量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Obfective:To assess alterations in brain metabolites of patients with Pelizaeus-Merzbacher disease (PMD) with the proteolipid protein gene 1 (PLP1) duplications using quantitative proton MRS. Methods:Five unrelated male Japanese patients with PMD with PLP1 duplications were analyzed using automated proton brain examination with the point resolved spectroscopy technique (repetition and echo time of 5,000 and 30 msec). Localized spectra in the posterior portion of the centrum semiovale were acquired, and absolute metabolite concentrations were calculated using the LCModel. Results:Absolute concentrations of N-acetylaspartate (NAA),creatine (Cr),and
myoinositol(MI) were increased by 16%(p<0.01),and 43%(p<0.001),and 31%(p<0.01)in patients with PMD as compared with age-matched controls,There was no statistical difference in choline concentration. Conclusion:The increased concentration of NAA,which could not be detected by previous relative quantitation methods, suggests two possibilities: axonal involvement secondary to dysmyelination, or increased cell population of oligoddendrocyte progenitors. Elevated Cr and MI concentrations may reflect the reactive astrocytic gliosis. Our study thus emphasizes the importance of absolute quantitation of metabolites to investigate the disease mechanism of the dysmyelinating disorders of the CNS.