量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Complex DNA damage, defined as at least two vicinal lesions within 10–20 base pairs (bp), induced after exposure to ionizing radiation, is recognized as fatal damage to human tissue. During this study, we propose a simplified cluster analysis of ionization and electronic excitation events within 10 bp based on track structure for estimating complex DNA damage yields for electron and X-ray irradiations. We then compare the computational results with the experimental complex DNA damage coupled with base damage (BD) measured by enzymatic cleavage and atomic force microscopy (AFM). The computational results agree well with experimental fractions of complex damage yields, i.e., single and double strand breaks (SSBs, DSBs) and complex BD, when the yield ratio of BD/SSB is assumed to be 1.3. The present simulation enables us to quantify the type of complex damage which cannot be measured through in vitro experiments and helps us to interpret the experimental detection efficiency for complex BD measured by AFM. This simple model for estimating complex DNA damage yields contributes to the precise understanding of the DNA damage complexity induced after X-ray and electron irradiations.