinogenesis. Materials and Methods: Female Copenhagen and Sprague– Dawley rats and their F1 hybrids were subjected at age 7 weeks to γ-irradiation or intraperitoneal injection with 1-methyl-1-nitrosourea or were not treated, and palpable mammary tumours were diagnosed histologically. Data were pooled with previous data acquired for both nontreated and irradiated Sprague–Dawley rats. Results: Radiation and 1-methyl-1-nitrosourea both significantly increased the incidence of mammary cancer in all strains. Copenhagen and F1 rats displayed a significantly lower incidence than Sprague–Dawley rats in all groups, with relatively higher incidence after irradiation. F1 rats exhibited significantly higher mammary cancer incidence than Copenhagen rats in the nontreated, but not the treated, groups. The interaction of the strain and exposure effects was suggested to be quasi-multiplicative. Conclusion: Copenhagen rats display non-uniform resistance to spontaneous, radiation-induced, and chemically-induced mammary carcinogenesis with dominant inheritance over Sprague–Dawley rats.