量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Conductive, stretchable, environmentally‐friendly, and strain‐sensitive elastomers are attracting immense research interest because of their potential applications in various areas, such as human–machine interfaces, healthcare monitoring, and soft robots. Herein, a binary networked elastomer is reported based on a composite hydrogel of polyvinyl alcohol (PVA) and polyethyleneimine (PEI), which is demonstrated to be ultrastretchable, mechanically robust, biosafe, and antibacterial. The mechanical stretchability and toughness of the hydrogels are optimized by tuning the constituent ratio and water content. The optimal hydrogel (PVA2PEI1‐75) displays an impressive tensile strain as high as 500% with a corresponding tensile stress of 0.6 MPa. Furthermore, the hydrogel elastomer is utilized to fabricate piezoresistive sensors. The as‐made strain sensor displays seductive capability to monitor and distinguish multifarious human motions with high accuracy and sensitivity, like facial expressions and vocal signals. Therefore, the elastomer reported in this study holds great potential for sensing applications in the era of the Internet of Things (IoTs).