量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
High-potential iron-sulfur protein (HiPIP) is a soluble electron carrier protein of photosynthetic bacteria with an Fe4S4 cluster. Although structural changes accompanying the electron transfer are important for understanding of the functional mechanism, the changes have not been clarified in sufficient detail. In the present study, we performed a crystallographic analysis of oxidized HiPIP and a structural comparison with the reduced form at a high resolution of 0.8 Å. The changes in Fe-S bond lengths were similar to that predicted by theoretical calculation, although some discrepancies were also found. Almost distances between the sulfur atoms of the iron-sulfur cluster and the protein environment are elongated upon the oxidation. Positional changes of hydrogen atoms in the protein environment, such as on the amide-hydrogen of Cys75 in the proximity of the iron-sulfur cluster, were also observed in the accurate analyses. None of the water molecules exhibited significant changes in position or anisotropy of atomic displacement parameter between the two states, while the orientations of some water molecules were different.