量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Silicon carbide (SiC) metal-oxide-semiconductor field effect transistors (MOSFETs) are expected as power electronic devices for high radiative conditions, including nuclear plants and space. Radiation response of commercial-grade prototype SiC MOSFETs with applying the gate bias is of interest, in terms of installation of the device in robots or sensors working under such radioactive circumstances. Due to gamma-rays irradiation, the threshold voltages (Vth) of samples with un- and negative-biased up to -4.5 V slightly shift toward the negative voltage side. In contrast, the positive bias of 2.25 V shifts Vth more negatively. Positive charge densities trapped in the gate oxide of un- and positive-biased samples increased with increasing dose. However, no significant increase was observed for negative-biased samples of -2.25 and -4.5 V. We calculated characteristic parameters for the accumulation of holes in the gate oxide, sigmapJp which is defined as the product of current density due to holes generated by irradiation and capture cross section for a hole in a trap, and it is lower for these negative biased samples compared with the unbiased case. Application of appropriate negative gate biases to SiC MOSFETs during irradiation suppresses accumulation of positive charges in the gate oxide and negative shift of Vth, due to irradiation.