量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Drug delivery systems (DDS) have been studied in an effort to reduce side effects by increasing the accumulation of anticancer drugs in cancer cells. However, the transport efficiency is still low due to the blocking by surrounding stromal tissues and the multiple intracellular drug transportation processes required to get the drug to a target cytosol. Thus, improving the efficiency of cancer therapy is still a major challenge. Here, a drug-free cancer microenvironment-targeting therapy using molecular blocks (MBs) is demonstrated, which is designed for efficient blood circulation and penetration through the stromal tissues as either a single molecule or a few molecules. When the MBs moved to a cancer microenvironment by the enhanced permeability and retention effect, they formed a self-assembled aggregate on the cancer cell surfaces in response to the weak acid (pH ∼ 6.5) condition leading to subsequent cancer cell death by membrane disruption. This strategy avoids multiple intracellular transportation processes and also stimulates cell membrane disruption by self-assembly of the MB VIA hydrophobic interactions. Deoxycholic acid (DCA) was selected as a cancer microenvironment-responsive unit because its pKa = 6.6. The DCA conjugated 4-arm poly(ethylene glycol) (4-MB) showed self-assembly phenomena on cancer cell membranes and subsequently significant cytotoxicity was clearly observed. Moreover, they clearly showed efficient accumulation in the tumor and the effective suppression of tumor growth in in vivo experiments. This MB therapy will be a new strategy for addressing the current issues of DDS.