量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
The concept of internal target volume is of marked importance for radiotherapy to lung tumors as respiration-induced motion is important. Individualized assessment of motion is required as tumour site may not predict the extent or pattern of tumour motion. We performed volumetric cine scanning using the 256-multi-slice CT (256MSCT) to study tumor motion during free breathing in 14 inpatients who were treated with carbon-ion radiotherapy. Motion assessment in 16 respiratory phases of the cine CT revealed most tumors to show hysteresis-like behavior. Isocenter displacement between peak exhalation and inhalation for the average of the right and left lungs were 7 mm, 7 mm and 15 mm for the upper, middle and lower lobes, respectively. Cine CT with the 256MSCT improved the evaluation of tumor displacement and overcomes some of the limitations associated with current CT methods. Volumetric cine CT data provides useful data on motion for planning in all radiation approaches for lung tumors.