量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
In planning for long-duration spaceflight, it will be important to accurately model the exposure of astronauts to heavy ions in the galactic cosmic rays (GCR). As part of an ongoing effort to improve heavy-ion transport codes that will be used in designing future spacecraft and habitats, fragmentation cross sections of 28Si have been measured using beams with extracted energies from 290A to 1200A MeV, spanning
most of the peak region of the energy distribution of silicon ions in the GCR. Results were obtained for six elemental targets: hydrogen, carbon, aluminum, copper, tin, and lead. The charge-changing cross sections are found to be energy-independent within the experimental uncertainties, except for those on the hydrogen
target. Cross sections for the production of the heaviest fragments are found to decrease slightly with increasing energy for lighter targets, but increase with energy for tin and lead targets. The cross sections are compared to previous measurements at similar energies, and to predictions of the NUCFRG2 model used by NASA to evaluate radiation exposures in flight. For charge-changing cross sections, reasonable agreement is found between the present experiment and those of Webber et al. and Flesch et al., and NUCFRG2 agrees with the data to within 3% in most cases. Fragment cross sections show less agreement between experiments, and there are substantial differences between NUCFRG2 predictions and the data.