量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Root is the only organ to uptake water and nutrients from soil. Root system is crucial for plants to survive and/or adapt to environmental stresses, therefore, root system architecture (RSA) is an important breeding target for developing climate-resilient rice. Since the rice genome has been completely sequenced, many genes for root development were cloned and characterized so far. In addition, with the advances in technologies related to omics analysis such as high-throughput sequencer, transcriptome analysis of roots has also been progressed. In contrast, high-throughput root phenotyping has not been established in not only rice but also whole plants because root is hidden underground. This should be a bottleneck for utilizing multi-omics integrated approach for molecular breeding of RSA. We first summarize previous transcriptome analysis for root development under various abiotic stresses such as drought, salinity, heat etc. and overview current status of root phenotyping technology and modelling in rice. These knowledges would allow us to contemplate a possibility of applying of integrated multi-omics data of RSA to molecular breeding of climate-resilient rice.