量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
The reaction properties of the thiol compounds, cysteine (Cys), N-acetyl-L-cysteine (NAC), the reduced form glutathione (GSH), and homocysteine (HCS) were compared. The main purpose of this study was to find a thiol-based anti-oxidant suitable for biological experiments and to provide clear reasoning for its selection. The availability of thiol compounds to generate superoxide by reducing molecular oxygen (O2) at a hyperthermal temperature was discussed. An oxidative atmosphere, i.e. superoxide generation by the hypoxanthine-xanthine oxidase reaction, hydroxyl radical generation by X-ray irradiation, or direct one-electron oxidation by ferricyanide, was prepared in a reaction mixture containing 0.1 mM TEMPOL and 1 mM test compound, and the EPR signal decay of TEMPOL was observed. A reaction mixture containing 0.1 mM TEMPOL and 1 mM thiol compound was incubated at 44°C, and the EPR signal decay of TEMPOL was observed. Thiols could function as H-donors to the oxoammonium cation and produce the hydroxylamine form of TEMPOL in an oxidative atmosphere. Thiols could also irreversibly react with the oxoammonium cation. GSH and Cys could reduce O2 to form superoxide/hydroperoxyl radical at hyperthermal temperatures, but HCS and NAC could not reduce O2. GSH and Cys may cause reductive stress, whereas NAC is a simple tractable antioxidant.