量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Proton range monitoring and verification is important to enhance the effectiveness of treatment by ensuring that the correct dose is delivered to the correct location. Upon proton irradiation, different positron emitting radioisotopes are produced by the inelastic nuclear interactions of protons
with the target elements. Recently, it was reported that the 16O(p,2p2n)13N reaction has a relatively low threshold energy, and it could be potentially used for proton range verification. In the present work, we have proposed an analysis scheme (i.e., algorithm) for the extraction and three-dimensional
visualization of positron emitting radioisotopes. The proposed step-by-step analysis scheme was tested using our own experimentally obtained dynamic data from a positron emission mammography (PEM) system (our developed PEMGRAPH system). The experimental irradiation was performed using an azimuthally varying field (AVF) cyclotron with a 80 MeV monoenergetic pencil-like beam. The 3D visualization showed promising results for proton-induced radioisotope distribution. The proposed scheme and developed tools would be useful for the extraction and 3D visualization of positron emitting radioisotopes and in turn for proton range monitoring and verification.