量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Energy released from an accelerated high-energy single/cluster particle triggers solid-state polymerization and cross-linking reactions of porphyrin-based π-conjugated monomers within a nanometer-scaled one-dimensional spatial area along the ion trajectory, resulting in the formation of an insoluble nanowire with a precise diameter and length. The nanowires are isolated by the development process—immersion of the irradiated film in organic solvents—and their shape and geometry are clearly characterized by atomic force microscopy. The obtained nanowire bundles, reflecting precisely the number of incident particles, show characteristic absorption spectra originating from porphyrin chromophores without significant degradation of the molecular cores. These porphyrin-based nanowires can be further functionalized into metallocomplexes by immersing the nanowires into solutions containing metal ion sources. The remarkable finding on the monomer structural parameters is that terminal alkyne groups are preferentially reacted and thus highly effective as a monomer structure for the present single particle-triggered linear polymerization method. The porphyrin-based nanowires show much higher photoconductivity than the precursor porphyrin films and enhanced fluorescence on silver nanoparticle layers via surface plasmon resonance. The porphyrin nanowires serve as photosensitizers mediating the generation of singlet oxygens, which is attractive for the use as a controlled nanosystem toward photocatalysis and photodynamic therapy.