量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Linear energy transfer (LET) spectra and survival fraction distribution based on the CR-39 plastic charged-particle detector in a spread-out Bragg peak irradiation by a 12C beam
利用統計を見る
Facilities for heavy ion therapies are steadily increasing in number worldwide. One of the advantages of heavy ions is their high relative biological effect (RBE). In a model used at NIRS (National Institute of Radiological Sciences), linear energy transfer (LET) spectra are required to estimate biological dose (physical dose × RBE). The CR-39 plastic charged-particle detector (CR-39) is suitable for measurement of LET. For the present study, done at the Gunma University Heavy Ion Medical Center (GHMC), we measured LET spectra at 11 depths in spread-out Bragg peak (SOBP) irradiation by a 12C beam of 380 MeV/u. The lower threshold of the CR-39 to measure LET was about 5 keV μm−1 due to poor sensitivity for low LET. Then we calculated biological dose and survival fraction distributions and compared them with treatment planning results at GHMC. We used Monte Carlo simulation (Geant4) to calculate LET spectra. The simulation results were in good agreement with the experimental spectra. Moreover, the biological dose and survival fraction distributions estimated from the CR-39 reproduced the treatment planning. The CR-39 is suitable for estimating biological dose in carbon ion therapy.