量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Purpose: To investigate an enhancement of DNA double-strand break (DSB) induction and cell killing effect by K-shell ionization of phosphorus atoms and Auger electrons on human cell lines.
Materials and methods: Induction of DSB, DNA damage responses, cell cycle distributions, and cell killing effects were investigated after exposures of the cells with monochromatic synchrotron radiation soft X-rays of 2153 and 2147 eV, which were the resonance peak and off peak, respectively, of the K-shell photoabsorption of phosphorus.
Results: Higher biological effects in the cells irradiated with soft X-rays at 2153 eV than at 2147 eV were observed in (i) the efficiency of 53BP1/γ-H2AX co-localized foci formation per dose and residual number of foci, (ii) prolonged phosphorylation levels of DSB repair and/or cell cycle checkpoint related proteins and G2 arrest, (iii) the cell killing effects at the 10% survival level of normal human fibroblasts, HeLa cells, and human glioblastoma M059K cells (1.2–1.5 times higher) and that of human ataxia telangiectasia mutated (ATM)-defective cells and glioblastoma DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-defective cells (1.2 times).
Conclusion: The yield of DSB and partly less-reparable complex DNA damage induction in human cells was enhanced by K-shell photoabsorption of phosphorus and low-energy Auger electrons.