量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
The mechanism by which amyloid-β peptide (Aβ) accumulation causes neurodegeneration in Alzheimer's disease (AD) remains unresolved. Given that Aβ perturbs calcium homeostasis in neurons, we investigated the possible involvement of calpain, a calcium-activated neutral protease. We first demonstrated close postsynaptic association of calpain activation with Aβ plaque formation in brains from both patients with AD and transgenic (Tg) mice overexpressing amyloid precursor protein (APP). Using a viral vector-based tracer, we then showed that axonal termini were dynamically misdirected to calpain activation-positive Aβ plaques. Consistently, cerebrospinal fluid from patients with AD contained a higher level of calpain-cleaved spectrin than that of controls. Genetic deficiency of calpastatin (CS), a calpain-specific inhibitor protein, augmented Aβ amyloidosis, tau phosphorylation, microgliosis, and somatodendritic dystrophy, and increased mortality in APP-Tg mice. In contrast, brain-specific CS overexpression had the opposite effect. These findings implicate that calpain activation plays a pivotal role in the Aβ-triggered pathological cascade, highlighting a target for pharmacological intervention in the treatment of AD.