量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
In hadron therapy, it is important to evaluate how sensitive a detector is upon radiation with varying ionization densities, i.e. linear energy transfer (LET), as the LET changes when penetrating through material. For solid-state detectors, it is therefore essential to characterize the luminescence efficiency (ηHT,γ) of the detector as a function of LET. In this work, we investigate the radiophotuminescence (RPL) response from Al2O3:C,Mg 2D films and crystals exposed to various high LET beams (1H, 4He, 12C, 28Si and 56Fe). The measured ηHT,γ curve from RPL films and crystals as function of the particle LET is compared with the ηHT,γ curve from Al2O3:C OSL samples. Furthermore, a 2D RPL image, from Al2O3:C,Mg films irradiated with a 61.3 MeV 40mm diameter broad proton beam, depicts a 2D depth dose distribution of the Bragg peak and demonstrates similar LET dependence as from the luminescence efficiency curve. The ηHT,γ curves are consistent with Birks’ law, where we observe expected quenching for increasing LET.