量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
The behaviour of high power laser-plasma interaction from solid targets, and the resultant ion generation, at the extreme intensities available at state-of-the-art laser facilities is an important topic for realising potential applications. We will present experimental data investigating electron heating and proton acceleration in a sheath field using the ultra-high intensity, high contrast J- KAREN-P laser. Using a 10 J, 40 fs pulse focused to an intensity ~5x1021 Wcm-2 resulted in generation of protons up to 40 MeV at 0.1 Hz from a 5 μm steel tape target. The high repetition rate of the tape target allowed large statistically relevant investigations into the scaling of the electron and proton beam with laser energy, pulse length and spot size.
We demonstrate that the laser accelerated electron temperature depends not only on laser intensity but also on focal-spot size, in which the restriction of the transverse acceleration distance causes saturation of the electron temperature at increasingly small foci. However, the accelerated electron beam profile becomes more collimated and asymmetric with small focal spots. Measurements of the proton beam show only limited benefit to using increasingly small focal spot sizes, and the best scaling for achieving higher maximum proton energies from sheath acceleration is achieved with increasing the pulse energy, rather than reducing the spot size or pulse length.