量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Reported transfer factor (TF) values of Pu from paddy soil to rice are rather scarce, despite the radiotoxicity of Pu and the irreplaceable role of rice in Asian peoples’ diets. Here, we conducted a field study to investigate the transfer of global fallout Pu from paddy soil to rice grain (hulled rice) in Japan. The 240Pu/239Pu atomic ratios in two rice grain samples out of 16 samples were determined and the ratios corresponded well with the global fallout value. The soil-to-rice TFPu in 12 Japanese prefectures ranged from 4.5×10-6 to 1.2×10-4 with a geometric mean of 3.3×10-5. The TFs of rice obtained in this study were compatible to the TFs for the broad heading “cereals” compiled in the IAEA Technical Report Series No. 472. Weak correlations were found between the TF and the investigated soil characteristics such as soil pH and loss on ignition. Regarding the TFs for cerium (Ce) and thorium (Th) which are commonly considered as Pu analogues, we observed no significant correlations between the log(TFPu) and log(TFCe) or log(TFPu) and log(TFTh). On the other hand, interestingly, a significantly positive correlation (r=0.795, p<0.001) was observed between log(TFPu) and log(TFU). In view of the observed similarity of TF values for U and Pu from soil to rice, we thought that using the easy-to-measure TFU to estimate TFPu from soil to rice might be suggested although the mechanism was unclear.