量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Although experimental studies have shown that global cerebral hypoperfusion leads to amyloid deposition in the hemisphere with carotid artery occlusion in rodents, the results of such occurrence are controversial in humans. Hence, we aim to determine whether global cerebral hypoperfusion leading to decreased blood flow relative to metabolic demand [increased oxygen extraction fraction (OEF), misery perfusion] is associated with increases in amyloid deposition in the hemisphere with atherosclerotic major cerebral artery disease in patients. We evaluated the distribution of β-amyloid plaques using positron emission tomography and a [18F]-pyridylbenzofuran derivative (F-FPYBF-2) in 13 patients with unilateral atherosclerotic disease of the internal carotid artery (ICA) or middle cerebral artery (MCA) disease and no cortical infarction. The distribution volume ratio (DVR) of F- FPYBF-2 was calculated using dynamic data and Logan graphical analysis with reference tissue and was correlated with the cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO), and OEF, obtained from O-gas PET. The mean cortical value was calculated as the mean value within the frontal, posterior cingulate, precuneus, parietal, and lateral temporal cortical regions. Significant reductions in CBF and CMRO and increases in OEF were found in the hemisphere ipsilateral to the arterial lesion compared with the contralateral hemisphere. There was no significant difference for F-FPYBF-2 DVR between hemispheres. The ipsilateral to contralateral ratio of the F- FPYBF-2 DVR was increased in 3 patients, while the ipsilateral to contralateral OEF ratio was increased in 4 patients. The incidence of an increased hemispheric DVR ratio was significantly higher in patients with an increased hemispheric OEF ratio (3/4) than in patients without (0/9) (p < 0.02). Although the F- FPYBF-2 DVR in the ipsilateral hemisphere was positively correlated with OEF after adjustment for the F- FPYBF-2 DVR in the contralateral hemisphere using multiple regression analysis (p < 0.05), the contribution rate of OEF was small (R = 5.5%). Only one of the 4 patients with an increased hemispheric OEF ratio showed amyloid positivity based on the DVR value. In atherosclerotic major cerebral artery disease, misery perfusion accompanied only small increases of amyloid deposition at best. Misery perfusion was not associated with amyloid positivity.