量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
The passive permeation rates of DMPO and DEPMPO spin traps and their hydroxyl radical adducts through liposomal membranes were measured using ESR spectroscopy. For the spin traps, we measured the time-dependent change in the signal intensity of the OH-adduct, which is formed by a reaction between the penetrated spin trap and hydroxyl radicals produced by the UV-radiolysis of H2O2 inside the liposomes. The hydroxyl radicals produced outside the liposomes were quenched with polyethyleneglycol. For the OH-adduct, preformed adduct was mixed with liposomes and the time-dependent change of the ESR signal was measured in the presence of a line-broadening reagent outside the liposomes to make the signal outside the liposomes invisible. Both the spin traps and their OH-adducts diffused across the lipid membranes rapidly and reached equilibrium within tens of seconds. These findings suggest that if used for the detection of free radicals inside cells, these spin traps should be well distributed in cells and even in organelles.