量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Objective: The aim of the present study was to investigate the mechanisms responsible for the radiation-sensitizing effect of antennapedia proteins, ANTP-SMACN7, on lung cancer cells treated with accelerated carbon and Fe particle irradiation.
Methods: The ANTP-SMACN7 fusion peptide was synthesized and linked to fluorescein isothiocyanate to determine its ability to penetrate cells. A549 and NCI-H460 cells, human non-small cell lung cancer (NSCLC) cell lines, were irradiated with X-ray or high linear energy transfer (LET) irradiation with or without ANTP-SMACN7 treatment. Cellular survival, apoptosis, and protein expression were studied by colony formation assays, flow cytometry, and western blot analyses, respectively.
Results: ANTP-SMACN7 fusion proteins entered the cells and promoted A549 and NCI-H460 cell high LET irradiation radiosensitization. High LET irradiation was more efficient for clonogenic cell killing and the induction of apoptosis (P < 0.05). Treatment with ANTP-SMACN7 significantly reduced the A549 and NCI-H460 cell clone-forming percentages and increased apoptosis through inhibition of the X-linked inhibitor of apoptosis protein and the activation of caspase-3 and caspase-9.
Conclusions: Regarding pharmaceutical radiosensitization, these findings provided a way to improve high-LET clinical radiotherapy for NSCLC patients.
Keywords: Fe-particle radiation; carbon-particle radiation; caspase; non-small cell lung cancer cells; radiosensitizer.